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Abstract The aim of this study is to better understand the notion of early algebraic thinking
by describing differences in grade 4–7 students’ thinking about basic algebraic concepts. To
achieve this goal, one test that involved generalized arithmetic, functional thinking, and
modeling tasks, was administered to 684 students from these grades. Quantitative analysis
of the data yielded four distinct groups of students demonstrating a wide range of performance
in these tasks. Qualitative analysis of students’ solutions provided further insight into their
understanding of basic algebraic concepts, and the nature of the processes and forms of
reasoning they utilized. The results showed that students in each group were able to solve
different number and types of tasks, using different strategies. Results also indicated that
students from all grades were present in each group. These findings suggest the presence of a
consistent trend in the difficulty level across early algebraic tasks which may support the
existence of a specific developmental trend from more intuitive types of early algebraic
thinking to more sophisticated ones.

Keywords Early algebraic thinking . Generalized arithmetic . Functional thinking .Modeling .

Concepts . Processes . Reasoning forms

1 Introduction

Mathematics curricula have usually been treated as an assortment of isolated topics where
arithmetic precedes and algebra follows (Carraher & Schliemann, 2007). However, researchers
and policy makers tend to agree that students should engage with algebra in a coherent way
throughout their schooling, reflecting a consensus that algebra represents the gateway for
reforming K-12 mathematics (e.g., NCTM, 2000). This idea was considered important for at
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least two reasons; first, the mere focus of elementary mathematics on arithmetic and compu-
tational fluency confined the conceptual development of mathematical ideas in the early grades
(Blanton & Kaput, 2005); secondly, the abrupt introduction of students to algebra through
traditional courses in middle school resulted in serious difficulties in understanding algebraic
concepts (Cai & Knuth, 2005).

The need for enhancing elementary mathematics through the integration of algebra has led
to a wealth of studies that contributed to the identification of certain characteristics of algebraic
thinking in all grades (e.g., Blanton et al., 2011; Kieran, 2007; Radford, 2014). Blanton and
Kaput (2005) defined algebraic thinking as a Bhabit of mind^ that enables students to identify
and express mathematical structure and relationships, such as the structure in arithmetical and
symbolic expressions (Radford, 2003), the relationships in numerical and geometrical patterns
(Mulligan & Mitchelmore, 2009; Warren & Cooper, 2008), and the numerical and geometrical
structure in tables, graphs, and number lines (Carraher, Schliemann, Brizuela, & Earnest,
2006). In an earlier study, Driscoll (1999) claimed that there are three basic algebraic Bhabits of
mind:^ doing and undoing mathematical processes, identifying and representing functional
rules, and thinking about computations independently of particular numbers. More recently,
Radford (2014) described algebraic thinking as a form of mathematical reflection and action,
highlighting the need to recognize elementary forms of algebraic thinking that are not
exclusively based on alphanumeric symbolism.

These approaches and others illustrate the complexity in defining early algebraic thinking,
clarifying its differences from arithmetical thinking, and describing the way it develops. This
article takes a step towards this direction by examining grade 4–7 students’ early algebraic
thinking while dealing with a variety of algebraic tasks. To fulfill this goal, students’ responses
are analyzed along four dimensions; algebra core content strands, basic algebraic concepts,
algebraic processes, and reasoning forms. Specifically, this paper explores whether there are
groups of students who exhibit significant differences in their early algebraic thinking and
whether there is a possible developmental trend from more intuitive types of early algebraic
thinking to more sophisticated ones.

To this end, Section 2 provides an overview of previous research regarding algebraic
thinking. In Section 3, the aims of the study are presented along with a description of the
participants, tasks, and analyses employed. Section 4 presents the results, while findings are
discussed in Section 5 and conclusions in Section 6.

2 Theoretical framework

2.1 Different approaches to the notion of algebraic thinking

The association of algebra with numerous mathematical features makes it challenging to
extract a simple definition for algebraic thinking (Driscoll, 1999). In this section, we present
important perspectives through which research addressed algebraic thinking.

Algebra content strands and concepts Kieran (2007) was among the first to conceptualize
algebra as a multidimensional activity in the context of secondary education. Kaput (2008)
elaborated the multiple facets of algebra from K-12 grades, proposing three algebra core
content strands: (i) generalized arithmetic, (ii) functional thinking, and (iii) the application of
generalizations as modeling languages. Generalized arithmetic refers to the identification of
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relationships between numbers, the manipulation of operations and their properties, and the
transformation and solution of equations. Functional thinking refers to the generalization of
relationships between co-varying quantities; this strand was related to the ability for expressing
numerical and figural patterns as functions and algebraic expressions (e.g., Mulligan &
Mitchelmore, 2009; Warren & Cooper, 2008). Modeling languages refers to the generalization
of regularities that are presented implicitly through various problem contexts.

Each of the aforementioned strands is associated with several algebraic concepts. The
generalized arithmetic strand involves the concepts of numbers, operations, the equals sign,
equality, equation, expression, and variable. Within functional thinking the concepts of
variable, expression, and equation are also central but with a different interpretation from
the one held in the generalized arithmetic strand (Kieran, Pang, Schifter, & Ng, 2016). The
functional thinking strand also involves the concepts of co-variance, correspondence, and
change. All of these concepts are also incorporated in the strand of modeling languages.

Algebraic processes and forms of reasoning Several studies suggested that examining
algebraic concepts requires a range of processes. For example, Blanton et al. (2011) illustrated
that noticing, generalizing, representing, and justifying with mathematical structure and
relationships are crucial within early algebra. Jeannotte and Kieran (2017) suggested that these
kinds of processes are related to the search for similarities and differences and to validating.
Similarly, it has been shown that the extraction of generalizations, which is considered as a core
algebraic process, depends on noticing Bthe same and the different^ (Radford, 2000).

However, algebraic processes cannot be separated from basic forms of reasoning. Both
processes and reasoning are present while students deal with mathematical tasks and are
related dialectically (Jeannotte & Kieran, 2017). Rivera and Becker (2007) showed that
abductive reasoning is necessary at the stage where individuals develop a prediction about a
plausible generalization; abductive reasoning boosts the generation of new data which in turn
facilitates the adoption of a hypothesis which is considered testable. Inductive reasoning also
has a significant role in identifying commonalities and extracting generalizations, while
deductive reasoning is important for moving from limited to more accurate generalizations
(Ellis, 2007). Hence, the conclusions which students reach while dealing with algebraic tasks
depend on the forms of reasoning they utilize (Jeannotte & Kieran, 2017).

Conditions that characterize algebraic thinking Radford (2008) claimed that the way
students act on and represent new relationships and objects in order to articulate
generalizations might differ, varying from concrete numerical actions, to situated
descriptions of the objects of the actions, to actions with symbols or signs. Radford (2014)
further specified that there are three basic conditions that characterize algebraic thinking: (a)
indeterminacy, the problem involves unknown quantities; (b) denotation, the unknown quan-
tities are represented in various ways which are not only restricted to alphanumeric symbols;
and (c) analyticity, the unknown quantities are added, subtracted, multiplied or divided, as if
they were known.

2.2 Levels of sophistication of students’ thinking about several algebraic concepts

Several studies investigated students’ understanding of basic algebraic concepts and the way
this understanding emerges. Regarding generalized arithmetic, Matthews et al. (2012)
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indicated that students’ understanding of the equals sign advances through progressive levels.
At the initial level students interpret the equals sign operationally in equations of the type a +
b = c. When students reach the final level, the equals sign is interpreted relationally. For
example, students are able to compare the expressions on the two sides of an equation (e.g.,
45 + 86 = 46 + 85 ), without performing any operations.

Regarding functional thinking, Blanton et al. (2017) demonstrated that even Grade 1 students
are able to understand variables and variable notations. They showed that students move from
understanding a letter as a label for naming an object to understanding the letter as an unknown
with a fixed value. Later, they conceptualize a letter as representing any fixed number that can be
randomly chosen. At a higher level, students conceptualize variables as unknowns that vary. At
the highest level, students use variables to represent functional relationships.

Blanton et al. (2015) also examined sophistication levels of Grade 1 students’ functional
thinking. Their findings suggested that students move from a Bpre-structural^ level where they
are not able to notice structure and relationships to a level where they start noticing mathe-
matical features. Later, they become able to notice recursive relationships. Students gradually
understand the co-variational relationship between two explicitly noted quantities. Finally, they
are able to understand function as an object.

Summing up, it seems that various levels can be identified regarding the nature of students’
understanding of algebraic concepts. These types of studies provide evidence that the way
early algebraic thinking emerges is a complicated process that moves from more intuitive
forms of thinking to more formal ones.

2.3 Basic dimensions of algebraic thinking

Based on research results described in the previous section, it seems that algebraic thinking can
be more coherently defined on the basis of four different dimensions:

1. Studying structure and relationships in three algebra core content strands: generalized
arithmetic, functional thinking, and modeling (Kaput, 2008);

2. Understanding fundamental algebraic concepts, such as the equals sign, equality, equa-
tions, properties of numbers, properties of operations, variables, unknown quantities,
symbols, co-variation, and correspondence;

3. Applying processes oriented towards the search of similarities and differences and
validation of structure and relationships, such as noticing, conjecturing, representing,
generalizing, justifying and validating;

4. Utilizing forms of reasoning, such as abductive, inductive and deductive reasoning, which
lead to the extraction of conclusions (Fig. 1).

3 The present study

3.1 Aims of the study

The purpose of this study is to better understand the notion of early algebraic thinking.
Specifically, this study aims to investigate whether differences in the way students perceive
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different algebra content strands and basic algebraic concepts (Kaput, 2008), apply algebraic
processes (Blanton et al., 2011), and utilize reasoning forms (Jeannotte & Kieran, 2017)
explain variations in their performance in early algebraic tasks. Additionally, this study
explores whether differences in students’ performance provide insight to the way early
algebraic thinking emerges and develops (Radford, 2008).

The specific aims are the following:

(a) To describe the characteristic features of distinct groups of students who exhibit different
performance while dealing with various early algebraic tasks,

(b) To examine whether these kinds of differences provide an account of a developmental
trend in early algebraic thinking from more intuitive forms towards more sophisticated
ones.

Guided by the four basic dimensions of algebraic thinking that were reported in the
previous section, students’ responses in algebraic tasks will be analyzed based on the follow-
ing questions: (1) Are students able to solve algebraic tasks that belong to different content
strands? (2) What is the nature of students’ understanding of basic algebraic concepts, such as
the equals sign, equality, unknown quantities, symbols, variables, and functions? (3) What
kind of strategies support students’ algebraic processes while dealing with the tasks? (4)
Which reasoning forms do students utilize?

3.2 Participants

The participants of the study were a convenience sample of 684 students from 10 schools (3
urban and 7 rural). In order to investigate early algebraic thinking across elementary school
and early middle school students, the sample consisted of 170 fourth-graders (10 years old),
164 fifth-graders (11 years old), 184 sixth graders (12 years old), and 166 seventh graders
(13 years old). There were approximately equal numbers of males and females in the sample.

3.3 Test on algebraic thinking

The test on algebraic thinking consisted of 18 tasks that were adapted from previous research
studies (e.g., Blanton & Kaput, 2005; IEA, 2013) and mathematics textbooks (Altieri et al.,
2008) and which captured the three algebra core content strands. Specifically, the test included
eight generalized arithmetic tasks, five functional thinking tasks, and five modeling tasks. The

Abductive, Inductive, Deductive Reasoning

Basic Dimensions Describing Algebraic Thinking 

Content 
Strands

Concepts

Processes

Reasoning
forms

Noticing, Conjecturing, Representing, Justifying, Generalizing, Validating 

Equality/ Equivalence, Properties of numbers, Properties of operations
Unknown quantities, Symbols, Variables, Co-variation, Correspondence 

Generalized 
Arithmetic

Functional 
Thinking

Modeling 
Languages

Fig. 1 Basic dimensions describing algebraic thinking
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number of generalized arithmetic tasks was larger than the number of tasks in the other two
strands due to the fact that a larger number of different concepts are associated with this strand.
Table 1 presents the tasks and their corresponding content strand and concepts. Table 2
presents indicative examples of the tasks.

Generalized arithmetic tasks These tasks addressed the concepts of equality/inequality,
unknown quantities, symbols, properties of numbers, and properties of operations. Task ga1
(adapted from Stylianides & Stylianides, 2008) required students to examine whether the
statement Bthe sum of two even numbers is odd^ is true. This task could be approached by
adding specific pairs of even numbers (e.g., 2 + 4) or by interpreting even and odd numbers as
variables. In task ga2 (adapted from Bastable & Schifter, 2008), students were expected to find
missing quantities in equalities (e.g., 8 + 5 = ___ + 9) by interpreting the equals signs relation-
ally. In task ga3 (adapted from Blanton & Kaput, 2005) students had to check the result of a
two-digit multiplication, considering place-value and the distributive property of multiplica-
tion. Task ga4 (adapted from Blanton & Kaput, 2005) presented a pawn’s movements in the
hundredths table; students had to translate the movements into mathematical expressions,
based on the structure of the table. Task ga5 (adapted from Chester, 2012) involved an
inequality (12 ˂ 3 × b); students were expected to identify possible values for the letter b,
indicating understanding of the use of symbols which stand for various values and not a single
one. Task ga6 (adapted from Carraher & Schliemann, 2014) required the identification of the
value of a missing quantity in a single variable equation (Ν + 4 = 12) where students had to
apply Bundoing^. Task ga7 (adapted from Blanton & Kaput, 2005) asked students to determine
whether the sum of two multi-digit numbers would be odd or even based on odd and even

Table 1 Description and coding of the tasks in the algebraic thinking test

Task Content strand Concepts

ga1: Justifying if the sum of two even numbers is odd
ga4: Analyzing the structure of the hundredths table
ga7: Determining if the sum of two multi-digit numbers is

odd

Generalized
arithmetic
(ga)

Properties of numbers

ga3: Justifying the result of a two-digit multiplication Properties of operations
ga2: Identifying missing quantities in equality expressions
ga5: Solving an inequality
ga6: Solving a single variable equation
ga8: Analyzing equalities that involve symbols and

numbers

Equality, equals sign,
Inequality,
Equation,
Unknown quantity,
Symbols

ft1: Choosing the appropriate graph for representing a
correspondence relationship

ft2: Identifying distant terms in a numerical pattern
ft3: Choosing the appropriate verbal expression for

representing a correspondence relationship
ft4: Calculating a distant term in a figural pattern
ft5: Calculating the next term and a distant term in a figural

pattern

Functional
thinking (ft)

Variable, Co-variation,
Correspondence, Equation

mod1: Expressing the relationship between Celsius and
Fahrenheit degrees

mod2: Using the known area of a square to find the area of
new squares

mod3: Determining the best offer (price reductions)
mod4: Determining the best offer (computer lessons)
mod5: Determining the best offer (song downloads)

Modeling (mod) Variable, Equation
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number properties. Task ga8 (adapted from Blanton & Kaput, 2005, see Table 2) presented an
equality expression which included two identical symbols and numbers and asked for the
value of a new expression that involved the same symbols; students were expected to notice
similarities among the expressions and apply properties of equalities.

Functional thinking tasks These tasks addressed the concepts of variables and functional
relationships. Task ft1 (adapted from Chester, 2012) involved graphing; students had to use a
relationship described verbally (money earned per hour) to identify which graph represented
two-variable data sets that fitted this relationship. Task ft2 (adapted from IEA, 2013) required
students to identify terms that would appear if a numerical pattern was extended. In task ft3
(adapted from IEA, 2013), students were presented with examples of a correspondence
relationship (e.g., 3⟶8,5⟶12) and they had to choose the verbal expression that described
the general rule of this relationship. Task ft4 (adapted from IEA, 2013) presented the figural
pattern of even numbers and asked for a distant term. Task ft5 (adapted from Rivera & Becker,
2007, see Table 2) required students to find the next term and a distant term in a figural pattern
involving tables and seats.

Table 2 Examples of tasks included in the algebraic thinking test

Example Content 
strand

Concepts Anticipated Processes Reasoning 
Forms 

Task ga8 Generalized 

Arithmetic

Equality,

Equals sign,

Unknown 

quantity, 

Symbols

Noticing commonalities in 

the two expressions.

Conjecturing about the 

relationship between the

expressions. Justifying

based on properties of 

equalities.

Task ft5
At a table that has the shape of a 

trapezium, 5 children can be 

seated. If two tables are 

connected, then 8 children can 

be seated.

(a) How many children can be 

seated at 3 tables? 

(b) How many children can be 

seated at 10 tables? 

Functional 

thinking

Variable,

Co-variation,

Correspondence

Noticing commonalities

among particular terms.

Noticing variables.

Conjecturing about the 

relationship between the 

variables. Representing,

justifying, generalizing the 

relationship between 

variables.

Abductive, 

Inductive,

Deductive

Task mod4 
Joanna will take computers 

lessons twice a week. Which is 

the best offer? Justify your 

answer.

Modeling Variable, 

Equation, 

Correspondence

Noticing variables.

Conjecturing about the 

relationship between the

variables. Representing,

justifying, generalizing the 

relationship between 

variables.
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Modeling tasks These tasks were comprised of problems where a situation had to be modeled
and algebraic processes needed to be used as a tool for unfolding the general form of the situation.
Task mod1 (adapted from Blanton & Kaput, 2005) asked students to study a set of data to model
the relationship between Fahrenheit and Celsius degrees. In task mod2 (adapted from Blanton &
Kaput, 2005) students were expected to use the given area of a small square to build a model for
calculating the area of new enlarged squares. In task mod3 (adapted from Mason, Graham &
Johnston-Wilder, 2005) students had to put statements about price reductions in order of
increasing reduction. The modeling tasks mod4 and mod5 (adapted from Altieri et al., 2008)
involved the comparison of offers. For example, in task mod4 (see Table 2) students had to
compare two offers for computer lessons by translating each offer into a mathematical expression
in order to calculate the total cost per month for any number of lessons.

3.4 Analysis

The MPLUS structural equation-modeling program and latent class analysis (LCA) was used
to analyze the data (Muthén & Muthén, 1998). LCA is one of the Mixture Modeling
techniques, which aims to find groups of people who give similar responses to specific
variables. In the present study, LCA is used to examine whether we can find groups of
students who gave similar responses to the tasks in the algebraic thinking test among the
684 students that participated in the study. Furthermore, descriptive results of students’
performance were measured using the SPSS statistical package.

In order to further elaborate on the special characteristics of each group of students,
qualitative information from students’ tests was analyzed. This method addresses the aim of
the study for describing the characteristic features of distinct groups of students who exhibit
different performance. In particular, ten students from each identified group were selected and
their solutions were examined. The selection of these students was based on the method of
purposeful sampling (Patton, 2002) which suggests the selection of cases that provide rich
information about the phenomenon under investigation. In the present study, we selected
students from each group whose answers provided a wealth of information about their
understanding of algebraic concepts, and the processes and forms of reasoning they applied.
Additionally, following a comparative approach (Grove, 1988), the selection of the students
was based on whether their answerswere indicative of theway the group responded to the tasks.

4 Results

4.1 Identification of different groups of students based on their performance

This section presents the results of the quantitative analyses, concerning the extent to which the
participants differed according to their performance in the test.

The results of the latent class analysis suggested that the participants of the study formed four
distinct groups which had different performance while dealing with the early algebraic tasks.

The results of the descriptive statistics analysis indicated that students’ overall performance
in the test was .44 and the standard deviation was .25. The means of each group are reported in
Fig. 2. The mean performance of each group was significantly higher than the corresponding
mean of the previous group.
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The performance of Group 1 students was below .44 in all types of tasks. Group 2 students
had better performance in the generalized arithmetic tasks (x = .50) compared to Group 1
students; however, they appeared to have difficulties in functional thinking and modeling tasks
(x = .43 and x = .20, respectively). Group 3 students had better performance in the generalized
arithmetic and functional thinking tasks compared to Group 2 students (x = .61 and x = .55,
respectively); yet, they seemed to struggle in modeling tasks (x = .36). Group 4 students
outperformed students in Groups 1, 2, and 3 in all types of tasks (x = .75, x = .71, and
x = .64, respectively). Figure 3 reports the specific tasks that were successfully performed by
students in each group.

Figure 4 presents the percentage of students in each group according to grade level. The
majority of Grade 4 students were classified within Group 1 (37.20%). Almost equal percent-
ages of Grade 5 students were classified within Groups 1, 2, and 3 (22.80, 22.80, and 23.50%,
respectively); 26.80% of Grade 5 students were classified within Group 4. Almost equal
percentages of Grade 6 students were classified within Groups 3 and 4 (31.80 and 31.30%,
respectively). The highest percentage of Grade 7 students was classified within Group 4
(30.70%), while 23.50% of Grade 7 students were classified within Group 3, 25.30% within
Group 2, and 18.60% within Group 1.

0.2

0.39

0.52
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0.75

0.1

0.43
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0.64
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0.6

0.7

0.8

Group 1 (n=215) Group 2 (n=158) Group 3 (n=142) Group 4 (n=179)

Overall performance in the algebraic thinking test (AT)

Generalized arithmetic (GA)

Functional thinking (FT)

Modeling languages (MOD)

AT      GA    FT    MOD AT       GA    FT    MOD AT      GA    FT    MOD AT      GA    FT    MOD

Fig. 2 Descriptive results of the performance of the four groups in the early algebraic thinking test

Group 1

ga6

Group 2

ga6

ga1, ga2, ga5, 
ga8, ft3, ft4

Group 3

ga6

ga1, ga2, ga5, 
ga8, ft3, ft4

ga4, ga7, ft2, ft5, 
mod4

Group 4

ga6

ga1, ga2, ga5, 
ga8, ft3, ft4

ga4, ga7, ft2, ft5, 
mod4

ga3, ft1, mod1, 
mod2, mod3, 
mod5

Fig. 3 Tasks that were solved by students in the four groups; ga_generalized arithmetic; ft_functional thinking;
mod_modeling languages
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Although the focus of the present study was not to examine the effect of age, it should be
mentioned that students from all grades were present in all groups. This result indicates that
students with different characteristics regarding their responses to the tasks are found in each
grade, independently of their age. It seems that there are younger students with more
sophisticated early algebraic thinking which resembles that of older students. At the same
time, there are older students whose early algebraic thinking is similar to that of younger
students. Still, the majority of younger students in Grade 4 are classified within Groups 1 and
2. At the same time, the percentage of students classified within Groups 3 and 4 appears to
become larger as students move to Grade 5 and Grade 6. This result indicates that as students
grow older, they tend to become more successful in solving these tasks.

As illustrated in Fig. 4, there was a slightly higher percentage of Grade 6 students in Groups
3 and 4 than of Grade 7 students. This result might be considered unexpected, since the Grade
7 mathematics curriculum included algebra teaching and learning. This is not the case for the
Grade 6 mathematics curriculum, which did not address algebra as a distinct domain.
However, the fact that the types of tasks included in the test were not commonly used either
in the Grade 7 curriculum or textbooks, which were mostly focused on transformational
algebra, might be a possible reason for not observing a higher performance by seventh graders
compared to sixth graders.

4.2 Characteristics of the responses provided by students in each group in specific
tasks

The quantitative analysis identified four distinct groups of students with different performance
in the algebraic thinking test. In this section, the results of the qualitative analyses of students’
responses to specific tasks are described, in order to further illustrate which are the characteristic
features of students’ thinking in each group. The focus of this analysis is on the ways in which
students perceived particular algebraic concepts, the nature of the processes they applied, and
the conclusions they were able to reach based on the reasoning forms they utilized.
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0.00%
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Fig. 4 Percentages of students in the four groups
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Group 1 Students in Group 1 were successful only in one generalized arithmetic task (ga6)
which required the identification of the value of an unknown quantity in an equation with one
variable. The responses of Group 1 students in this task (see Fig. 5) seemed to be based on an
inverse operation. This action reveals the application of an arithmetical process where students
recognized and reconfigured a simple relationship between known and unknown quantities
(Carraher & Schliemann, 2014).

Their response to another generalized arithmetic task (ga8), exemplified in Fig. 6a, indicates
the difficulty Group 1 students had when operating with unknown quantities and reconfiguring
the relationship between two expressions. They appeared not to notice similarities and
differences between the two expressions so that inferences could be made. They merely
focused on conjecturing which specific numbers the symbols might represent in the first
expression.

Students in Group 1 were not successful in any functional thinking or modeling task.
Figure 7a presents an example of their response to a pattern task (ft5). Their answer did not
seem to be achieved by noticing or conjecturing the existence of a regularity. As shown, they
gave wrong answers about the number of seats in the next term and a distant term, without
explaining the way they obtained them or showing any attempt to develop a generalization.

On the whole, students’ thinking in Group 1 appeared to be restricted to arithmetical
contexts. They were not able to notice the underlying structure or relationships in any type
of task. No relational thinking seemed to occur.

Group 2 Students in Group 2 were able to solve a set of generalized arithmetic tasks (ga1,
ga2, ga5, ga6, and ga8) and two functional thinking tasks (ft3 and ft4). Their response in task
ga8 (see Fig. 6b) shows that they had probably noticed commonalities in the structure of the
two expressions. However, they appeared not to be able to operate with unknown quantities.
They used the Bguess and check^ strategy to build conjectures about possible values of the
symbol. Furthermore, they seemed not to have actually grasped the meaning of symbols. They
did not understand that the same symbol stands for the same number, and seemed to view a
symbol as a fixed unknown number that can be chosen arbitrarily. Moreover, they used the
equals sign operationally to calculate the value of the second expression. Hence, the expression
was not perceived as representing an equality relationship but as an addition where the sum has
to be calculated.

In pattern tasks, Group 2 students appeared to notice commonalities between the successive
terms of the pattern. Their response to task ft5 (see Fig. 7b) indicates that they built conjectures
about a recursive relationship. Moreover, they represented this relationship based on the con-
struction of drawings and the counting strategy. While they noticed the way the number of seats

Fig. 5 Indicative example of response to a generalized arithmetic task (ga6) by students in Group 1
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increased, they did not notice the general relationship between the number of seats and the number
of tables. They followed a step-by-step arithmetical process, relying on visual representations and
repeated counting which led them to a wrong answer in the second question. Hence, the strategies
they used guided them to develop a process of generalizing which employed concrete actions and
did not allow the shift from the given set of data to a broader one.

Overall, these students appeared to use operational procedures and pre-acquired arithmet-
ical strategies intuitively, both in generalized arithmetic and functional thinking tasks. How-
ever, these seemed to have facilitated primitive abductive steps in their reasoning that triggered
conjecturing, which might signify a smooth transition from arithmetical to algebraic processes
and reasoning. These steps facilitated the generation of new data from the given data (e.g., the
possible values of the symbols, the drawings, the numerical examples) and indicated an
awareness of Bsameness^ relationships. However, this kind of data appeared insufficient to
support inductive steps of reasoning which would lead to generalizations. Hence, the thinking
they exhibited unfolded through a constructive conjecture process, involving the creation of
new evidence, which, nonetheless, remained in concrete, arithmetical contexts.

Group 3 Students in Group 3 were able to solve more tasks from the strand of generalized
arithmetic (ga1, ga2, ga4, ga5, ga6, ga7, and ga8) and functional thinking (ft2, ft3, ft4 and ft5)
in relation to Group 2 students. In task ga8, they seemed to have noticed similarities between
the two expressions. As shown in Fig. 6c, these students appeared to have developed a better
understanding of the use of symbols compared to Group 2 students, since they wrote down one
single value in order to specify what the symbol represented. Nevertheless, these students also
appeared unable to operate with unknown quantities and, used the equals sign operationally.
They justified their answer based on the result of an operation with specific numbers.

Group 1 a Group 2 b

Group 4 dGroup 3 c

Fig. 6 Indicative examples of response to a generalized arithmetic task (ga8) by students in Groups 1, 2, 3, and 4
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In the pattern task ft5 (Fig. 7c), these students explicitly noticed two quantities, the number
of tables and seats, as well as similarities and differences in the way these quantities changed
across the pattern. They seemed to build a conjecture about a co-variational relationship
between them and created a t-chart to represent this relationship. Their justification process
seemed to be based on a situated description of the relationship between several numerical
examples of the two variables. Hence, these students appeared to uncover the co-variational
relationship over a particular class of data.

Generally, Group 3 students exhibited abductive steps in reasoning which facilitated the
generation of new data (e.g., the tabular data extracted from a pattern). This kind of data
triggered primitive inductive steps in reasoning which led to the extraction of a plausible
generalization that confirmed the relationship between the two variables. However, this
generalization was articulated based on a situated description of the objects of students’
actions (Radford, 2008) and was not extended in cases beyond the available ones.

a Group 1 b Group 2

c Group 3 d Group 4

If at 5 tables, 17 children can be seated, then at 10 tables, 34 
children can be seated. 11 children can be seated. It is a 
pattern:

11 children can be seated

Answer: 11
children

3 tables = 11
10 tables = x

Fig. 7 Indicative examples of response to a functional thinking task (ft5) by students in Groups 1, 2, 3, and 4
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Group 4 Students in Group 4 were able to solve all of the tasks in the test successfully. As
shown in Fig. 6d (task ga8), these students noticed the structure of each expression and the
commonalities between them. Moreover, they appeared to operate with symbols as if they
were known. They seemed to notice a new object ( + =4) and used it to reconfigure the
relationship + + 6 =. Based on this relationship and on properties of equalities, they
justified their answer. In this case, the equals sign appeared to be used relationally.

As shown in Fig. 7d, in the pattern task ft5, these students noticed two quantities. Moreover,
they used both numbers and symbols to formulate a general rule that represented the corre-
spondence relationship between them. Thus, their process of generalizing was more abstract
and based on the use of symbols. The justification of their answer was based on a general rule
which appears to apply not only to the particular set of data but over a larger set of data.

In contrast to students in the previous groups, students in Group 4 managed to solve modeling
tasks. In the task mod4 (Fig. 8), students noticed the dependent variable (the monthly cost of the
lessons) and the independent variables (the cost for each lesson and the number of lessons during a
month). Furthermore, students made conjectures about the way they could compare the two
situations and used two equation models. In this sense, they recognized a general structure for the
problem that enabled the calculation of the monthly cost for computer lessons.

These students indicated similar behavior in all types of tasks. Their reasoning seemed to be
based on abductive steps which created new data. These data (e.g., a general relationship, a
rule, a model expressed with symbols and numbers) enabled inductive steps which led them to
infer a generalization.

Table 3 summarizes the results of both the quantitative and qualitative analyses.

5 Discussion

The main aims of the present study were (a) to describe the characteristic features of distinct groups
of students who exhibit different performance while dealing with early algebraic tasks, and (b) to
examine whether these kinds of differences provide an account of a developmental trend in early
algebraic thinking from more intuitive forms towards more sophisticated ones. Concerning the first
aim, the quantitative analysis of the data showed that four different groups of students could be
identified. The students in each group managed to solve different number and types of tasks

Fig. 8 Indicative example of response to a modeling task (mod4) by students in Group 4
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Table 3 General description of the performance of students in different groups while dealing with early
algebraic tasks

Content
strands

Concepts Processes Reasoning

Group
1

Generalized
arithmetic

Identify the value of an
unknown quantity in an
equation with one
variable.

Justify an answer based on
calculations.

Do not exhibit any kind of
relational reasoning.

Group
2

Generalized
arithmetic

Understand a symbol as a
fixed value which may
be chosen arbitrarily. Do
not operate with
unknown quantities. Use
the equals sign
operationally.

Notice similarities between
equality expressions.
Conjecture about the
value of a symbol using
the Bguess and check^
strategy. Justify an
answer by replacing the
symbol with its possible
values and performing
operations.

Exhibit abductive steps in
reasoning which
facilitate the generation
of new data from the
given data. This kind of
data is not sufficient to
support inductive steps
which would lead to the
extraction of a
generalization.

Functional
Thinking

Find successive terms in
patterns.

Notice similarities between
successive terms.
Conjecture about the
recursive relationship
between them. Represent
and justify the next term
using visual-concrete
representations. Do not
build a generalization
about the relationship
between variables.

Group
3

Generalized
arithmetic

Understand symbols as
fixed-numbers to be
identified. Do not operate
with unknown quantities.
Use the equals sign op-
erationally.

Notice similarities between
equality expressions.
Identify the value of the
symbol using
arithmetical known facts.
Justify an answer by
replacing the symbol
with the identified value
and performing
operations.

Exhibit abductive steps in
reasoning which
facilitate the generation
of new data. This kind of
data facilitate primitive
inductive steps in
reasoning which lead to
the extraction of a
plausible generalization.
This generalization is not
extended to cases beyond
the available ones.

Functional
thinking

Understand the
co-variational relation-
ship between variables in
patterns.

Notice two quantities that
change along the pattern
and conjecture about
their relationship. Create
a table to represent and
justify the relationship.
Build a reasonable
generalization about the
co-variational relation-
ship over a particular
class of data.

Group
4

Generalized
arithmetic

Interpret symbols as
variables. Operate with
unknown quantities. Use
the equals sign
relationally. Apply
properties of equality.

Notice similarities between
equality expressions. Use
symbols and numbers as
objects to represent
relationships. Justify an
answer based on
properties of equalities.

Exhibit abductive steps in
reasoning. Generate new
data that facilitate
inductive steps in
reasoning, which lead to
the extraction of a
generalization. Use the
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regarding content strands. Group 1 students appeared to have difficulties across all types of tasks.
Group 2 students responded to the majority of generalized arithmetic and to some functional
thinking tasks, while those in Group 3 responded to the majority of both generalized arithmetic
and functional thinking tasks. Group 4 students responded to all three types of tasks. Concerning the
second aim, the presence of a consistent trend in the difficulty level across generalized arithmetic,
functional thinking, and modeling tasks suggests a specific developmental trend. Specifically, the
results imply that students might be able to carry out generalized arithmetic tasks first, and then
manage to carry out functional thinking tasks. Students seem able to deal with modeling tasks once
they have been successful in both generalized arithmetic and functional thinking tasks.

While the quantitative analysis revealed that there were four distinct groups of students based on
their achievement in the three algebra content strands, the qualitative analysis allowed a more
insightful look at the characteristics of students’ thinking in each group. Specifically, the qualitative
results showed that students in different groups differed not only because they managed to solve
different number and types of tasks, but also because they differed in the ways in which they
perceived basic algebraic concepts, the extent to which the processes they applied were concrete or
abstract, and the conclusions they were able to reach based on the reasoning forms they utilized.

Group 1 students’ solutions did not show understanding of algebraic concepts, use of
algebraic processes or relational thinking. Hence, their thinking seemed to be restricted to
arithmetical contexts. If we were to use Blanton et al.’s (2015) terms, their thinking was at a
Bpre-structural^ level, where students are not able to describe or use any relationship or
structure implicitly while dealing with algebraic tasks.

Group 2 students were able to solve most of the generalized arithmetic tasks. However,
these students seemed to rely on pre-acquired arithmetical knowledge. Their understanding of
the equals sign seemed to be at the level of Brigid operational^ (Matthews et al., 2012). In
addition, they could not operate with unknown quantities represented by a symbol but needed
to identify the value of the symbol, before performing operations. They also seemed not to
understand that the same symbol represents the same quantity. Therefore, they understood a
symbol as a fixed value which could be chosen arbitrarily (Blanton et al., 2017). In the
functional thinking tasks, these students were only able to notice recursive relationships, and,

Table 3 (continued)

Content
strands

Concepts Processes Reasoning

general relationship to
produce inferences.

Functional
thinking

Understand the
correspondence
relationship between
variables in patterns.

Notice two related
variables. Represent their
relationship by
formulating a general
rule using numbers and
symbols. Justify the
value of a distant term
using the rule. Build a
reasonable generalization
about the correspondence
relationship between any
set of two variables.

Modeling Identify the relationship
between the involved
variables in a problem
situation.

Notice, model and justify
relationships between
variables in
contextualized situations.
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similarly to the generalized arithmetic tasks, they applied arithmetical strategies. Hence, they
appeared to conceptualize a pattern as a sequence of particular Binstances^ (Blanton et al.,
2015).

Accordingly, their processes of conjecturing, representing, and justifying were based on
arithmetical strategies, such as counting, and concrete tools, such as drawings. Their process of
generalizing employed Bconcrete-level actions^ (Radford, 2003). To echo Mason’s (1989)
argument, these students needed first to experience the manipulation of objects before moving
to more abstract forms of algebraic thinking. Regarding the utilization of reasoning forms, it
seems that the strategies they used enabled abductive steps which in turn allowed the
extraction of new data from the given data. Nevertheless, the nature of the extracted data
did not support inductive steps which would lead to conclusions about general relationships.
The thinking exhibited by students in Group 2, both in generalized arithmetic and functional
thinking tasks, suggests that expressing the structure and relationships with concrete examples
does not provide a sufficient stepping stone to more formal forms of algebraic thinking. As
Radford (2014) suggested, arithmetical strategies fail to satisfy the condition of Banalyticity,^
where Bthe indeterminate quantities are treated as if they were known numbers^ (p. 4).

The responses of Group 3 students suggested a qualitative advancement that seemed to
bridge arithmetical and algebraic ways of thinking. These students were successful both in
generalized arithmetic and functional thinking tasks, indicating that they were able to deal with
a variety of algebraic concepts. Regarding the equals sign, these students did not seem to move
to a relational perception, but they still used it operationally. They needed to identify the value
of an unknown quantity before performing any operations. Nevertheless, these students seemed
to understand that a symbol represents a specific number, not simply any number chosen at
random. In pattern tasks, they seemed to perceive the concept of variable and co-variation. The
tool they created to represent these concepts was often a table with input-output values which
explicitly depicted a general relationship between two quantities across a set of cases.

It appears that Group 3 students used strategies and tools that enabled them to start noticing,
conjecturing, representing, and justifying structure and relationships. Their process of gener-
alizing unfolded within the perspective of situated descriptions of the objects involved either in
expressions or functions. Hence, their generalizations can be characterized as Bcontextual^;
according to Radford (2003), these kinds of generalizations cannot yet be considered as
algebraic because they are situated and entail access to specific objects. However, the
regularities that students noticed supported abductive steps in reasoning which directed them
to extract new data. These new data referred to a relationship, therefore they supported
primitive inductive steps which led to a conclusion about a plausible generalization.

Students’ responses in Group 4 reflect a more sophisticated level of early algebraic
thinking. These students were able to solve all types of tasks successfully, indicating a deeper
understanding of several algebraic concepts. The equals sign, in terms of Mathews et al.
(2012), was interpreted relationally. In equalities, they operated with unknown quantities and
compared the two sides of the relationship. In pattern tasks, they were able to identify two co-
varying quantities and express the correspondence relationship between them. Moreover, in
modeling tasks they were able to translate the information embedded in problem situations into
an appropriate mathematical model.

These students explicitly noticed, conjectured, represented, and justified structure in ex-
pressions, variables in functions, and general relationships. They were able to combine both
numbers and symbols to represent these relationships. Hence, the new data they produced,
supported the development of a formula. This action enabled inductive steps in reasoning
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which culminated in Bsymbolic^ generalizations (Radford, 2003), since symbols and signs
were used to articulate the generalization. Group 4 students seemed to adopt the three
characteristics of algebraic thinking described by Radford (2014); Bindeterminacy ,̂
Bdenotation^, and Banalyticity .̂ They were able to understand whether a problem involved
unknown quantities, name, and symbolize variables using alphanumeric symbols, and operate
with unknown quantities as if they were known.

Summing up, the characteristic features of students’ responses in each group imply that
their type of thinking in one content strand is inherently related to their type of thinking in
other content strands. This observation indicates that the development of algebraic thinking
from more intuitive forms of thinking to more formal forms explains students’ behavior in all
algebra content strands. Moreover, it is implied that content strands are connected and that
teaching needs to address them coherently through the elementary grades. It is noteworthy that
students from all grades belonged to Group 1, Group 2, Group 3, and Group 4. For example,
students even from the age of 10 years old who belonged in Group 4, were able to exhibit
algebraic thinking and solve generalized arithmetic, functional thinking, and modeling tasks.
At the same time, the opposite also happened. We found some 13 year old students belonging
in Group 1, who seemed to face great difficulties with all algebra content strands and concepts,
demonstrating more primitive thinking processes and reasoning.

These results are important for researchers and teachers, since they support empirically the
idea that there are no explicit compounds between arithmetic and algebra (e.g., Blanton &
Kaput, 2005; Radford, 2012) and that younger students can be supported to think in advanced
ways about basic algebraic concepts. In particular, the generalized arithmetic strand seems to
offer students an appropriate opportunity to see algebra in arithmetic. Students might start
dealing with generalized arithmetic tasks by applying arithmetical strategies. In these kinds of
tasks, students have the opportunity to notice the relational meaning of the equals sign and to
confront numbers in a generalized way. As Kaput (2008) highlighted, even the use of numbers
can be qualified as algebraic in as much as its purpose is not on calculation per se but on the
representation of a generic example.

Furthermore, the functional thinking strand, represents a perspective for examining the
concepts of variable and function. At this point, arithmetical and algebraic modes of thinking
seem to interact with each other. Arithmetical strategies and concrete tools become progres-
sively more abstract and symbolic, helping students notice quantities that vary and general
relationships. Specifically, it appears that from recursive relationships in patterns the students
move to the identification of co-variational and correspondence relationships. A mixture of
abductive, inductive, and deductive forms of reasoning seems to be associated with students’
ability to come up with viable generalizations.

The modeling strand seems to be associated with a more sophisticated level of early
algebraic processes and reasoning than the other two strands of algebra. This strand offers
accessible entry points to students for further developing and establishing algebraic concepts
and advanced algebraic thinking skills.

6 Conclusion

The overarching results of the present study show that the processes and reasoning forms
associated with early algebraic thinking are utilized in different ways by different groups
of students as they encounter different algebra content strands and concepts. These
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differences suggest a specific developmental trend, which proposes a movement from
forms of thinking that are strictly arithmetical to forms of thinking that swing between
arithmetic and algebra, and finally to forms of thinking that are algebraic in nature.
Additionally, the results of the study showed that students who exhibit different forms of
early algebraic thinking were found in each one of the grade levels investigated (grades
4–7) independently of their age.

In conclusion, the results of this study designate important parameters of early algebra
teaching and learning. All of the three strands and their associated concepts should be
addressed from elementary school, providing long-term and sustained experiences for students
to develop their intuitive ways of thinking into more formal ones. Classroom culture and
teaching practices should address students’ intuitive strategies so that these become more
robust over time.

Future longitudinal studies can be designed in order to examine and verify whether the
different ways of thinking described in this study represent developmental stages. Furthermore,
research could examine which types of teaching may facilitate students’ progression from early
algebra to more advance algebra. This kind of research might facilitate the description of a
learning trajectory for early algebraic thinking which will offer clear and specific guidance for
productive teaching activities in the mathematics classroom.
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