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Abstract In this design experiment study, we investigated the problem: What conditions
might foster students’ discernment of a critical aspect—variation in unidirectional change (e.g.,
discerning a “decreasing” increase)? At a public middle school in a large US city, we led a
sequence of three days of whole class lessons, followed by task-based, clinical interviews with
14 seventh grade students (~13 years old). Students interacted with researcher-developed
dynamic computer environments, which linked filling polygon animations with dynamic
graphs. We report results to demonstrate a range of students’ work along with detailed analyses
of student interview episodes. We found connections between students’ predictions of graph
type (linear, “mostly” linear, nonlinear), students’ conceptions of attributes represented by a
graph, and students’ discernment of variation in unidirectional change. Students who discerned
variation in unidirectional change also engaged in quantitative variational reasoning. To foster
students’ discernment of variation in unidirectional change, task designers should provide
opportunities for students to conceive of attributes as capable of varying and possible to
measure.

Keywords Mathematical reasoning - Design experiment - Variational reasoning - Technology -
Secondary students

1 Introduction

Discerning variation in unidirectional change (e.g., discerning an “increasing” or “decreasing”

increase) is challenging even for successful university students (Carlson, Jacobs, Coe, Larsen,
& Hsu, 2002), yet important for secondary students’ study of key mathematical concepts such
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as function and rate (e.g., Ellis, Ozgiir, Kulow, Williams, & Amidon, 2015; Herbert & Pierce,
2012; Johnson, 2012; Lobato, Hohensee, Rhodehamel, & Diamond, 2012). Researchers have
identified factors that could mitigate students’ discernment, including students’ images of
change and variation (Castillo-Garsow, Johnson, & Moore, 2013; Thompson & Carlson, 2017)
and students’ interpretation of graphs (Bell & Janvier, 1981; Clement, 1989; Moore &
Thompson, 2015; Slavit, 1997). Drawing on Thompson’s theory of quantitative reasoning
(1994), we identify a factor affording students’ discernment: students’ conceptions of attributes
as “things” that are capable of varying and possible to measure. We provide evidence of a link
between students’ conceptions of the possibility of measuring an attribute, students’ concep-
tions of variation, and students’ discernment of variation in unidirectional change.

Consider situations involving filling polygons, such that interior of a polygon fills as a
segment parallel to a base moves along the polygon. Figure 1 shows two situations—a filling
triangle (right) and a filling rectangle (left). For both the triangle and rectangle, a student might
state: “as the shape fills, the area of the filled part increases.” For the triangle, another student
might state: “the amounts of increase in area become smaller as the triangle gets more filled.”
Both statements provide evidence of students’ discernment of variation in an attribute (area)
they conceive of as being possible to measure. The second statement provides evidence of a
student’s discernment of variation in unidirectional change.

Kaput (1994) argued that dynamic computer environments (DCEs), linking dynamic
animations and graphs, could serve as rich settings for students to investigate the mathematics
of change and variation. Researchers investigating secondary students’ conceptions of func-
tion, rate, and variation have made extensive use of DCEs in their studies (e.g., Ellis et al.,
2015; Herbert & Pierce, 2012; Johnson, 2012; Lobato et al., 2012; Saldanha & Thompson,
1998). When interacting with DCEs representing varying rates of change, secondary students
have shown evidence of discerning variation in unidirectional change (Ellis et al., 2015;
Johnson, 2012; Saldanha & Thompson, 1998). Using Marton’s variation theory (2015), we
frame our design of filling polygon DCEs and related tasks, which we implemented to provide
students opportunities to discern variation in unidirectional change. Using Thompson’s theory
of quantitative reasoning (1994), we incorporated attributes—length, height, and area—which
we anticipated students could conceive of as capable of varying and possible to measure.
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Fig. 1 Filling rectangle (left) and filling triangle (right)
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Researchers have shown the utility of variational reasoning for fostering early secondary
students’ conceptions of function and interpretations of graphs (Ayalon, Watson, & Lerman,
2015; Ellis et al., 2015; Hitt & Gonzalez-Martin, 2015; Johnson, 2012; Lobato et al., 2012). We
use Thompson’s theory of quantitative reasoning (1994) to frame our perspective on variational
reasoning. Students’ variational reasoning consists of two components: students’ images of
change and students’ conceptions of attributes (Castillo-Garsow et al., 2013; Thompson &
Carlson, 2017). We use the term quantitative variational reasoning (QVR) to mean students’
reasoning about attributes that they can conceive of as capable of varying and possible to
measure.

In this design experiment (Cobb, Confrey, diSessa, Lehrer, & Schauble, 2003) study,
we address the problem: What conditions might foster students’ discernment of variation
in unidirectional change? We use grounded theory (Corbin & Strauss, 2008) analysis
methods to link students’ use of QVR with their discernment of variation in unidirectional
change. We report results to demonstrate the range of students’ reasoning, along with
student interview episodes with a researcher-developed DCE and related tasks. We address
implications for task design to foster students’ discernment of variation in unidirectional
change.

2 Background
2.1 Conceptual and theoretical framework

We employ a theoretical framework that networks theories of different grain sizes (Johnson,
McClintock, Hornbein, Gardner, & Grieser, 2017). Broadly, this theoretical framework in-
formed our design within and across tasks intended to foster students’ discernment of variation
in unidirectional change (Fig. 2). By tasks we mean both problem situations and students’
conceptions of those problem situations. We used Marton’s variation theory (2015) to frame
our design across tasks. We used Thompson’s theory of quantitative reasoning (1994) to frame
our perspective of student conceptions of task elements. With the vertical arrows in Fig. 2, we
show how Thompson’s theory of quantitative reasoning informed our perspective of what
constitutes a critical aspect. In this section, we articulate key components of QVR; then, we
elaborate on the critical aspect (Marton, 2015) that we intended for students to discern:
variation in unidirectional change. In Section 3.5 we explain how we used variation theory
to frame our design across tasks.

QVR has two key components: students’ conceptions of attributes as being capable of
varying (variational component) and possible to measure (quantitative component). The
variational component of QVR entails students’ images of change, which extend beyond
static mental pictures to encompass students’ dynamic mental activity (Thompson, 1996). Two
such images of change are chunky and smooth (Castillo-Garsow et al., 2013). For example, a
chunky image of change involves conceiving of completed amounts of change (e.g., area
changed by « units and height changed by b units). In contrast, a smooth image of change
involves conceiving of continuing change (e.g., area changing in conjunction with changing
height). Consequently, students’ variational reasoning can take different forms depending on
students’ images of change (Thompson & Carlson, 2017).

The quantitative component of QVR entails students’ conceptualization of an attribute as
being possible to measure. Following Thompson (1994), we use the term quantity to mean an
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Fig. 2 Networking theories to design across and within tasks

individual’s conception of the possibility of measuring some attribute of an object. Conceiving
of the possibility of measuring an attribute is distinct from noticing a physical attribute of an
object. To illustrate, a student might conceive of the pointiness of a triangle, as an attribute
possible to measure. Furthermore, the student may conceive of the possibility of measurement
without actually engaging in measuring a triangle’s pointiness. In contrast, a student conceiv-
ing of pointiness as a physical attribute of a triangle might notice differences in the pointiness
of two triangles. Yet, that student may not be conceiving of pointiness as something that is
possible to measure, just as a noticeable aspect of a triangle. Through these examples, we
intend to illustrate that measurability is not inherent in an attribute; rather, it depends on how
an individual conceives of the attribute.

Discernment of variation in unidirectional change entails conceiving of the possibility of
varying the intensity of the change, while holding the direction of the change invariant. By
discernment, we mean a student’s attention to a situation in terms of certain critical aspects
(Marton, 2015). By intensity, we mean the “degree to which an attribute is present” (Johnson,
2015a, p. 66). For the filling triangle (Fig. 1, right), students may provide evidence of
discernment of different degrees of unidirectional change through statements such as: “the area
starts to increase more slowly as the shape becomes more filled.” To clarify, we distinguish
students’ conceptions of variation (students” dynamic mental activity entailing their images of
change) from the variation central to Marton’s variation theory. The object we intended for
students to discern entails students’ conceptions of variation—specifically, variation in unidi-
rectional change.
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2.2 Variational reasoning and images of change

Drawing on Thompson and Carlson (2017), we distinguish variational reasoning from
covariational reasoning. Variational reasoning entails conceiving of variation in values of
some attribute of an object. Covariational reasoning entails the coordination of variation in
values of two different attributes. Furthermore, we use the variation framework posited by
Thompson and Carlson (2017) to distinguish levels of students’ variational reasoning: at the
highest level, smooth continuous variation, and at a lower level, gross variation. A student
employing gross variation could conceive of variation in some attribute (e.g., area is increas-
ing). In contrast, a student employing smooth continuous variation could use smooth images of
change to conceive of variation in values of some attribute (e.g., conceiving of amounts of area
as increasing). A student discerning variation in unidirectional change could engage in
variational reasoning at either of these levels.

Researchers have found that early secondary students can discern variation in unidirectional
change when employing chunky images of change (Ellis et al., 2015; Lobato et al., 2012).
Given a situation involving a plant’s height growing exponentially with time, Ellis et al. (2015)
found that early secondary students conceived of variation in fixed amounts of increases in
height and time, thereby demonstrating chunky images of change. Although it may be
challenging for early secondary students to draw on smooth images of change (e.g., Ellis
et al., 2015), such opportunities are important and needed, in part because of the role students’
images of change can play in their study of function and interpretation of graphs (see Castillo-
Garsow et al., 2013; Johnson, 2012, 2015b; Saldanha & Thompson, 1998).

2.3 Covariation, functions, and graphs

Researchers have shown that secondary students benefit from opportunities to use a covaria-
tion perspective when studying function (e.g., Ayalon et al., 2015; Bell & Janvier, 1981;
Confrey & Smith, 1995; Hitt & Gonzalez-Martin, 2015; Saldanha & Thompson, 1998).
Saldanha and Thompson (1998) argued that key to a covariation perspective is a student’s
conception of covariation between quantities. Following Saldanha and Thompson (1998), a
student using a covariation perspective could conceive of functions as specialized relationships
between quantities. To provide students opportunities to use a covariation perspective on
function, researchers have incorporated tasks involving dynamic and static Cartesian graphs
(e.g., Ellis et al., 2015; Hitt & Gonzalez-Martin, 2015). Yet, students may interpret graphs in
terms of something other than covariation, which may constrain the utility of certain tasks
involving Cartesian graphs.

Researchers have explicated impoverished ways in which students can interpret graphs (e.g.,
Clement, 1989; Leinhardt, Zaslavsky, & Stein, 1990). For example, students may interpret a
graph iconically, such that the shape of a graph would resemble an object. Moore and
Thompson (2015) introduced the constructs of static and emergent shape thinking to explain
conceptual operations underlying students’ interpretation of graphs. A student engaging in
static shape thinking would interpret a graph as a being a manipulable shape (e.g., a graph of an
absolute value function as being a “V”), but not necessarily iconically (e.g., a graph
representing change in a liquid’s volume and height in a filling bottle as being shaped like a
bottle (see also Johnson, 2015b)). In contrast, a student engaging in emergent shape thinking
would interpret a graph as a trace representing a relationship between covarying quantities.
When interpreting graphs, it is desirable for students to use a covariation perspective involving
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smooth images of change (e.g., Castillo-Garsow et al., 2013). Therefore, it is desirable to
promote students’ use of emergent, rather than static shape thinking when interpreting graphs
(Moore & Thompson, 2015).

3 Method
3.1 Research questions

We investigated two research questions:

RQI1: How do aspects of students’ variational reasoning impact their discernment of
variation in unidirectional change?

RQ2: How do students engage in variational reasoning when interacting with tasks
involving DCEs including filling polygon animations and linked dynamic graphs?

3.2 Design experiment methodology

A purpose of design experiment research (Cobb et al., 2003) is to develop theory closely tied
to practice. In this research, we theorize about a role of QVR in students’ discernment of
variation in unidirectional change. A key feature of design experiments is an iterative design
process, in which researchers test evolving conjectures (Cobb et al., 2003). We tested
conjectures during this study as well as conjectures based on results of Johnson’s previous
research (2012, 2015a, b). We conjectured that some attributes, such as volume, might be
challenging for students to conceive of as possible to measure. Hence, we incorporated filling
polygon DCEs and related tasks. Furthermore, we conjectured that interacting with DCEs
involving different types of filling polygons (e.g., triangles vs. rectangles) might impact
students’ opportunities to discern variation in unidirectional change. Our conjectures influ-
enced the design of the DCEs and related tasks for this study (see Sections 3.4 and 3.5).

3.3 Setting, data collection, and participants

We conducted this study at a public middle school to which students applied to attend. The
school, located in a gentrifying part of a large US city, served primarily students who identified
as Mexican-American and were not necessarily from the neighborhood directly surrounding
the school. At the time of the study, 92% of students attending the school were eligible for free
and reduced lunch and 94% of students identified as students of color.

We organized data collection in two phases. In the first phase, Johnson taught a
sequence of three consecutive whole class lessons to four sections of seventh grade
students (~13 years old) enrolled in a pre-algebra course. In the second phase, which
occurred the week following the lessons, 14 students participated in a clinical interview
(Clement, 2000). Johnson conducted a total of seven interviews (one interview per pair).
We selected students who participated actively during the whole class lessons, including at
least one pair of students from each section. McClintock served a supporting role during
the lessons and interviews.

We designed this study to complement students’ regular classroom instruction. Hence, we
worked to balance a classroom teacher’s pedagogical goals along with our research aims.
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Together with the students’ regular classroom teacher, we agreed that whole class lessons
taught by Johnson would focus on linear situations, which students had studied earlier in the
year. Therefore, we used only the filling rectangle DCE (Section 3.4) during the whole class
lessons. In the clinical interview, we used both the filling rectangle and filling triangle DCEs
(Section 3.4).

Prior to this study, the students with whom we worked had not yet had opportunities to
interact with DCEs and related tasks like the ones we incorporated. In addition, students had
not yet explored nonlinear situations. Our purpose in the interview was to extend beyond
students’ work during the whole class lessons. We began each interview with tasks involving
the filling rectangle DCE then moved to tasks involving the filling triangle DCE. The reported
task sequence (Section 3.5) reflects our adjustments and refinements that occurred through our
iterative design process.

3.4 Dynamic computer environments

Taking inspiration from Thompson, Byerly, and Hatfield’s (2013) dynamic version of the well-
known bottle problem (Shell Centre for Mathematical Education (University of Nottingham),
1985), Johnson used Geometer’s Sketchpad Software (Jackiw, 2009) to develop DCEs
involving filling polygon animations. Through filling polygon DCEs, we intended to maintain
the spirit of the bottle problem, while incorporating attributes of area and height, rather than
volume and height. The DCEs consisted of linked animations and graphs representing the area
and height of a filling rectangle and triangle (Figs. 3 and 4).
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For the filling rectangle (Fig. 3), students could click and drag point F to vary the length of
the base (EF). For the filling triangle (Fig. 4), the length of the base (AB) was fixed. To “fill”
the rectangle or triangle, students could click and drag on points H or D, respectively, or press
the action button Animate Point H (or D). If a student pressed animate point when EH (or AD)
was greater than zero, the polygon would fill until point H (or D) reached the maximum height
of the rectangle (or triangle), then reset EH (or AD) to zero and begin filling again until the
original length of EH (or AD) was reached. As the polygon fills, the linked graph dynamically
traces.

3.5 Task design and sequencing

Table 1 shows the task sequence during the whole class lessons and subsequent interview.
The middle column of Table 1 describes the specific task components. The left and right
columns show the DCEs (filling rectangle, filling triangle) and attributes (height, base) that
we varied.

The critical aspect we intended for students to discern—variation in unidirectional
change—is comprised of interrelated aspects. In our set of tasks, we aligned with Marton’s
(2015) recommendations for task designers intending to foster students” discernment of critical
aspects comprised of interrelated aspects: (1) Vary individual aspects, then both aspects,
against a background of invariance; (2) Repeat patterns of variance and invariance with
different backgrounds. In the filling rectangle tasks, we varied the base of the rectangle (whole
class day 1), then the height of the rectangle (whole class day 2), and then both the base and
height (whole class day 3/interview part 1). In interview part 2, we provided students with a
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Table 1 Task sequence during whole class lessons and subsequent interview

Setting Description of tasks Featu.r ¢
we varied
Given non-well-ordered tables for different bases (EF), determine different amounts

Whole class of area. For example: The length of EF is ___ cm. Complete the table:
day 1 [ Length of EH [Tem [3cm [5cem [7em [ 10cem | Length of
Filling | Area of rectangle EFGH_| | | | EF (base)

rectangle Suppose we were to create a graph relating the side length EH and the area of EFGH.
Would the graph be linear? Explain why or why not.

Whole class  Given the two different lengths of EH, determine the amount of increase in area of Leneth of
day 2 rectangle EFGH for lengths of EH not given in the non-well ordered tables. ]§H °
Filling For example, The length of EF is 3 cm. Complete the table: ;

rectangle ‘ Length of EH ‘ 14.5 cm | 16.5 cm ‘ (height)
|_ Amount of increase in area of EFGH | |
. . . . . Length of

Whole class  Given a graph relating the side length EH and the area of EFGH, Determine at least EH
day 3 two different ways to complete the statement: When the length of side EH (height)
Filling increases by , the area increases by . Lenoth of

rectangle Suppose we were to create different graphs for rectangles with different lengths of EF. EF (gbase)
What would those graphs be like?

Interview . . . . Length of
art 1 Given graphs representing the area of EFGH as a function of the length of side EH, EH
]l;illing determine the length of the base of the rectangle (EF). (height)

What would a graph be like for a rectangle with a (1) short base, (2) long base? Why? Length of
rectangle
EF (base)
Interview  How does the area of ABCD change as the length of AD increases? Leneth of
part 2 Imagine you created a graph relating the length of AD and the area of ABCD. What AgD
Filling would the graph be like? (height)
triangle Press Animate Point to sketch the graph. Was it what you expected? Use the length of g

AD and the area of ABCD to explain why the graph is not linear.

different background—a filling triangle situation. Due to time constraints, we varied only one
of the aspects (height) in the new background.

3.6 Analysis

Whole class lessons and interviews were video recorded, transcribed, and annotated. We used
two cameras during the interviews to capture both front and back views. Students’ utterances,
written work, and gestures served as sources of data. Employing grounded theory methodol-
ogy (Corbin & Strauss, 2008), data analysis involved multiple passes, with each pass
informing subsequent passes. In the first two passes, we systematically gathered evidence of
the variational and quantitative components of QVR. In each pass, we first coded separately;
then, we vetted codes to come to agreement. In the third pass, we connected students’ QVR to
their discernment of variation in unidirectional change.

Table 2 Codes and examples: students’ reasoning

Reasoning: code Example

Formulas/calculations Daria: I just don’t get it because, how do you get from this /number representing
length of AD] to that [number representing area of ABCD]?

Static objects Crista: It’s /the triangle] half of a rectangle. Rectangles are almost all the time,
linear.

Attributes in the process Olivia: This /DC] would decrease and that would make the area go smaller.
of changing
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3.6.1 QVR: variational component

In the first pass, we included the whole class lessons and follow-up interviews as sources of
data. We used three codes: formulas/calculations, static objects, and attributes in the process
of changing. Table 2 provides examples of each code. The formula/calculation code indicated
when students determined or attempted to determine particular numerical amounts. For
example, Daria wondered how to determine the amount of area of ABCD given an amount
of length of AD (see Fig. 4). The static object code indicated when students made claims about
types of shapes. For example, Crista claimed the triangle was “half of a rectangle.” The
attributes in the process of changing code indicated when students used utterances or gestures
to describe change in progress. For example, Olivia used “go smaller” to describe change in
progress. We used the theoretical construct of smooth images of change (Castillo-Garsow
et al., 2013) to base our coding for change in progress. When we coded for attributes in the
process of changing, we claimed those students were engaging in the variational component of
QVR.

3.6.2 QVR: quantitative component

In the second pass, we narrowed our sources of data to those instances in which students were
engaging in the variational component of QVR. We included only the follow-up interview as a
source of data because students’ responses during the whole class lessons did not provide a
sufficiently rich source of data to make claims about students’ conceptions of attributes. We
used three codes for students’ conceptions of attributes: physical, numerical, and measurable.
We used Thompson’s theory of quantitative reasoning (1994) to inform our process of coding
students’ conceptions of attributes. Table 3 provides examples of each code. The physical code
indicated when students made claims about a shape (or an attribute of a shape). The numerical
code indicated when students made claims about numerical values displayed in the DCEs
(Figs. 3 and 4). The measurable code indicated when students made claims about an attribute
they conceived of as being possible to measure. We separated the physical and numerical
codes from the measurable code to distinguish attributes students noticed in the DCEs (e.g.,
pointiness, see Section 2.1) from attributes students could conceive of as possible to measure.
We coded Navarro’s response “physical” because he described what he noticed about the
“sides” of the triangle. We coded Tomas’s response ‘“numerical,” because he made claims
about numerical values displayed in the DCE. The measurable code indicated when students
were engaging in the quantitative component of QVR. We coded Tien’s response
“measurable,” because she made a claim about some attribute (area) that she could conceive
of as possible to measure.

Table 3 Codes and examples: conceptions of attributes that are capable of varying

Conceptions of attributes Examples

Physical Navarro: But with this one /the triangle], these two sides are getting closer,
so like, it’s /the graphjgoing to tumn the other way

Numerical Tomas: It goes to one to ten real fast, and then once it gets to like twenty and
twenty-one, it starts taking, like it goes more slowly.

Measurable Tien: You’re getting a sm-, like a smaller, well, like a smaller amount of area added.
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Using the aforementioned codes, we made three different claims about students’ reasoning.
If a student received the code formulas/calculations or static objects, we claimed the student
was not engaging in QVR. If a student received the code in the process of changing and the
code physical or numerical, we claimed the student was engaging in variational reasoning, but
not QVR. Only if a student received both codes—in the process of changing and measurable—
did we claim that the student was engaging in QVR. Tien’s and Olivia’s responses represent
examples of students who received both codes (in the process of change and measurable).
Therefore, we claimed that Tien and Olivia were engaging in QVR.

3.6.3 Variation in unidirectional change

In the third pass, we narrowed our sources of data to the interview part 2 (Table 1), when
students interacted with the filling triangle DCE. We worked to draw connections between
students’ predictions of graph type, their engagement in QVR, and their discernment of
variation in unidirectional change. We sorted students’ predictions about a graph relating the
length of AD and the area of ABCD (Fig. 4). We began with two categories: /inear and
nonlinear. In the sorting process, we added a new category: mostly linear, to capture the scope
of students’ predictions. Two students (Tien and Jorge) used “mostly linear” to describe a
graph that to us appeared piecewise linear.

To make claims about students’ discernment of variation in unidirectional change, we drew
on Thompson’s theory of quantitative reasoning (1994). We used comparative methods
(Corbin & Strauss, 2008) to analyze students’ utterances, gestures, and written work. We
analyzed for evidence that a student could conceive of the possibility of varying the intensity of
the change, while holding the direction of the change invariant. For example, Tien’s response
(Table 3) provides evidence of her conception of variation in the intensity of change (“smaller
amount of area”) along with concurrent invariance in the direction of change (area being
“added”). In contrast, Olivia’s response (Table 2) provides evidence of a student conceiving of
variation in the direction, rather than in the intensity of change (area getting “smaller”). Hence,
we claimed that Tien discerned variation in unidirectional change, while Olivia discerned
variation in direction of change only.

4 Results

We present data from the filling triangle portion of the interview. We report on the final two
tasks in the interview, making predictions about a graph relating the length of AD and the area
of ABCD then explaining why the dynamic graph was not linear (Table 1). In Section 4.1, we
report the range of reasoning across all 14 students to address RQ1. In Sections 4.2 and 4.3, we
provide interview episodes to address RQ2. In Section 4.4, we explicate a link between
students” QVR and their discernment of variation in unidirectional change.

4.1 The range of reasoning across all 14 students

Table 4 shows the range of reasoning across all 14 students. At left, Table 4 shows the number
of students making each of the three different types of predictions for the dynamic graph. At
center, Table 4 shows the number of students engaging in variational reasoning (students

receiving the code in the process of changing) and QVR (only students receiving both codes in
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the process of changing and measurable), before and after viewing the dynamic graph in the
filling triangle DCE (Fig. 4). At right, Table 4 shows the number of students providing
evidence of discernment of variation in unidirectional change.

All students who discerned variation in unidirectional change also engaged in QVR. Yet,
students’ engagement in QVR was not sufficient to ensure their discernment of variation in
unidirectional change. Olivia—the only student who engaged in QVR after viewing the
dynamic graph but did not demonstrate evidence of discerning variation in unidirectional
change—provided evidence of discerning variation, rather than invariance, in the direction of
change in area. Olivia’s response (Table 2) occurred after she viewed the dynamic graph. She
interpreted the decreasing length of DC (Fig. 4) to be causing the area to “go smaller.” Rather
than keeping the direction of the change invariant (increasing), Olivia compared the amount of
“space” near the bottom and the top of the triangle, stating that the “curve” happens because
the direction of change in area would switch “from area going bigger to like going smaller.”

We found parallels between Olivia’s interpretation of the dynamic graph and Jorge’s
“mostly linear” prediction. Jorge was the only student who engaged in QVR after, but not
also before viewing the graph. When making a prediction, Jorge discerned variation in the
direction of change in the “shape” of the filled region: “it’s [the graph] probably going to
curve a little bit, because, maybe, or be flat, because the shape is getting smaller and smaller.”
Furthermore, Jorge did not demonstrate evidence of discernment of variation in unidirectional
change until after viewing the dynamic graph, stating: “As soon as it got to that one point, it
[the area] started to get slower and slower, added on a little bit slower.” The responses of
Olivia and Jorge suggest that discerning variation in unidirectional change has roots in
discerning variation in the direction of change. Students can build on variation in the direction
of change (“going smaller”) to conceive of the possibility of varying the intensity of change
(“added on a little bit slower”).

4.2 Conceiving of varying an invariant attribute: affordances of QVR

Affordances of QVR included conceiving of varying an invariant attribute. To illustrate, we
share the response of Sergio, one of the four students predicting that a graph relating attributes
of the filling triangle would be nonlinear. Despite being unable to vary the length of AB in the
filling triangle DCE (see Fig. 4), some students inquired about the possibility of doing so.
After viewing the dynamic filling triangle graph, without prompting from Johnson, Sergio
conceived of variation in AB, then predicted resulting changes in a graph.

Table 4 The range of reasoning across all 14 students

Students’ predictions Number Variational reasoning Quantitative Discernment of

of graph type of students  (including those students  variational variation in
engaging in QVR) reasoning (QVR) unidirectional change
Before After Before  After
viewing viewing viewing  viewing
graph graph graph graph

Linear 8 4 4 4 1 0

“Mostly linear” 2 2 2 1 2 2

Nonlinear 4 4 4 4 4 4

Total 14 10 10 9 7 6
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Sergio: I’'m not sure, but if you make the triangle a little bit bigger, same thing will
happen but with different area.

Johnson: Why do you say that?

Sergio: Because—, um, because it’s all about A and B [segment AB],

Johnson: Okay

Sergio: If you change the length of A and B [segment AB] then the area [of ABCD] will
be way different but the same structure [Traces graph shown on the computer screen]
will be the same, the same structure, going, that way. [Continues to trace graph]
Johnson: Can you use the area of the triangle to explain why? I think that is an amazing
observation that you are making, but, can you use that, can you tell me about the area to
explain why you anticipate that?

Sergio: Because all triangles have, are like, goes in, actually, have three sides- [Motions
hands to form what appears to be a vertex and sides of a triangle] And that shows it can’t
expand any more, like a square. So when you go up more on the triangle, then the area,
[Forms what appears to be a triangle with this thumbs and index fingers] um, kind of
decreases because not that much space can be inside of it.

During the filling rectangle portion of the interview and in whole class lessons, students had
the opportunity to explore changes in a graph relating the length of EH and the area of EFGH
for a rectangle with base (EF) of varying length (see Table 1). Sergio’s response provided
evidence that he could engage in a similar exploration for a filling triangle. Notably, in the
filling triangle DCE, it was not possible to vary the base of the filling triangle (length of AB).
Yet, Sergio demonstrated that he could conceive of varying the length of AB and predict
resulting effects on a linked graph.

Conceiving of variation in a measurable attribute of the filling triangle (length of AB),
Sergio predicted resulting changes in area (i.c., “the area would be way different) as well as
invariance in the shape of a related graph (i.e., “the same structure”). When introducing the
term “structure,” Sergio repeatedly traced the graph on the computer screen, suggesting that by
“structure,” he meant the shape of the graph. Because he had expressed uncertainty (i.e., “I'm
not sure, but...”), Johnson encouraged Sergio to elaborate, suggesting that Sergio use area to
explain his conjecture. By appealing to changes in an attribute—area—that he conceived of as
measurable, Sergio demonstrated engagement in QVR across multiple attributes—the length
of AB and the area of ABCD.

Because Sergio treated the graph as a manipulable shape, he provided evidence of engaging
in a form of static shape thinking (Moore & Thompson, 2015). Importantly, Sergio’s focus on
the resulting invariance in the shape of the graph given changes in the length of AB illustrates
how quantitative reasoning can play a role in static shape thinking. Specifically, Sergio
discerned that changing the length of AB would change the resulting area of ABCD, and
hence result in changes in the shape of a related graph.

4.3 Discerning variation in unidirectional change: representing different attributes
Students who discerned variation in unidirectional change conceived of different attributes as
being possible to measure. To illustrate, we share the response of Tomas, another of the four
students predicting that a graph relating attributes of the filling triangle would be nonlinear.

When Johnson asked students to sketch a graph relating the length of AD and the area of
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ABCD, Tomas created the graph shown in Fig. 5. In the transcript that follows, Johnson asked
Tomas to talk more about his graph.

Johnson: Can you tell me what slower means? What going slower means in terms of
area and side length?

Tomas: Um, cause at the bottom, there is a lot of like open space, [Moves pencil over
shaded region on triangle diagram] and it’s wide, going at a constant rate. [Runs pencil
along leftmost portion of his graph] But as the side length of AD [Runs finger along
segment AD] and DC is nearing the top, [Runs finger along segment DC] the area, like
since it has less room, it increases by much less than the bottom. It goes a little bit slow.
[Runs finger along his graph, beginning near the origin, slowing down when reaching
the curved portion] Here it goes slower. The area goes slower, [Runs finger along the
curved part of his graph] And then it goes, [Runs finger along segment AD, beginning at
the base and moving up] and then it goes back down. [Lifts finger from the tip of the
triangle back to the base of the triangle, then runs finger along segment AD, going up] It
goes at a constant rate again. [Runs pencil along rightmost portion of his graph]
Johnson: Ah, so this constant rate up here is when you come back down and graph the
down part again?

Tomas: Yeah.

We had intended for students to sketch a graph representing one complete fill of the triangle.
Instead, Tomas sketched a graph representing a filling triangle that began partially filled, then
filled completely, and then refilled to the original partial amount. By making distinctions about
how the area “goes” (e.g., “slower,” “constant rate”), Tomas provided evidence that he could
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conceive of variation in the intensity of the speed at which he perceived the area to be
changing. Moving back and forth between his graph and the diagram of ABCD (Fig. 5),
Tomas provided evidence that his graph represented variation in an attribute he could conceive
of as possible to measure. For example, after Tomas stated: “it /area] increases by much less
than the bottom,” he ran his finger along a portion of his graph to show when area was
changing in the way he described. Therefore, we claim that Tomas discerned variation in
unidirectional change.

Instead of using a graph to represent a relationship between two quantities capable of
varying, we interpret that Tomas used a graph to represent variation in a single quantity.
Therefore, we claim that Tomas engaged in variational, rather than covariational reason-
ing. Because Tomas could conceive of variation in an attribute, we interpret him to be
reasoning at a level that Thompson and Carlson (2017) term gross variation. Furthermore,
Tomas described the area as being in the process of changing (e.g., “it goes a little bit
slow.”). Hence, we claim that Tomas demonstrated smooth images of change. Conse-
quently, Tomas’s response provides evidence that a student engaging in variational
reasoning at the level of gross variation can also demonstrate smooth images of change.

Tomas demonstrated that he could interpret a graph as a trace representing the speed at
which area was changing as an animation elapsed in real time. For example, when Tomas said:
“Here it goes slower. The area goes slower,” he ran his finger along a portion of his graph. In
our view, Tomas’s reasoning is consistent with aspects of the construct of emergent shape
thinking, put forward by Moore and Thompson (2015). Going further, we interpret Tomas to
be engaging in a form of emergent shape thinking that involves variational, rather than
covariational reasoning.

4.4 A link between students’ QVR and their discernment of variation
in unidirectional change

All students who discerned variation in unidirectional change also engaged in QVR. Yet,
students’ use of QVR was not sufficient to engender their discernment of variation in
unidirectional change (e.g., Olivia). We cannot rule out the possibility for students to discern
variation in unidirectional change without engaging in QVR. For example, students may
discern variation in unidirectional change in attributes they notice in DCEs (e.g., a triangle
becoming “more” pointy). Despite this possibility, all students who discerned variation in
unidirectional change also provided evidence that they were attending to attributes they could
conceive of as possible to measure. Interestingly, the attributes were not necessarily attributes
we expected (e.g., Tomas) or attributes directly represented in a graph (e.g., Sergio). Further-
more, all students discerning variation in unidirectional change also demonstrated smooth
images of change.

5 Discussion

5.1 The utility of smooth images of change

To date, researchers conducting empirical investigations of secondary students’ smooth
images of change have investigated students’ covariational reasoning (e.g., Castillo-

Garsow et al., 2013; Johnson, 2012). Our results provide evidence to support the utility
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of students’ smooth images of change for their variational reasoning as well. Furthermore,
we build on previous research (Ellis et al., 2015; Lobato et al., 2012) by providing evidence
of early secondary students’ use of smooth images of change to discern variation in
unidirectional change. Our results demonstrate how students can be using smooth images
of change while engaging in variational reasoning at the gross variation level (Thompson &
Carlson, 2017).

5.2 Extending constructs of static and emergent shape thinking

Our analysis of Tomas and Sergio’s responses suggest two extensions to Moore and
Thompson’s (2015) constructs of static and emergent shape thinking. First, static shape
thinking can have quantitative aspects. Furthermore, when engaging in forms of static shape
thinking, students can reason about quantities not directly represented in graphs they interpret
or create.

Second, emergent shape thinking can take a variational form. To be clear, we do not
propose that “variational” emergent shape thinking is an end goal for students. Rather, we
intend to highlight the promise of “variational” emergent shape thinking in fostering students’
development of covariational reasoning.

5.3 Task design principles to foster students’ discernment of variation
in unidirectional change

As did Johnson (2012), we distinguish between tasks involving variation within quantities
(e.g., filling triangle tasks, Table 1) and tasks involving variation between quantities (e.g.,
filling rectangle tasks, Table 1). By moving from the filling rectangle to the filling triangle
situation, we intended to provide students opportunities to discern variation in unidirectional
change within a particular instance of a filling triangle rather than only between instances of
filling rectangles. Through our task design and sequencing, the filling triangle situation
provided a specialized kind of contrast (Marton, 2015) that extended beyond a difference in
shape (triangle vs. rectangle) to a different kind of variation. Furthermore, our results provide
evidence to support Stroup’s (2002) assertion that a linear situation may be “too simple” to
foster students’ attention to complexities underlying key concepts such as rate. In particular,
we argue that linear situations alone are insufficient to use to provide students opportunities to
discern variation in unidirectional change, because the variation in unidirectional change only
occurs between rather than within instances.

6 Summary

In summary, the main findings of this study include two factors related to students’ discern-
ment of variation in unidirectional change. The first factor is students’ conceptions of attributes
as “things” that are capable of varying and possible to measure. The second factor is students’
use of smooth images of change when engaging in variational reasoning. In this study, the only
students who discerned variation in unidirectional change were those students who engaged in
QVR and demonstrated smooth images of change.

To situate our findings, we acknowledge that it would be appropriate for students to use
covariational reasoning when interacting with the filling polygon DCEs and related tasks that we
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included. By investigating the variational reasoning that these students used, rather than focusing
on students’ lack of covariational reasoning, we were able to learn more about the richness of
early secondary students’ mathematical reasoning. In our view, providing students opportunities
to engage in QVR is useful for promoting their engagement in covariational reasoning.

7 Implications for design of tasks and DCEs

This study has two implications for task design to foster students’ reasoning about the
mathematics of change and variation. First, opportunities to interact with DCEs linking
animations and dynamic graphs are insufficient to foster students’ discernment of variation
in unidirectional change. When designing DCEs and related tasks, incorporate attributes that
students can conceive of as capable of varying and possible to measure. Second, students’
conceptions of change can impact their variational reasoning when interacting with DCEs. To
foster students’ discernment of variation in unidirectional change, incorporate tasks that
provide opportunities for students to use smooth images of change.
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