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Abstract This study explored progression of students’ level of reasoning and generalization
in numerical and figural reasoning approaches across grades and in different pattern general-
ization types. An instrument that included four figural patterns was administered to a sample of
1232 students from grades 4 to 11 from five private schools. The findings suggest that there
was progressive development in the level of reasoning and generalization in each reasoning
approach across clusters of grades. The level of reasoning and generalization in figural
approach was higher than that for numerical approach in each grade. In addition, the level
of reasoning and generalization for each approach and in each grade was not limited to one
level but to several levels. The type of generalization influenced the progression of students’
level of reasoning and generalization in each approach.
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1 Introduction

Pattern generalization (PG) is a core area in mathematics that is characterized by more strategic
and reasoning knowledge than mathematical content knowledge (El Mouhayar & Jurdak, 2015,
2016). This study addresses the progression of student ability and level of generalization in
numerical and figural reasoning approaches across grades in the context of generalizing growing
figural patterns and how the progression is influenced by different generalization types.
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This study was conducted in private schools in Lebanon where almost 60% of K-12
Lebanese students are served. The findings have implications for contexts in which PG may
be implicit and/or may have a very limited place in the mathematics curriculum as well as for
contexts in which PG is explicit in the curriculum. In Lebanon, like many countries, PG has a
limited place in the mathematics curriculum. The Lebanese students’ experience in generaliz-
ing figural patterns is moderate, since it does not stand on its own as a curricular topic in
algebra. However, several processes that are closely related to PG, such as generalization,
representation, and modeling span the algebra and arithmetic official curriculum for all grades,
including the upper elementary school cycle (grades 4–6). Relations, functions, and their
representations constitute a core area in the algebra curriculum. Many of these topics usually
appear explicitly in other countries’ high school algebra or pre-calculus official curricula or are
considered by teachers as basic to cover the explicitly stated topics in algebra, relations and
functions. Consequently, the findings may motivate researchers in other countries.

2 Theoretical perspectives

2.1 Generalizing strategies, reasoning approaches and types of generalization

One direction of research in math education was the study of students’ reasoning and strategies
in PG. Findings in previous studies (e.g., El Mouhayar & Jurdak, 2015, 2016; Healy &
Hoyles, 1999; Radford, 2003, 2008, 2010b; Rivera & Becker, 2008; Rivera, 2010; Stacey,
1989) empirically demonstrate that students use different strategies and ways of reasoning to
generalize patterns. In particular, El Mouhayar and Jurdak (2015) demonstrate that students in
Lebanon frequently use the recursive strategy (pointing the common difference between pairs
of consecutive terms and repetitively adding the constant from term to term to extend the
pattern) and functional strategy (relating parts of the pattern to the figural step number) to
generalize patterns.

We agree with Lannin et al.’s (2006) suggestion that strategies in PG often emerge from
various ways of reasoning. For example, to extend the pattern in Fig. 1, an additive strategy
may emerge from two different ways of reasoning: (1) noticing that the number of squares
increases by two each time: 3, 5, 7, 9, 11, 13, 15, 17, 19; and (2) recognizing the structural
growth of the pattern and that two squares increase in the top and bottom rows by each step.

We also distinguish between simple and more advanced strategies. We consider that
strategies that enable finding a general term or a term in a specific figural step without the
need to find the preceding figural steps (e.g., functional) are more advanced than strategies that
involve determining the preceding steps (e.g., recursive).

We shall make a distinction between two classes of students’ reasoning approaches, which
was adopted in previous studies (El Mouhayar & Jurdak, 2016; Healy & Hoyles, 1999;
Küchemann, 2010; Rivera & Becker, 2008). The figural reasoning approach (FRA) in which
students generalize patterns by looking at the relational structures embedded in the figural
steps of those patterns; a process that involves analyzing generic cases or finding relationships

F steps Step 1 Step 2 Step 3 Step 4

Fig. 1 A growing figural pattern
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that students perceive between figures. The numerical reasoning approach (NRA), which
involves generalizing patterns based on attributes that the students see in numbers that they
generate from specific steps of the pattern. During this process, students neglect the figures that
structure the pattern. El Mouhayar and Jurdak (2016) note that the NRA for the recursive
strategy is more dominant than the FRA. However, the latter seems to be more dominant than
the former for the functional strategy.

We note that the distinction between NRA and FRA is not universally accepted. For
example, the Pythagoreans explored and established properties of natural numbers by using
collections of figural dots to represent numbers: B●^ represents B1^; B●●^ represents B2^; etc.

Previous studies (e.g., El Mouhayar & Jurdak, 2015, 2016; Jurdak & El Mouhayar, 2014;
Rivera, 2010; Stacey, 1989) distinguish between near and far generalizations. The former
involves finding the value of a step that is near from a given step (e.g., step 9), whereas the latter
consists of determining the value of a step that is distant from given figural steps (e.g., step 100).

2.2 Neo-Piagetian perspectives regarding stages of cognitive development

According to the Piagetian classical theory, a child’s (or an adult’s) cognitive development is
perceived as a continuous process in stages. Neo-Piagetian theories (e.g., Biggs & Collis,
1982), however, refute this assumption. For example, McClelland (2010) points out that
developmental progress that children make is not uniform and that there are stage-like
progressions that exist as possible emergent consequences of a gradual learning process.

Another major difference between classical Piagetian and neo-Piagetian theories is that the
former classifies an individual as belonging to a specific developmental stage of reasoning.
Moreover, a child or an adult who demonstrates a specific level of reasoning in solving a
problem will have the tendency to show the same level of reasoning on other problems. In
contrast, neo-Piagetian theories report that individuals demonstrate different levels of reason-
ing on various problems. Individuals, regardless of their age, tend to develop their level of
reasoning in correspondence to their expertise in a particular domain (algebra, geometry, etc.).
Consequently, a novice in a particular domain (e.g., algebra) will exhibit a lower level of
reasoning than that same individual will exhibit in a domain (e.g., arithmetic) by which s/he is
more expert. Furthermore, neo-Piagetian models describe an individual’s precise level of
reasoning based on his/her work on a specific problem—as we will examine in this study.

2.3 The structure of the learned outcomes (SOLO) framework

The Structure of the Learned Outcomes (SOLO) is one of the neo-Piagetian theories that was
developed by Biggs and Collis (1982). By investigating indicators of specific cognitive
abilities, the SOLO taxonomy characterizes Bthe structure of any given response as a phe-
nomenon in its own right, that is, without the response necessarily representing a particular
stage of intellectual development^ (Collis, Romberg, & Jurdak, 1986, p. 207).

A level of reasoning (LOR) (Table 1), in the SOLO taxonomy, refers to a cognitive ability
of a specific response classified at a certain level reflected in the SOLO structure. An increased
use of applicable elements, operations, and relationships related to a mathematical task
produces a response of higher structural complexity. However, the structural complexities at
each stage are identical. Moreover, each of the levels encompasses the preceding one, and they
recur across developmental stages such that the highest level becomes the lowest at the
following stage (Collis et al., 1986).
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2.4 Levels of generalization

Radford, Bardini, and Sabena (2007) describe algebraic generalization of patterns as a Bshift of
attention that leads one to see the general in and through the particular^ (p. 525). This shift of
attention involves objectification: Bmaking something visible to the view^ (Radford, 2003, p.
40) and to arrive at it, students rely on the use of various types of artifacts that Radford (2003)
identifies as semiotic means of objectification.

In a series of research papers, Radford (2003, 2008, 2010a, 2010b) empirically distinguishes
between different levels of generalizations and demonstrates the existence of three layers of
algebraic generality: factual, contextual, and symbolic (Table 1). Furthermore, Radford
(2010b) points out that, Bjust as not all symbolization is algebraic, not all patterning activity leads
to algebraic thinking^ (p. 40) and distinguishes between algebraic generalization, arithmetic (non-
algebraic) generalization, and naïve inductions. According to him, generalizing a pattern algebra-
ically involves (1) grasping a commonality, (2) generalizing this commonality to all the terms of
the sequence, and (3) providing a rule that allows determining any term of the sequence. However,
arithmetic generalization involves generalizing a local commonality observed on some figural
steps without the ability to come up with a rule that determines any term of the pattern. In naïve
inductions, generalizations are made by guessing rules.

2.5 Logical correspondence between levels of reasoning and generalization

Table 1 presents Radford’s levels of generalization (column 1) with the suggested corresponding
SOLO levels (column 2) as they appear in the literature. The levels in each taxonomy assume a
hierarchy. Table 1 shows that the two taxonomies may be reasonably matched in terms of

Table 1 A comparison between Radford and SOLO levels

Radford’s levels of generalization SOLO levels

Prestructural (P level). Does not involve using
important features

Abduction. Noticing a commonality Unistructural (U level). Involves using one important
feature

Arithmetic generalization. A generalization of the local
commonality observed on some figures or numeric
facts without the ability to use this information to
provide an expression of whatever term of the
sequence.

Multistructural (M level). Involves using a number of
important, but disconnected, features

Factual generalization. Applies to objects at the same
concrete level (e.g. numbers) and involves various
types of semiotic means of objectification: spatial
positional linguistic terms (e.g. “the next”); adverbs
(e.g. always); rhythm and movement (e.g. 1+2, 2+3,
3+4, 4+5, …), etc.

Relational (R level). Involves using several important
features that are connected together

Contextual generalization. Nonsymbolically based type
of generalization that goes beyond the realm of
specific figures and deals with generic objects (e.g.
“the figure”, “the top row”).

Symbolic generalization. Involves expressing the
generalization through alphanumeric symbols and
bypassing the positioning problem to produce
nonspatially based symbolizations.

Extended abstract (E level). Involves using important
and connected features in an inclusive manner in
relation to abstract principles
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compatibility of respective hierarchies. Abduction, arithmetic, factual, contextual, and symbolic
levels respectively correspond to U, M, R, and E levels. The unistructural level (U) involves the
use of one relevant aspect of a task, which entails noticing a commonality—abduction—in the
context of generalization. The arithmetic generalization level corresponds to the multistructural
level (M) because both levels in the two taxonomies correspond to a step-by-step generalization.
More specifically the arithmetic generalization involves extending a commonality to subsequent
terms of a pattern without the ability to come upwith a rule that determines any term of the pattern
(Radford, 2010b). Similarly, the multistructural level involves the use of several relevant, but
disjoint, aspects of a pattern (e.g., noticing a local commonality) to determine particular steps.
Consequently, both levels are based on making use of a regularity to determine a near or far
generalization but without the ability to provide a rule or to determine any term of the pattern.

Factual generalization level and the relational level (R) are also compatible. The former is
classified as a presymbolic algebraic generalization, which applies to generalization of objects at
the same concrete level. The latter involves generalization, which is based on using all relevant
and connected features of a generalization task. Although factual generalization reveals a higher
level of generalization in comparison with arithmetic generalization and the relational level is
characterized at a higher SOLO level in comparison with the multistructural level, both levels do
not go beyond the realm of specific steps of a pattern and do not deal with generic objects.

Table 1 also shows that contextual and symbolic generalizations correspond to the extended-
abstract level (E). Both generalization levels go beyond concrete objects and deal with generic
objects. Similarly, the extended-abstract level is characterized by using a generic case.

Even though there is a logical correspondence between the levels, the relationships between
the two taxonomies are not as simple as they appear because of differences in the theoretical
insertions of each taxonomy. Radford’s (2003) taxonomy proposes a semiotic-cultural ap-
proach to study students’ semiotic means of objectification, which includes an analysis of
gestures, body, posture, and other embodied signs and resources (e.g., language writing,
speech, tools, analogies) in presymbolic (factual and contextual) and symbolic generalizations.
In contrast, the SOLO taxonomy is inserted in the cognitive realm by which the body
(including gestures and body posture) and other material culture play a secondary role.

The high degree of correspondence between the two sets of levels suggests adopting the
SOLO approach as a methodological simplifying move that does not detract from Radford’s
approach. Matching the two sets of levels suggests that classification of a response of a
generalization task to a particular SOLO level falls within the corresponding layer of gener-
ality. Thus, when the SOLO taxonomy (which is of general nature and predominantly
cognitive) is applied to PG tasks, the SOLO levels of reasoning are very similar to levels of
generalization (which are specific to forms of algebraic generalization thinking and correspond
to cultural semiotic perspective). However, there seem to be one exception: The pre-structural
level has no matching level in Radford’s model. This is comprehensible since this level
indicates refusal or inability to engage in the task.

3 Rationale of the study

This study builds on previous research (El Mouhayar & Jurdak, 2015, 2016; Healy & Hoyles,
1999; Lannin, Barker, & Townsend, 2006; Radford, 2003, 2008, 2010a, 2010b; Rivera &
Becker, 2008) regarding strategies, ways of reasoning and levels of generalization in PG. Little
is known about the progression of student level of reasoning and generalization associated with
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the use of NRA and FRA across grades in the context of generalizing growing figural patterns
and how these are influenced by PG type. Such knowledge is essential for researchers, teachers,
and curriculum designers. If the progression is identified and how it is influenced by PG type,
tasks could be designed to promote students’ performance throughout different school cycles.

We agree with Radford’s (2008) suggestion that one perspective (e.g., neo-Piagetian cognitive
viewpoint) is not enough to offer a satisfactory scientific explanation of students’ processes to
generalize patterns due to the complexity of generalization. Thus, the present study uses two
theoretical perspectives to analyze students’ responses: the SOLO and Radford’s taxonomies. As
we previously noted, the former is of general nature and predominantly cognitive, whereas the
latter is specific to forms of algebraic thinking and corresponds to cultural semiotic perspective.

The approach that we adopt in this study is first to establish a logical correlation between the
SOLO taxonomy and Radford’s taxonomy (see Table 1). Second, to present an analysis of
illustrative examples in order to demonstrate empirically the results of the logical analysis. Such
a logical and empirical correspondence between the two taxonomies does not mean that SOLO
taxonomy may replace Radford’s taxonomy; however, it will enable the researcher to infer
students’ level of generalization based on SOLO classification. Third, to systematically explore
and describe the progression in the levels of reasoning and generalization across developmental
stages and age and to study the influence of PG on the progression of those levels.

4 Research questions

The research questions were as follows:

1. Are there trends of progression in student level of reasoning and level of generalization in
numerical and figural approaches across grades? How do those trends compare across
grades (using SOLO and Radford taxonomies)?

2. How does the generalization type (immediate, near, and far generalizations) influence the
progression of student level of reasoning and level of generalization across grades in
numerical and figural approaches?

5 Method

5.1 Participants

A sample of 1232 students from grades 4 to 11 in five private schools, which are located in greater
Beirut area in Lebanon, participated in the present study. The distribution of students by gradewas
as follows: 147 students in grade 4 (11.9%), 169 students in grade 5 (13.7%), 164 students in
grade 6 (13.3%), 172 students in grade 7 (14%), 200 students in grade 8 (16.2%), 160 students in
grade 9 (13%), 123 students in grade 10 (10%), and 96 students in grade 11 (7.8%).

5.2 Instrument

The instrument used in the present study contained four figural patterns formed of growing number
of squares (Fig. 2). For each pattern, the first four steps were given and the students were requested
to find the number of squares in steps 5, 9, 100, and/or n and to explain their responses.

94 El Mouhayar R.



5.3 Data collection

Data collection took place during classroom mathematics sessions, each of duration 55 min in
the presence of the author. Students worked individually to solve at least two of the following
problems: one linear pattern (problems 1 or 2) and one non-linear pattern (problems 3 or 4).
Some students solved more than two problems. This occurred when students finished solving
the two problems that were assigned to them and there was still sufficient time to solve other
problems.

5.4 Data analysis

The content validity of the instrument was previously confirmed by the author and other
researchers (Judak&ElMouhayar, 2014; ElMouhayar & Jurdak, 2015, 2016) based on literature
review and a pilot study, which was conducted on a sample of 50 students in grades 4 to 11.

The data were subjected to a series of analyses. First, each student’s response for each task
of the instrument was assigned a SOLO level using the rubric (Table 2). Our coding scheme
began with classification of different levels of SOLO as found in the literature (Biggs & Collis,
1982; Collis et al., 1986), which provided us with initial categories for coding (Strauss &
Corbin, 1998). A similar approach was adopted for assigning the reasoning approach and
strategy use, by which the coding categories were created in previous studies (El Mouhayar &
Jurdak, 2015; 2016). For example, Table 3 shows the coding categories of the functional and
recursive strategies in NRA and FRA approaches. Then, a constant comparative method
(Glaser & Strauss, 1967) was applied to test and revise the coding of SOLO, reasoning
approach and strategy use in pattern generalization.

All students’ responses were scored independently by three raters (including the author).
Several meetings occurred among the raters and disagreements in coding were discussed until
a consensus was reached.

Step 1 Step 2 Step 3 Step 4

3 5 7 9

(a) Problem 1. Algebraic generalization: 2n+1

Step 1 Step 2 Step 3 Step 4

6 10 14 18

(b) Problem 2. Algebraic generalization: 4n+2

Step 1 Step 2 Step 3 Step 4

2 5 10 17

(c) Problem 3. Algebraic generalization: n2+1

Step 1 Step 2 Step 3 Step 4

2 7 14 23

(d) Problem 4. Algebraic generalization: n2+2n-1

Fig. 2 The four PG problems in the instrument
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Cross tabulations and error bars were used for the quantitative analysis. First, a cross
tabulation of SOLO level in each reasoning approach by grade was done to explore potential
differences of significant values across grades. For this purpose, the researcher explored the chi-
squared and adjusted residual values. Second, error bars showing 95% confidence intervals (CIs)
around the average in each grade were used to represent the variation in LOR in each approach.
While the author used the averages to visualize and explain the growth in student LOR across
grades, the CIs were used to represent variations in each grade. In a similar manner, the author
analyzed the impact of PG type on the progression of student LOR across grades.

Students’ responses were analyzed qualitatively in order to understand differences in their
SOLO levels of reasoning and their levels of generalization in numerical and figural reasoning
approaches. In particular, typical examples of students’ responses were selected for each SOLO
and generalization level in order to support deeper interpretation of the developmental trends that
were identified in the quantitative analysis and to show the influence of PG on those trends.

6 Findings

6.1 General trends of progression of student LOR in NRA and FRA across grades

Cross tabulation of student NRA and FRA by LOR by grade is shown in Table 4. The findings
show that chi-squared was significant (p = 0.00) for NRA (χ2 (21) = 410.741) and for FRA (χ2

Table 2 Rubric for scoring student LOR in PG

LOR SOLO-based classification associated with NRA SOLO-based classification associated with FRA

U level Uses one numerical relevant aspect
of the pattern.

Uses one relevant structural aspect
of the figural pattern.

M level Uses several numerical disjoint facts
or relations with a focus on adding
or counting the numbers in the
consecutive numerical steps.

Uses several relevant structural facts
or relationships of the figural pattern
with a focus on adding or counting
the growing components in the
consecutive figural steps.

R level Uses several numerical relationships
or facts beyond counting consecutive
numerical steps.

Connects the components of a particular
figural step with the step number or
uses several figural relationships beyond
counting the consecutive figural steps.

E level Relates the numerical growth of pattern
with the nth step number.

Uses a generic case in the pattern and relates
the figural growth of pattern with the
nth figural step number.

Table 3 Rubric for coding student strategy use within NRA and FRA in PG

Strategy NRA FRA

Functional Recognizes a rule based on the
numeric pattern.

Identifies the growing components
of the pattern as well as the constant
components and relates them with
each other and with the figural step number.

Recursive Recognizes a numeric pattern by finding
the difference between consecutive
terms and then adds it to a numeric
value in given step to reach next step.

Recognizes the structural growth of the pattern
between consecutive figural steps and then
adds the value of the growth to a given
term in order to reach the next figural step.
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(21) = 317.342) suggesting progression in student LORwithin each approach. Table 4 shows that
the majority of the cells contributed significantly to χ2 because the adjusted residual was greater
than |2| in those cells.

Figure 3 represents trends of progression in the LOR associated with NRA and FRA.
Figure 3 shows that the former was lower than the latter in each grade. The error bars show that
the students used different SOLO levels for each of the NRA and FRA in each grade.
Moreover, the length of the 95% confidence interval for the FRA was longer than that for
the NRA indicating a larger variation in LOR.

Figure 3 also shows that the progression for each approach had several stages across clusters
of grades. For NRA, the qualitative analysis suggests that students’ responses that were
classified at the U level in stages 1 (grades 4–7) and 2 (grades 8 and 9) used one numerical
aspect of the pattern. Students’ responses that exhibited characteristics of the M level, in stages
2 (grades 8 and 9) and 3 (grades 10 and 11) used several elements based on numbers that they
generated from particular steps of the pattern. However, the students did not relate the elements
together. This suggests that students’ responses associated with NRA were classified, on the
average, at two generalization levels: (1) abduction level (matches U level) and (2) arithmetic
generalization level (matchesM level). Thus, those students were capable of (1) grasping a local
commonality observed on some numeric facts and (2) extending the commonality to subse-
quent numerical terms of the pattern; however, they were not able to use the commonality to
provide a direct expression of whatever term of the pattern (see Table 5 illustrative examples).

For FRA, students generalized patterns based on relational structures that the students perceived in
the figures forming the pattern. Students’ responses that were classified at the U level in stage 1

Table 4 Cross tabulation of student SOLO by NRA and FRA by grade

Grade LOR Total (%)

U level (%) M level (%) R level (%) E level (%)
NRA

4 58.8* 37.8* 3.4* 0.0* 100.0
5 55.4* 42.7 1.9* 0.0* 100.0
6 40.5* 54.1 5.5* 0.0* 100.0
7 39.8 52.5 7.1 0.7 100.0
8 33.1* 54.6 11.3* 1.0 100.0
9 27.1* 62.8* 8.1 2.0 100.0
10 17.9* 65.0* 13.9* 3.2* 100.0
11 16.0* 68.8* 9.2 6.0* 100.0
Total Frequency 1471 2192 302 55 4024

% 36.6 54.5 7.5 1.4 100.0
FRA

4 58.7* 30.3* 7.3 3.7* 100.0
5 54.2* 40.8* 4.2 0.8* 100.0
6 41.1* 49.1 6.5 3.3* 100.0
7 29.6 56.5 7.0 7.0* 100.0
8 21.1* 63.1* 10.4* 5.3* 100.0
9 26.7 56.0 4.3 13.0 100.0
10 13.8* 58.6* 6.7 20.9* 100.0
11 16.7* 47.9* 5.5 29.9* 100.0
Total Frequency 562 1101 139 253 2055

% 27.3 53.6 6.8 12.3 100.0

*Contributor to the significance of chi-squared

10.8% of the responses were classified at the P level (empty response), and 10% were classified as Bunscored
response^ because student’s response was unclear
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(grades 4–6) used one aspect of the pattern by looking at relationships that they saw between the
figures. However, students’ responses thatwere classified at theM levelmade use of various elements
of the pattern by looking at the relational structures of the figures forming the pattern. The focus of
those responses was to add or count the squares in consecutive figural steps of the pattern. Students’
responses that were classified at the R level in stage 4 (grades 10 and 11) focused on either finding
relationships between the figures and the step number or finding relationships beyond counting
consecutive steps of the pattern. This suggests that students’ responses associated with FRA were
classified, on the average, at three levels of generalization: (1) abduction level (matches U level); (2)
arithmetic generalization level (matches M level); and (3) factual generalization (matches R level).
Thus, students in stages 1 (grades 4–6), 2 (grades 7 and 8), 3(grade 9), and 4 (grades 10 and 11) were
capable of (1) grasping a local commonality observed on some figural facts and (2) extending the
commonality to subsequent figural terms of the pattern. Only students in stage 4 were able to use the
commonality to provide a direct expression of whatever term of the pattern; however, their general-
izations applied to objects at the same concrete level (see Table 5 illustrative examples).

6.2 Effect of PG type on the trends of progression of student LOR and level
of generalization associated with NRA and FRA

The cross tabulation of student LOR, within NRA and FRA, by grade by type of generalization
(immediate, near, and far) were done. The findings suggest that the trends of progression of student
LOR, across grades, in each approach was moderated by generalization type and by grade. For

Fig. 3 Developmental trends of student LOR across grades associated with NRA and FRA. Student LOR for a
grade was defined as close to SOLO level L if the mean (M) is between L <M<L + 0.25; within the average of L
and L + 1 if L + 0.25 <M<L + 0.75; approached L if L—0.25 <M<L
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NRA, the findings show that chi-squared was significant (p= 0.00) for the immediate (χ2 (21) =
134.033), near (χ2 (21) = 204.033) and far generalizations (χ2 (21) = 137.394). For FRA, the
findings show that chi-squared was also significant (p = 0.00) for the immediate (χ2 (21) =
222.722), near (χ2 (21) = 81.65), and far generalizations (χ2 (21) = 72.155).

Tables 6 and 7 show that the adjusted residual was greater than |2| for several cells
indicating that these cells contributed in a significant manner to χ2. For NRA, most of the
cells that contributed significantly to χ2 were at the U and/or M levels. However, for FRA,
most of the cells were at the E level (except for immediate generalization where the adjusted
residual was larger than |2| in most of the cells at the U, M and E levels).

For NRA, the developmental trends of student LOR for the immediate, near, and far
generalization types were distinct (Fig. 4a). SOLO for near generalization was higher than
that for far generalization and the latter was higher than that for immediate generalization in
each grades 4–11. For FRA, the trends of progression of student LOR for the immediate, near
and far generalizations were distinct (Fig. 4b). SOLO for far generalizations was higher than
that for near generalizations and the latter was higher than that for immediate generalizations in
each grades 4–11. The three trends of progression in each of the NRA and FRA showed
different developmental stages across clusters of grades.

Below are two typical examples of students’ responses that adopted the NRA in near and far
generalizations. We also discuss each example using the theoretical perspectives (SOLO and
Radford’s taxonomies). The first typical example (Fig. 5) represents a response in a near
generalization task. The excerpt is from grade 7:

From a SOLO perspective, the response was classified at theM level. The student used more
than one relevant aspect of the pattern: (1) noticed that the terms of the pattern increase by two,
(2) identified the number of squares in step 5 and (3) repetitively added the common increment
between pairs of consecutive steps four times from step 5 to reach step 9. From Radford’s
perspective, the student’s response corresponds to the arithmetic generalization level, where the
student generalized a local commonality observed on some steps of the pattern. The response

Table 5 Illustrative examples of students’ SOLO level and level of generalization

Problem;
Question

SOLO
level

Level of
Generalization

Reasoning
approach

Illustrative example

P1, Q1 U level Abduction NRA 11 squares; I counted by 2
P1, Q2 M level Arithmetic

generalization
NRA 19; since we have to add 2 then we keep going

with the pattern till we reach 9→ 9 + 2 = 11,
11 + 2 = 13, 13 + 2 = 15, 15 + 2 = 17, 17 + 2 = 19

P1, Q1 U level Abduction FRA 9 squares; I obtained by counting Figure 4 and
added another square to up and down

P1, Q2 M level Arithmetic
generalization

FRA 17 squares; I kept adding one square on both sides
till I reached fig. 9, which is 9 on the top and
8 on the bottom

P2, Q2 R level Factual
generalization

FRA 38 squares; number of squares under each other
is increasing one square→ 5 + 4 = 9. In each
figure, 4 squares are added→ 9–5 = 4/4 × 4 =
16→ 22 + 16 = 38

P4, Q3 R level Factual
generalization

FRA 10,199; on each side there is 100. So 200. In the
middle, row is (100–1) column is (100 + 1).
So there is 99 × 101 = 9999 boxes in the middle.
Thus, 200 + 9999

P refers to problem, Q refers to question
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provides us with an obvious suggestion that, for this student, the common increase refers not
only to the terms that were explicitly cited but also to all the terms of the pattern. One clear
indicator is the statement: BWe are always skipping 2.^However, the student was not able to use
this information to provide a response to the far generalization. Thus, the student showed
inability to make use of the already-noticed regularity: BWe are always skipping 2^ to provide
an exact value for the number of squares in step 100.

Qualitative analysis revealed that students who used NRA to establish far generalizations in
steps 100 or n were more likely to determine differences between successive steps of the pattern
(recursive strategy) or did not distinguish between the number of squares in step n and the step
number. The following excerpt (Fig. 6) from grade 5 illustrates the recursive strategy:

In the above excerpt, we do not find adverbs, such as Balways^ that appeared in the
previous example. Actually, the student’s response does not reach a verbal description. From a
SOLO perspective, the response was classified at the M level since it involved the use of
several relevant disjoint aspects of the task. From Radford’s (2003, 2010b) perspective, the
student relied on a rhythm during the course of the numeric actions in order to investigate the
pattern. Moreover, this rhythm played the role of the adverb Balways.^ Radford (2003, 2010b)

Table 6 Cross tabulation of student LOR associated with NRA across grades by PG type

Grade % within LOR Total (%)

U level (%) M level (%) R level (%) E level (%)

Immediate generalization
4 73.2* 26.8* 0.0 0.0 100.0
5 65.9* 34.1* 0.0 0.0 100.0
6 50.6 49.4 0.0 0.0 100.0
7 46.9 52.5 0.6 0.0 100.0
8 36.2* 63.8* 0.0 0.0 100.0
9 30.5* 68.7* 0.0 0.8 100.0
10 31.6* 68.4* 0.0 0.0 100.0
11 14.5* 81.8* 1.8* 1.8* 100.0
Total (%) 48.5 51.1 0.2 0.2 100.0

Near generalization
4 51.3* 40.0* 8.7 0.0 100.0
5 46.5* 50.2* 3.3* 0.0 100.0
6 29.0 65.2 5.8* 0.0 100.0
7 30.4 60.7 8.2 0.7 100.0
8 21.1* 66.4 12.2 0.3 100.0
9 22.3 64.2 12.8 0.8 100.0
10 11.5* 63.5 23.5* 1.5 100.0
11 11.6* 69.1* 14.4 5.0* 100.0
Total (%) 26.7 61.3 11.0 1.0 100.0

Far generalization
4 47.6 51.2 1.2* 0.0 100.0
5 52.6* 44.5 2.9* 0.0* 100.0
6 45.1 43.8 11.1 0.0* 100.0
7 48.8* 38.7* 11.3 1.2 100.0
8 47.2* 33.2* 17.0* 2.6 100.0
9 32.3* 55.7* 7.0 5.1 100.0
10 22.0* 65.9* 4.9 7.3* 100.0
11 23.9* 61.9* 4.4 9.7* 100.0
Total (%) 40.9 47.3 8.8 3.1 100.0

*Contributor to the significance of chi-squared
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suggests that the rhythm forms a fundamental semiotic means of objectification that helps to
make awareness of a particular order and to go beyond the specific steps of a pattern. However,
this example shows that the student remained at the arithmetic generalization level and did not
reach the factual generalization. The student’s response did not lead to a schema through which
the student was able to determine the number of squares in any particular step of the pattern.

The following excerpt (Fig. 7) from grade 7 illustrates a student’s response that used the
FRA to deal with immediate, near, and far generalizations:

From a SOLO perspective, the response was classified at the M level in the immediate and
near generalizations. The response was classified at the E level in far generalization. From
Radford’s (2003, 2010b) perspective, the excerpt shows that the student used arithmetic
generalization for immediate and near generalizations, whereas he/she used contextual gener-
alization for the far generalization task. In immediate generalization, the student noticed that
the terms increased by two squares. The common increase between the consecutive steps
applies not only to the terms that were addressed in the questions but also to any term of the
pattern: BSince in each figure one square is being added on the top side and on the bottom
side.^ Moreover, the student did make use of the regularity that he/she noticed in the

Table 7 Cross tabulation of student LOR associated with FRA across grades by PG type

Grade % within LOR Total (%)

U level (%) M level (%) R level (%) E level (%)

Immediate generalization
4 68.4* 27.6* 2.6 1.3 100.0
5 58.2* 41.8* 0.0 0.0* 100.0
6 45.4* 53.2* 1.4 0.0* 100.0
7 28.3 67.0 1.4 3.3 100.0
8 21.4* 75.0* 2.5 1.1* 100.0
9 24.7 69.3 1.9 4.2 100.0
10 11.1* 78.7* 3.2 6.9* 100.0
11 17.6* 68.8 1.0 12.6* 100.0
Total (%) 28.1 65.8 1.9 4.2 100.0

Near generalization
4 27.3 50.0 18.2 4.5* 100.0
5 47.4* 42.1 5.3 5.3 100.0
6 32.0 50.0* 12.0 6.0* 100.0
7 36.8 33.3 17.5 12.3 100.0
8 23.9 35.8 29.9* 10.4* 100.0
9 26.4 32.1 11.3 30.2 100.0
10 16.1 29.0 19.4 35.5* 100.0
11 17.2 17.2* 12.1 53.4* 100.0
Total (%) 26.3 34.0 17.0 22.7 100.0

Far generalization
4 54.5* 9.1 18.2 18.2 100.0
5 30.0 30.0 40.0 0.0* 100.0
6 34.8 21.7 26.1 17.4* 100.0
7 25.0 28.1* 25.0 21.9* 100.0
8 12.9 16.1 38.7* 32.3 100.0
9 40.6* 6.3 9.4 43.8 100.0
10 22.9 6.3 6.3* 64.6* 100.0
11 13.0* 3.7* 14.8 68.5* 100.0
Total (%) 24.9 12.4 19.1 43.6 100.0

*Contributor to the significance of chi-squared
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immediate generalization in order to provide the number of squares in the near generalization
task. In fact, the student kept on adding one square in each side until reaching figural step 9 of
the pattern: BI kept on adding one square on both sides till I reached fig. 9 which is 9 on the top
and 8 on the bottom^ (Fig. 7). According to Radford’s (2010b) perspective, the student has
not yet used algebraic generalization for the near generalization task. Actually, the student
generalized the local commonality that he/she observed on some figural steps without showing
the ability to use this commonality to provide an expression of whatever term of the pattern. In
far generalization, the student realized that there was another commonality that links the
number of the squares in the bottom and top sides and the step number. The statement BSince
the number of each figure is the number of squares in the bottom side, and the top side more
than one square^ indicates the student’s awareness that this commonality holds to all the terms
of the pattern. Drawing on this noticed regularity, the student was then able to provide an

Fig. 5 A student’s response to a near generalization task in problem 1

a b 

Fig. 4 Developmental trends of student LOR associated with NRA (a) and FRA (b) across grades for the
immediate, near and far generalizations. Student LOR for a grade level was defined as: close to SOLO level L if
the mean (M) is between L ≤M<L + 0.25; within the average of L and L + 1 if L + 0.25 ≤M<L + 0.75;
approached L if L—0.25 ≤M<L
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expression for the value of figural step 100. Thus, the student here made an algebraic
generalization, one that Radford (2003) called contextual generalization.

7 Discussion

In this study, we distinguish between numerical and figural approaches although the dichot-
omy between the two approaches is not universal. We also use two theoretical perspectives to

Fig. 6 A student’s response (S10504) to a far generalization in problem 1
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analyze students’ responses: the SOLO taxonomy and Radford’s taxonomy. The analysis
allowed us to show that there seems to be both empirical and theoretical support for matching
the SOLO and Radford’s levels. Thus, students’ responses to pattern generalization tasks can
be characterized in a way that is compatible with Radford’s levels without necessarily deriving
students’ behavior indicative of Radford’s levels for every pattern generalization task. We note
that the restriction to SOLO levels in the quantitative analysis was adopted as a methodological
simplifying move that does not detract from Radford’s semiotic-cultural approach.

One of the findings regarding the first research question shows that students demonstrated a
progressive development in the LOR associated to NRA and FRA across clusters of grades,
rather than from one grade to another. Drawing on the SOLO perspective, this finding suggests
that students’ responses in the different generalization tasks exhibited a significant increase in
the usage of elements and relationships associated to NRA and FRA across clusters of grades,
rather than across grades. In addition, the LOR, in each grade, was not limited to one SOLO

Fig. 7 A student’s response to immediate, near, and far generalizations in problem 1
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level but to several levels. For instance, the students used the U, M, and R levels in each grade.
The hypothesis of the existence of various levels of reasoning in each developmental stage
(Biggs & Collis, 1991) may explain this finding.

The occurrence of different SOLO levels of reasoning within each developmental stage,
with the dominance of one level, possibly explains the existence of various levels of gener-
alizations observed in Radford’s taxonomy in each stage with the dominance of one general-
ization level. From Radford’s (2003, 2008, 2010b) perspective, this finding suggests that the
variation of levels of generalization followed identifiable progressive trends across clusters of
grades and the one associated with FRAwas higher than that associated with NRA. Figure 3
shows that the students in elementary cycle (grades 4–6; corresponding ages 10–12), on the
average, noticed a numerical or figural commonality (abduction that matches U level) or
generalized a local commonality observed on some numeric or figural facts (arithmetic
generalization that matches M level). Students’ level of generalization in intermediate school
cycle (grades 7–9; corresponding ages 13–15) was classified, on the average, at the arithmetic
numerical or figural generalization level (matches M level); however, students using the FRA
also tended to use factual generalizations (match R level). Students who used NRA in
secondary school cycle (grades 10 and 11; corresponding ages 16 and 17) were classified,
on the average, at the arithmetic numerical generalization level (matches M level), and they
showed a tendency to use factual generalizations (match R level) based on numerical actions
and in the form of numerical schemes. Nevertheless, the level of generalization for students
who used the FRA was classified, on the average, at the arithmetic or higher layers of
generality (factual, contextual, or symbolic generalizations that correspond to R or E levels).

Why did the student LOR associated with NRA progress from U to M level but hardly
reached the R level; whereas student LOR associated with FRA developed from U to M and
then to the R and E levels? A plausible explanation is that the progression of student LOR in
PG is due more to experience than maturation. In particular, the involvement of Lebanese
students in pattern-related topics may partially explain their progression. Findings in the
literature support the hypothesis that students’ experience in generalizing patterns leads to
the development of their abilities to generalize patterns (e.g., Jurdak & El Mouhayar, 2014;
Lannin et al. 2006; Rivera, 2010; Stacey, 1989). In support of this explanation, we note that the
students in this study were indirectly exposed to pattern-related topics in different grades.
Students start to deal with variables, equations, algebraic expressions in grade 7 (first grade in
the intermediate cluster) and with functions and their representations in grade 9 (last grade in
the intermediate cluster).

Another plausible explanation is the relationship between student approach and strategy use.
Findings in a previous study (ElMouhayar & Jurdak, 2016) suggest that students who adopt NRA
frequently use the recursive strategy, whereas those who adopt FRA frequently use the functional
strategy. Accordingly, further analysis showed that, across grades, the development of student
LORwas moderated by the recursive strategy in NRA and by the functional strategy in FRA. The
LOR for the recursive strategy was classified, on the average, at the U level in grades 4–7, and it
progressed to the M level in grades 8–11, whereas the LOR for functional strategy was classified
at the M level in grades 4–9, and it developed to R level in grades 10 and 11.

A third plausible explanation may be made by drawing on the logical and empirical
correspondence between SOLO taxonomy and Radford’s classification of levels of general-
izations. According to this correspondence, the R level matched factual generalizations, which
allow to go beyond the first several steps of the pattern and to determine the number of squares
in any particular step of the pattern (e.g., steps 9 or 100). However, factual generalizations,
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which consist of Bnumerical actions in the form of numerical scheme^ (Radford, 2003, p. 65),
do not allow going beyond the realm of specific steps of the pattern in order to deal with the
generic objects (Radford, 2010b). Contextual generalizations, which correspond to E level,
were not limited to generalizing numerical actions but also to generalizing objects of actions.
Consequently, students who used FRAwere able to Bgo beyond the realm of specific figures
and deal with generic objects that cannot be perceived by our senses^ (Radford, 2003, p. 65).
According to Radford (2003), students in contextual and higher layers of generality, name
general objects by using situated and embodied depiction of those objects (like the top row,
bottom row, the figure, the next figure). In fact, students who used FRA, on the average, reached
the realm of algebraic generalization in grades 10 and 11, since they were able to provide a
direct rule that allowed them to calculate the number of squares in any step of the pattern.

The findings regarding the second research question support the assumption that the type of
generalization (immediate, near, and far generalizations) influences the performance of students.
The findings show that the LOR associated with NRA for near generalizations was higher than
that for far generalizations, which was higher than that for immediate generalizations in each of
the grades 4–11. A plausible explanation may be made by drawing on Radford’s (2008) comment
that students are more likely to fail in employing the NRA to address far generalizations:

Numeric patterns are reputedly difficult not because of the difficulties that the students
encounter in grasping the commonality, but because the students tend to fail at using it to
form a direct and meaningful rule. (p. 93)

However, the LOR in FRA for far generalizations was higher than that for near general-
izations, and the latter was higher than that for immediate generalizations in each of the grades
4–11. From a SOLO perspective, the amount of used elements and relationships in the FRA
approach increased as the task demands progressed. This may be due to the nature of
generalization tasks, where far generalization tasks require higher levels of reasoning com-
pared to near generalization tasks that involve higher levels of reasoning compared to
immediate generalizations.

The findings in Fig. 4 show that the variation of student LOR associated with each of
NRA and FRA followed recognizable trends of progression in immediate, near, and far
generalizations. From Radford’s (2003, 2008, 2010b) perspective, this finding suggests
that the type of generalization influenced the variation of levels of generalization, which
followed identifiable progressive trends across clusters of grades and the one associated
with FRA was higher than that associated with NRA in each generalization type.

This study informs researchers, teachers and curriculum designers about the progres-
sion of student level of reasoning and generalization in numerical and figural approaches
across grades and the influence of PG types on the progression. The findings show that the
development occurred across clusters of grades, which may be helpful to inform instruc-
tion on how to help students to reach the optimal range of level of reasoning in specific
developmental stages at school. For example, in the intermediate school cycle, students
using FRA are more likely to reach higher optimal range of LOR compared to those using
NRA. The findings show that students using FRA reached factual generalization level,
whereas the level of generalization for those using NRA was classified at the arithmetic
generalization level. The findings regarding the influence of PG on students’ LOR may be
helpful to inform instruction that students using NRA may reach their optimal range of
LOR in near generalizations, whereas students’ using FRA may reach their optimal range
of LOR in far generalizations in different school cycles.
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In conclusion, this study outlines a logical and empirical correspondence between two
theoretical frameworks, a cognitive realm and a social-cultural semiotic realm. Findings from
the cognitive perspective gave strong support to the validity of the progression of SOLO levels
across stages and the influence of pattern generalization types on those trends. Nevertheless,
findings from the social-cultural semiotic perspective provided a framework to characterize
different levels of generalizations in correspondence with SOLO levels. A future research
direction may include using both frameworks to explore the means of objectification that
teachers refer to in their classrooms to help students to develop their level of generalization and
reasoning in different types of generalization.
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