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Abstract This paper arises from a study of how concepts related to understanding functions
develop for students across the years of secondary/high school, using small samples from two
different curricula systems: England and Israel. We used a survey consisting of function tasks
developed in collaboration with teachers from both curriculum systems. We report on 120
higher achieving students, 10 from each of English and Israeli, 12–18 years old. Iterative and
comparative analysis identified similarities and differences in students’ responses and we
conjecture links between curriculum, enactment, task design, and students’ responses. Towards
the end of school, students from both curriculum backgrounds performed similarly on most
tasks but approached these by different routes, such as intuitive or formal and with different
understandings, including correspondence and covariational approaches to functions.

Keywords Functions . Curriculum . Students’ understanding of functions

1 Introduction

The overall aim of our study is to learn more about how concepts relevant for understanding
functions develop for learners across the years of secondary/high school. We created an
opportunity setting to produce data from two different curricula systems from two different
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countries. This enabled us to examine the conceptual development of function knowledge in
different schooling situations, using classes taught by teachers interested in learning about this.
We build on the strong body of research about dimensions and difficulties in learning functions
to develop a survey instrument that could be accessed by the youngest secondary students but
also addresses and examines progression to the oldest students. Our task selection and design
enable students to reveal, and teachers to observe, relevant understandings. The data arising
from the use of the instrument led us to realisations about students’ learning towards functions
and suggested differences and similarities between the countries that indicate the influence of
teaching and curriculum. The instrument is itself a contribution to exploratory research.

We compare some students from England and Israel because the focus on functions in
Israel’s national curriculum is formal from age 12, i.e., presented sequentially using conven-
tional symbolisation, language, and methods, whereas it is less formal in England. We know
background differences because of our intimate knowledge of the educational systems.
Pedagogy varies among teachers, but teachers in both countries remain close to their national
sanctioned curriculum in what they teach. Knowledge of the curriculum and of teachers’
expectations gives adequate information about enactment for us to conjecture plausible reasons
to explain differences that show up in students’ performance. We also matched, as far as
possible, variables such as social class, prior attainment, and expected performance. Socio-
economic backgrounds of the schools in our study were similar relative to their national norms,
being comprehensive in intake.

Comparison has thrown up issues for each country individually that might not have
arisen without the comparison. We have published several papers already about some
of these. The study has raised issues of curriculum order, such as when and how
formal treatment of functions begins, and the effects of that on students’ reactions to
the word Bfunction^ (Ayalon, Watson, & Lerman, 2017), similarities and differences in
students’ responses to tasks when they have acquired formal approaches to functions
or have facility with informal approaches (Ayalon, Watson, & Lerman, 2016b), and
the effects of detail in the design of tasks, particularly generalisation of linear
functions from data (Ayalon, Watson, & Lerman, 2015). We now compare progression
in the two countries. This is not done to produce national comparative data, but to
highlight differences in learning where curriculum expectations at different ages are
very different. This places students’ progression in sociocultural contexts, rather than
only in the cognitive development of individuals, and hence has implications for
curriculum and teaching since these are ways in which different cultural expectations
are mediated in schooling. We present a summary of findings and pose the question:

& What possible explanations can be provided for similarities and differences in students’
performances in the two countries?

We revisit this question in the final discussion, following the design and results sections.
The breadth of this overview necessitates brevity; elaborations are available in our previous

papers, to which we refer.
First, we review a selection of related literature. We then describe the curriculum contexts,

followed by our task design intentions and methods of analysis. Subsequently, we analyse the
students’ responses to the tasks and compare categorizations between countries. The analysis is
based on our empirical data and interaction with the literature. Our comparisons lead to
conjectures about relationships among curriculum, teaching, design and students’ responses,
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offering areas for future research. In this paper, these conjectured relationships, and the survey
itself, are our contributions to knowledge.

2 Theoretical background

Drawing on sociocultural theory, our perspective is that teaching and curriculum are critical in
learning; hence, differences in these will determine, or affect significantly, what students learn;
in turn, students’ knowledge gives insights into teaching and enactment of curriculum (e.g.,
Daniels, 1993; Lerman, 2001).

End-of-school and undergraduate understandings of function have been described by many
researchers (e.g., Dubinsky & Harel, 1992; Sfard, 1991, 1992; Sierpinska, 1992; Slavit, 1997;
Vinner & Dreyfus, 1989). Tall (1992) writes about how students move from a view of
functions as instructions to move between two sets of numbers, to correspondences between
elements of the sets, to relations between variations, and finally to functions as objects. This
progression is broadly common throughout the literature and includes views of functions as (a)
ordered pairs or (b) correlations between changes in variables. These two views appear as
Bcorrespondence^ and Bcovariation^ in research about generalising functions (e.g., Confrey &
Smith, 1994, 1995; Leinhardt, Zaslavsky, & Stein, 1990). Correspondence might relate to
mapping and input-output images of functions. Covariation might relate to graphing represen-
tations, dynamic phenomena, to each variable being seen as a parametric function of time
(Confrey & Smith, 1995; Saldanha & Thompson, 1998), and to comparing changes in
dependent variables to changes in independent variables (Carlson & Oehrtman, 2005;
Thompson & Carlson, 2017). For school-level research, we see Brate of change^ as the formal
or numerical expression of changes in one variable in terms of another and observe that:

In situations where rate of change can be calculated, it might be correctly deduced
through a procedural approach… without any awareness of what it means in terms of
covariation; alternatively, a student might express a situation qualitatively as covariation
but be unable to operationalise this idea as a rate of change. (Ayalon, Watson, & Lerman,
2016a, p. 1156)

In school, functions are almost always continuous so covariation has the same meaning as rate
of change. Gradient is closely related to covariation and rate, and in school, this usually relates
to slopes of graphs. Connecting gradient to overall or instantaneous rate of change depends on
seeing the graph as representing a dynamic situation (Gravemeijer & Doorman, 1999). For
linear functions, instantaneous rate of change is indistinguishable from change on an interval
and hence gradient, whereas for non-linear functions, a formal understanding of gradient
requires instantaneous rate of change.

In generalising functions from sequential data, a term-to-term approach is often observed to
dominate students’ approaches (e.g., Radford, 2008; Stacey, 1989; Steele, 2008), and whereas
the changes in the dependent variable are important for understanding covariation, the move
from discrete change to a covariational understanding is not straightforward (e.g., Blanton &
Kaput, 2011; see also Ayalon et al., 2016a, p. 1156). Misapplication of proportional reasoning
in sequential contexts is also common among students (Stacey, 1989; Van Dooren, De Bock,
Hessels, Janssens, & Verschaffel, 2005).

In school, variables are either symbols in algebraic representations or visible in situations
and can be counted or measured. Young children are capable of adopting a modelling
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perspective, i.e., identifying the behaviour of variables, given a suitable experiment (e.g.,
Ainley & Pratt, 2005; Dreyfus & Eisenberg, 1983; Karplus, 1978). They can connect situations
to graphical representations such as saying where and why Bit goes up^ or Bdown^, sketching
a likely graph, or describing the effects of varying parameters. Less is known about how
students understand the use of variables in algebra, or Bcompound^ variables that are implicit,
such as density and speed.

Several difficulties in connecting graphs to situations have been found in research. The
most frequently cited is interpreting a graph as a picture (e.g., Clement, 1985; Janvier, 1981).
Students deal more competently with graphs of functions when one of the variables is time or
time-dependent (Janvier, 1981; Thompson, 1994) but time may not be understood as a variable
if graphs are always read chronologically from left to right (Monk, 1994).

Progression in conceptual understanding depends on curriculum order and enactment (e.g.,
Roth & Radford, 2011) as well as students’ learning capabilities and experience. In our
knowledge of students learning about functions, there seemed to us to be no accounts of
how, over time, learning relates to curriculum order and teaching focus.

3 Israeli and English curricula and teacher expectations

The Israeli curriculum is regulated by the Ministry of Education and textbooks are officially
approved. The national mathematics curriculum (Ministry of Education, 2009) provides
detailed recommendations for teaching functions, which are named as such. In grade 7 (ages
12–13), function is a relationship between an independent and a dependent quantity using
verbal, graphical, tabular, and algebraic representations. Formal notation is introduced in grade
7 using y or f(x) and function is defined as matching a particular number to a number chosen
from a domain. BRate^ is taught in grade 7 including varying rates, and there is a focus on
changes in the function value when x changes. Students have earlier experience with patterns
and sequences. The main focus in grade 8 is linear functions, emphasising constant rate of
change, straight line graphs, and the form y =mx + b. The focus in grade 9 is on characteristics
and transformations of quadratic functions. In grades 10–12, formal calculus is introduced.

The statutory national curriculum in England at the time of the study did not require a
formal treatment of functions until years 11/12 (equivalent to grades 10/11) for those who opt
to continue to study mathematics (QCA, 2007). Introduction to functions is through
generalising sequences and mappings that connect domain values to range values. Data tables
are used to plot graphs whose properties are then studied in their own right. Most textbooks
provide input-output Bmachines^ to develop algebraic expressions which are variously called
rules, equations, or graphs rather than Bfunctions^. Rate of change arises implicitly as the
gradient of linear functions, and this idea extends to varying rates of change through quadratic
functions, or through modelling motion, with older students as a starting point for calculus
through qualitative and quantitative study of increasing and decreasing functions. The ideas of
rate and rate of change were not salient in the English curriculum at the time of our study
before early calculus.1 Most English students will therefore not know much about the word
function until about 15 years of age but will have some experience of linear graphs connected
to sequences, and quadratic graphs (which may or may not have been called functions), or

1 The current curriculum is similar to this description, but with more modelling and applications. There has been
no major change in the age at which function is introduced explicitly.
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input-output mappings, and may have heard Bfunction machine^ in relation to these. They will
have met the y = notation. After 16, mathematics is only studied by specialist students.

Students in both countries will also have met various graphs of realistic and statistical data,
not described as functions. The only non-smooth, non-continuous, and non-calculable graphs
they will definitely have met would be journey graphs, but they may have met others through
investigating other realistic phenomena. Graphs will have been constructed from graph-
plotting software, from calculating points and plotting, from function sketching, and from
realistic data or presented for interpretation.

All teachers contributing to this study were knowledgeable about functions to at least first
university degree level and hence could enrich students’ experience beyond the curriculum and
textbook expectations if they chose to. There were two pairs in each country: four teachers
teaching in two schools. The teachers taught the full age range of our study; the classes we
surveyed were their own classes, and one or other of them taught the highest achieving group
in each year. An exception is that the grade 12 class in Israel was from a different school for
practical reasons.

The expectations of the participating teachers suggest what they emphasise in their
teaching. Israeli teachers confirmed that their teaching from grade 7 includes explicit reference
to functions and rates of change as foundational ideas. Input-output and mapping ideas were
not taught. The teachers from England said that students would meet input-output models in
year 7 (grade 6) or before, and some teachers use the word function in the context of input-
output machines. Explicit use of the word and notation is in year 11 (grade 10) when students
meet transformations of linear and quadratic functions. Mapping between sets is developed in
year 12 (grade 11) as an introduction to a formal treatment of functions in year 13 (grade 12).
Rate of change would first be discussed by these older students in the context of finding
derivatives from the first principles.

These generalisations are the background for analysing differences in Israeli and English
students’ responses in our study.

4 Design of survey tasks and methods

We started with a draft conceptual map of functions seen from both pure mathematical and
modelling perspectives based on our own experience and knowledge about functions. It had
over 50 components and plotted hypothetical connections between the components of a
conventional understanding of functions. This produced a school-orientated version of the
seminal analysis provided by Sierpinska (1992) in which she identifies 19 components and a
similar number of possible obstacles to learning. This Btop-down^ map was then compared to
the curricula of the two countries, and to empirical studies, and to teachers’ expectations. From
this conceptual investigation and the literature, we identified understanding relationships
between variables as a key idea in progression towards function understanding, connecting
formal and modelling developmental pathways (Ayalon et al., 2016a, b). The components we
identified included selection and recognition of variables of various kinds; expression of
relations between variables (correspondence, covariation, rates of change, gradient); and
interpretation of relations presented as graphs, equations, formulae, and situations. In school,
these typically arise through students’ learning in the areas of graphing and interpreting,
generalising from sequential data, relating variables in data and in phenomena, conceptualising
rate of change, understanding linear and other relationships, and using formal, informal,

Comparison of students’ understanding of functions in classes following... 259



abstract, and realistic contexts. Our survey design started from these ideas and used tasks
which could reveal students’ understanding of some of these ideas, as well as their end-of-
school concept image of functions which we have reported elsewhere (Ayalon et al., 2017).

We developed an instrument over several design cycles working closely with our eight
teachers, four in each country, to ensure breadth of curriculum perspectives and accessibility
for their students. These cycles included initial discussions; redesign based on teacher com-
ments about curriculum relevance; small trials in schools; and further redesign based on
students’ written responses and discussion with teachers about possible misunderstandings
of the tasks, time taken to do the whole survey, content coverage and duplication, and
willingness to administer the survey as a useful component of their teaching. The purpose of
the instrument was to study some components of function understanding across all secondary
age students, not at the level of individuals, but to give an overall picture. We had to make it
manageable for teachers, i.e., short and student-friendly, while being informative for them and
us.

We used tasks from Wilmot, Schoenfeld, Wilson, Champney, and Zahner (2011) and Swan
(1980) as starting points for our design as these are based on considerations from the literature,
checking that these would be accessible for students and had enough relevant familiarity. The
instrument used by Wilmot et al. was to test for Bcollege readiness^ and Swan’s tasks were
designed for teaching, focusing on graphing and the meaning of symbolic representations, so
we had to select, adapt, and create to devise a succinct collection of tasks that would span
progress towards understanding functions.

As well as helping to design the instrument, the same teachers administered it in their
classes, providing an opportunistic population from which we could learn about similarities
and differences.

Language was agreed with the teachers, and two of the authors being bilingual in Hebrew
and English meant that language differences were understood. Students’ responses were
written in booklets containing the tasks. The survey was then trialled. Outcomes and difficul-
ties were discussed with teachers and further adaptations made. Our aim was to find out what
students do, and see if, how and when they surmounted common difficulties identified in the
literature. The final design and our analysis of the final data therefore drew on teachers’
knowledge and their expectations of students’ responses, teachers’ reports of the order and
content of their teaching, knowledge of curriculum, knowledge of tasks familiar in textbooks
and tests, and knowledge from research as described above. The five tasks we discuss in this
paper could all be accessed via the curriculum in both countries. A sixth task depended on
interpreting formal definitions of the word function and detailed analysis is reported elsewhere
(Ayalon et al., 2017). The tasks appear in the BResults^ section below so that students’
responses can be directly compared to the task presentations.

4.1 Sample

Here, we focus on data from higher achieving classes only, to focus on those whose
knowledge of functions should provide a foundation for further study. In both
countries, these classes were between 30 and 50% of the age cohort, varying a little
across years, except in the case of England years 12 and 13 for which the students we
used were the only ones studying mathematics. The sample is large enough to
encompass a range of possible responses while being small enough to analyse
individual responses in detail. From each class, teachers sampled 10 scripts from
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the alphabetised class list2 and anonymised them. In this way, we received, from such
classes, 70 scripts from English years 7 to 13 inclusive and 60 scripts from Israel
years 7 to 12. From here on, we use grade equivalents for both countries to ensure
we are comparing similar ages and omit England grade 6 since we have no compar-
ative scripts from Israel. To avoid applying a heavy workload on teachers, each
school provided data from alternate years, so one school provided grades 7, 9, and
11 and the other grades 8, 10, and 12. Ethical permissions and protocols were
pursued; in Israel, this was treated as an outside intervention test and in England as
a diagnostic process undertaken by teachers in the normal course of their work.

4.2 Data analysis

The analysis is the comparison of task responses from two small opportunistic samples, used to
gain insight into the similarities and differences in students’ ways of thinking that arise in
different curriculum systems. For each task, we categorised all the different approaches
students had taken, whether successful or not, from all the data, thus reducing the data to a
few general approaches. We started by openly coding responses and then looked for similar-
ities across the data as categories. In addition, the identification of mathematical reasoning in
students’ responses allowed us to make inferences about their understanding, and where there
is existing relevant research about students’ thinking, we tested existing categorisations to see
if they could also be applied. Decisions about interpretation were made collaboratively among
the research team by discussion and consensus. Categorisations were constantly checked
against the whole data set, and between ourselves, testing distinctions to see if all responses
fitted into one, and only one category. This process required several passes through the whole
data, often going back to both the literature and individual scripts to gain further insights. For
each task, the categories of responses are task-specific and include all the approaches we could
identify. This is to generate as full a picture as possible of what students actually do in
function-related tasks. Categories are presented below relating to each task. Once the data
had been reduced, we collected raw frequencies and used these to compare across years and
across countries. However, this is primarily a qualitative study, with data directing us towards
possible issues of interest. Since we had small samples, it was then possible to look again at
particular examples to make sense of differences. Similarities and differences were therefore
identified empirically, using the emergent categories. We looked for qualitative similarities and
differences in the responses and also identified differences where quantitative data showed
different trends across years, or proportional differences of more than 25%.

5 Results

For each task, we introduce the task, its foci, and the teachers’ expectations. We then provide
the analytical categories with some examples (quotations given in italics) and frequencies
representing the distribution of the categories across years within the English and the Israeli
classes. Note that we have only recorded responses, not non-responses, so totals will not
always be 10 for each country and grade. We draw attention to similarities or differences and
conjecture about reasons.

2 By dividing class size by 10 to get n and then selecting approximately every nth script.
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5.1 Task 1

Task 1 (Fig. 1) focuses on rate of change, implicitly and explicitly, when an elevator descends.
The term-to-term pattern of the table vertically requires some thought as there is a Bbreak^ in
the time sequence. Question 1.2 asks explicitly for rate, which is not defined, so the data needs
transformation into Bfloors per second^. The last part of the task suggests revisiting the data
where students may have ignored the independent variable.

Israeli teachers believed students would be able to answer these questions. Rate of change is
formally met at the end of grade 7. English teachers anticipated that students of all ages would
spot the correct missing value in 1.1, but they expected students to have some problems with
1.2 since rate as a taught idea first appears in the curriculum in grade 12. All teachers and
students assumed constant speed. Three categories of expressions of rate of change emerged,
as presented in Table 1.

Table 2 presents the distribution of the categories of expressions of rate of change.
By the end of school, students in both countries show similar covariational approaches, but

throughout this study, it must be remembered that the English students in grades 11 and 12 are
following a self-selected specialist course where the Israelis are higher performing but not
necessarily seeing themselves as specialists. Almost all students, from both countries, provided
formal expressions of rate of change as floors per second for question 1.2, but several chose −
2 when asked to find where the lift will be after 7 s (question 1.1), explaining that the lift is
going down 4 every second, thus focusing only on the dependent variable. However, when
asked to find the rate at which the lift descends, they used both variables to get the correct
answer. English students made many more errors in 1.1 (30 vs. 12% of all students) but these
decreased with age and older students performed similarly to Israeli students. In Israel, more
students used covariation throughout the age range. The younger English students were more

You are staying in a hotel on its 14th floor. You are going to use the lift to go down to 
the parking level. The hotel has a ground level numbered zero, and there are several 
parking levels underneath the zero floor. The table below shows what floor you reach 
after a number of seconds.

1.1 Where will the lift be after seven 
seconds?   Explain your answer. 
1.2 At what rate does the lift descend? 
Explain your answer. 
1.3 You might want to check whether 
your answer to question 1.2 fits with your 
answer to question 1.1. 

Number of 
seconds 

Floor number

0 14 
2 10 
4 6 
6 2 
7 ? 

Fig. 1 Task 1

Table 1 Categories of response for task 1

Category Description Example

1 Term-to-term reasoning, focusing on step size in
the right hand column

Going down in 4’s

2 Term-to-term as above for 1.1, covariation
reasoning for 1.2

Going down in 4’s then two floors per second

3 Covariation/rate: both variables compared
throughout

Regularity in the rate then the ratio 2:4 is 1:2,
meaning 2 floors per second
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likely to make the typical error of treating the dependent variable as a sequence but were also
more competent with rate than their teachers expected. Israeli students seemed better prepared
for this question and more likely to compare changes in both variables.

5.2 Task 2

Task 2 (Fig. 2) asks students to interpret a pattern sequence for the perimeter of a chain of
hexagons. The general expression could be developed in a number of ways, such as using
correspondence or covariation, and is a familiar task for students, although data are presented
in an unfamiliar way. We presented data non-sequentially to deter term-to-term assumptions.
Question 2.2 asks for a general method to compute the perimeter. The relationship has to be
inferred by transforming the data and comparing it to the diagram. Question 2.3 asks for an
algebraic expression, an explicit request for a new representation. The previous questions are
intended to direct students towards the relations and structure they need to express. Question
2.4 asks for an explanation in words.

All teachers expected that students would use input-output and correspondence reasoning
using step size as the multiplier. Four categories emerged in students’ attempts to find and
express relations in the data, as presented in Table 3, and their distribution is shown in Table 4.

We also returned to the scripts to see how successful these approaches were. Students
overwhelmingly used a correspondence approach to suggest a general rule for the relation
between the number of hexagons and the perimeter. Of the Israeli students choosing this
approach, 41/43 presented a correct formula, mainly referring to the structure of the shapes to
explain it, but the English proportion was only 20/40 (categories 2 and 4). Half of the English

Table 2 Distribution of task 1 categories in English and Israeli classes

Code gr7 gr8 gr9 gr10 gr11 gr12

1 Eng 1 0 1 1 0 0
1 Is 0 1 0 0 0 0
2 Eng 5 0 2 1 2 0
2 Is 3 0 1 1 0 1
3 Eng 4 10 7 8 8 10
3 Is 7 9 9 9 10 9

Fig. 2 Task 2
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students made errors, mainly assuming proportionality, and their correspondence reasoning did
not take the structure into account (Rivera & Becker, 2008). None of the Israeli responses
made the proportional error; the three incorrect responses seemed to be due to an inability to
complete a deconstructive approach correctly. More English than Israeli students used argu-
ments arising from differences in the data sequence, and these approaches were more
successful for them, proportionally, than those who tried to use correspondence.

5.3 Task 3

Task 3 (Fig. 3) requires students to read the gradient in two representations. All teachers
reported teaching this in grade 8. The use of the description Bstraight line^ was to give a clue to
younger students about our use of Bparallel^.

Four categories of expression of gradient emerged, see Table 5.
Table 6 presents the distribution of categories of expression of gradient in the English and

the Israeli classes, respectively.
English students were less successful in general; about a half of the students overall (the

proportion decreases with age) showed no evidence of using gradient, including some older
specialist students. Partial use is shown mostly in the middle age bands (grs 8 to 10), when
according to the teachers, we would expect a stronger understanding. Formal treatment of
gradient appears only in older students. In Israel, success was evident from gr8 with a
reduction in gr10, increasing again for older students.

5.4 Task 4

Task 4 (Fig. 4) exposes what students think the important features of quadratic graphs might
be, indicating a shift towards functions being objects in their own right. By asking students to

Table 3 Categories for task 2

Category Description of category Example

1 No answer
2 Correspondence 2*5, then how many hexagons in the middle of the end ones*4
3 Covariation …for every one more hexagon the number of sides goes up in

four…
4 Correspondence followed by

covariation
Q. 2.2 Get one hexagon and times it by a hundred. (not correct)
Q. 2.3 (the same student) p(n) = n*4. Because the perimeter

increases by 4

Table 4 Distribution of categories of task 2

Category gr7 gr8 gr9 gr10 gr11 gr12

1 Eng 0 2 0 0 0 0
1 Is 0 0 0 0 0 0
2 Eng 3 5 4 7 8 6
2 Is 8 7 7 7 9 5
3 Eng 5 1 4 2 2 4
3 Is 2 2 2 2 0 3
4 Eng 2 2 2 1 0 0
4 Is 0 0 0 0 0 0
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compare and classify features, we made the task accessible to all students, whether or not they
had studied quadratic functions, and also gave them the responsibility for finding character-
istics. Teachers of both countries reported that students learn to plot quadratic functions from
gr8 onwards and might highlight important analytical features, by which we mean features that
relate to mathematical rather than pictorial analysis.

Four categories of response emerged:

1. No reference to features at all
2. Reference only to visual features (e.g., thin, high, low) that do not express reasoning about

variables or functions
3. Reference also to (at least one) analytical features (e.g., orientation, transformation,

turning point, zeroes) informally
4. Reference to (at least one) analytical features using formal language

Below are four straight lines. Two are in the form of equations, and two are in the 
form of graphs. Circle all those that are parallel to y=2x+5. There can be more than 
one answer.

Fig. 3 Task 3

Table 5 Categories for task 3

Category Description Examples

1 No evidence of understanding
2 Some procedural knowledge of checking

whether lines are parallel but no use is made
of gradient

If y = 2x + 5 any equation that contains 2x will be
parallel

3 Partial use of gradient in graphical terms as
well as in algebraic terms

No. 1 is parallel because the amount of x’s
determines the gradient. The +… = how high/low
on the graph it is

4 Relating gradient in graphical terms to
algebraic terms

The gradient is the same it is just on a different
y-intercept
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Table 7 shows examples of some of the features used by students and how they were
expressed, informally or formally.

Table 8 presents the distribution of categories related to levels of interpreting graphs of
quadratic functions.

Overall, a similar proportion of students identified appropriate features in both countries,
82% in England and 77% in Israel. Choice of features was similar in both countries, with
orientation and zeroes being the most frequent, followed by turning point (for reasons of space,
we cannot show this data). Progression in both countries was as expected, but with the
additional finding that several students chose features that showed an analytical understanding
of the important features of graphs before formal teaching. In England, there was an overall
less use of formal language and expressions for the chosen characteristics, even among
students who had been formally taught (28% formal use in England and 55% in Israel).

5.5 Task 5

In task 5 (Fig. 5) (from Swan, 1980), students had to match four situations to graphs. All
situations focus on identifying variables, forming relations between them (in particular covari-
ation), and noticing contextual features and were selected according to an expected increase of
difficulty: (i) straightforward identification of unidimensional variables; (ii) choice of possible

Table 6 Distribution of categories of task 3

Code gr7 gr8 gr9 gr10 gr11 gr12

1 Eng 8 4 4 2 5 1
1 Is 9 2 2 5 1 1
2 Eng 1 1 0 0 0 0
2 Is 1 0 0 2 0 0
3 Eng 0 4 2 5 0 0
3 Is 0 0 0 0 0 0
4 Eng 1 1 4 3 5 9
4 Is 0 8 8 3 9 9

Three graphs appear to be quadratic. Students are asked to suggest ways in which A 
and B are similar and C is different; C and B are similar and A is different; etc. 

 
Fig. 4 Task 4
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variables; (iii) the use of compound variables; and (iv) compound variables and an inverse
relationship. Each choice had to be explained.

Teachers reported that students from gr7 onwards meet real-life graphs of different descrip-
tions (e.g., conversion graphs, distance-time graphs, volume-time graphs). However, whereas
the English teachers expected that there would not be much variation in response throughout
grs 8 to 12 or between situations, the Israeli teachers anticipated difficulties for all students as
they are not used to constructing the variables themselves.

An iterative comparison of all responses resulted in three general codes:

1. No choice
2. Lack of full analysis
3. Full analysis

There were four sources of difficulty, which we exemplify in Table 9.
Tables 10 presents the distribution of categories where there were responses.
Students in the two countries were similar in their approaches and difficulties. Progression

was different, however. In England, the number of responses offering no analysis decreased
from 33 to 3, and the proportion being successful increased. In Israel, there was no clear
overall progression that we could discern after grade 7, the strongest success rate being in gr10.
Difficulties were similar in both countries and across ages, suggesting that they relate to the
task rather than curriculum and pedagogy (see Ayalon et al., 2016a). In situation 2, some
students focused only on one variable; in situations 2 and 4, some students chose irrelevant
variables; in situation 3, some chose an upside down graph; in situations 3 and 4, several
assumed linearity. We did not find any obvious instances of confusing graphs with pictures.

Table 7 Examples of features in task 4

Analytical feature Formal/informal Example

Orientation Informal B and C look like mountain way up but A is not
Orientation Formal Both B and C have maxima
Gradient Informal A and B have the same gradient as each other except B is negative
Gradient Formal The magnitude of the gradient functions is the same
Turning point Informal The top of the arch both contain 2 on the x-axis
Turning point Formal Both B and C’s optimum point is at 2 on the x-axis
Zeros Informal They both touch the point (2,0)
Zeros Formal A and B intercept the x-axis at 2 points so have 2 real solutions

Table 8 Distribution of categories of task 4

Code gr7 gr8 gr9 gr10 gr11 gr12

1 Eng 4 0 0 0 0 0
1 Is 2 2 1 0 0 0
2 Eng 2 0 1 0 0 0
2 Is 4 1 1 1 0 0
3 Eng 4 10 8 6 6 2
3 Is 4 6 2 2 1 0
4 Eng 0 0 1 4 4 8
4 Is 0 1 6 7 9 10
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6 Discussion and conjectures

In this discussion, we focus, task by task, on what differences and similarities within and
between countries might plausibly be due to curriculum and what to task features.

In task 1, differences in success and approach suggest that errors arise from curriculum
differences. The English curriculum emphasises generalisation of sequences and students tend
to be given tables of values to generalise, which require focussing only on the dependent
variable and assuming the independent variable merely runs through sequence position
numbers; many therefore focused only on the dependent variable. The Israeli curriculum
focuses on function more formally, expressing y in terms of x.

However, the rate of change aspect was similarly successful in both countries so we assume
some fundamental capability despite curriculum difference. We conjecture that success in this
part is due to the requirement to compare data from both columns explicitly—and possibly that
context plays a part (Ayalon et al., 2016a).

Match each of the following situations to one of the graphs given below. Explain your choice. 

1.After the concert there was a stunned silence. 
Then one person in the audience began to clap. 
Gradually, those around her joined in and soon 
everyone was applauding and cheering.

2. If cinema admission charges are too low, the 
owners will lose money. On the other hand, if they 
are too high, fewer people will attend and again the 
owner will lose money. A cinema must therefore 
charge a moderate price in order to stay profitable.

3. Prices are now rising more slowly than at any 
time during the last five years. 

4. In a running competition the one who runs the 
slowest will take the longest time to complete the race. 

Fig. 5 Task 5

Table 9 Categories of difficulties in task 5

Code Sub-category Example of a student response

2a Focus on one variable Chose l for situation 2: because its position is not that high
and not that low, exactly as the price of the ticket should
be

2b Choosing one relevant and one irrelevant
variable and forming an irrelevant relation

Chose a for situation 4: the faster you run the distance you
will pass would be longer

2c Choosing relevant variables but forming an
inadequate relation between them

Chose l for situation 3: the raising had already began from
a certain height (certain price) and increased
moderately and constantly

2d Not taking all contextual features into
account

Chose d for situation 1: as more people joined in the
people around them did as well so exponentially
increasing the cheering
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In task 2, students have to avoid the common recursive approach to sequential data, and
assumptions about proportionality, and indeed, only a few students made these errors. We
conjecture that this indicates the importance of design and presentation. Differences between
countries suggest that errors are linked to curriculum in this case as well. Correspondence, in
the form of function machines, appears in many English textbooks but is used for solving some
linear equations and deciding order of operations, and not often attached to the task of
generalising sequential data, although this is an explicit curriculum aim. Moreover, in England,
in their teaching on proportionality, our collaborating teachers emphasise layout of data as a
tool to draw attention to relationships. We conjecture therefore that question 2.2 might have
been treated by some as a Bmissing number^ problem because that was an option offered by
the layout of the data, triggering a mistaken response. Formal teaching in Israel about
correspondence approaches appears to have avoided assumptions about proportionality. Ob-
servations from tasks 1 and 2 have been reported in more detail in Ayalon et al. (2015).

In task 3, informal knowledge and even a geometrical understanding of parallel are of little
help because of the formality of the task presentation. Differences between countries suggest
that the more formal teaching in Israel provided students with tools with which to pick the
gradient from the representations; the reduction between grades 9–11 could indicate that
formal ideas are forgotten if they are not used, but this could be an over-interpretation in a
small data set.

In task 4, students in both countries identified the same features of function graphs, whether
expressed formally or informally, even before these had been taught. In task 5, formal
knowledge about functions had little part to play, and we conjecture that relating verbal and
graphical descriptions of phenomena is influenced more by features of the phenomena than by
formal teaching. The English curriculum includes specific attention to applications and this
appears to have had a positive effect on progress.

From this summary of similarities and differences, it seems that both earlier or later,
formalisation can lead to similar capabilities by the end of school, except that in England,
this is only known for specialist students. We can also say that preference for a term-to-term
approach and assumptions of proportionality are related to task and presentation, and students
will use correspondence approaches in suitable circumstances. Direct curriculum experience of
correspondence, such as linking input-output models to constructing functions from data,
might make success more likely. We can also say that younger students can understand rate
operationally, whether taught or not, but relating this to gradient is more likely if it is formally
taught. We did not test variable rate directly, only contextually in task 5, and this was well
handled even by those who had not been formally taught about it.

An overview of students’ performance across the mathematical tasks confirmed that the
idea of relations between variables gave a strong connecting thread to their performance and

Table 10 Distribution of categories of task 5

gr7 gr8 gr9 gr10 gr11 gr12

1 Eng 33 11 7 8 3 3
1 Is 17 5 5 2 9 6
2 Eng 6 19 22 16 17 12
2 Is 15 24 20 20 18 20
3 Eng 1 10 11 16 20 25
3 Is 8 11 15 18 13 14
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progress (Ayalon et al., 2016a, b), and that this idea has both informal and formal impacts on
students’ learning and performance on our tasks. Israeli students tended towards formal and
correspondence approaches and English students seemed more likely to intuit about variability,
whether correctly or not, using formal understandings later.

To return to our aim of learning more about progression towards functions, we
now conjecture that rate and rate of change arise not only through formal mathematics
teaching but also through other experiences, such as the elevator in task 1. We can
also say that it is possible for students to recognise the important analytical features
of graphs of functions, even if they have not yet been taught about those functions,
and experience of graphing realistic situations might be the support for this.
Formalisation gives language and other symbolic representations that provide access
and precision to these ideas, e.g., the use of Bgradient^, and the ideas themselves can
develop in informal and formal ways. It is also possible to improve qualitative
understanding of functions and avoid the picture-graph confusion. We also conjecture
that a correspondence approach to functions avoids simplistic assumptions about data
patterns. Experience of school tasks, and the ways in which they are presented, can
have a limiting effect on whether students use covariation or correspondence reason-
ing (Ayalon et al., 2016b).

6.1 Reflections

We emphasise that the survey was designed with teachers from both countries, who
all thought it related to their teaching and their understanding of functions. Our use of
a small sample, with known teachers, has allowed us to probe deeply into the
students’ responses to tasks that teachers believed to be appropriate. We also have
the advantage of being embedded in the mathematical classroom cultures of both
countries in our work as educators and thus have been able to ask cogent questions
about expectations, curriculum order, and the focus of teaching. We also know that
the teachers were all strongly guided by their sanctioned curriculum. We know that
any differences in students’ performance on the task are not because of teacher
knowledge expectations about students’ capacity to learn. We deduce that they are
also not about any underlying cognitive capabilities, since the students had similar
background achievement in relation to their own countries and cohorts. A match
between different student performance and the different curriculum foci is noticeable
throughout, but eventually, performance on all these tasks is similar among older
students in both countries, suggesting two different but converging curriculum trajec-
tories towards success in these five tasks, a more formal trajectory in Israel and a
more informal trajectory in England. However, it does not make predictions about
their preparedness for future work with functions (see Ayalon et al., 2017).

In the course of our research with this small sample, we have found small-scale
contradictions to some well-reported claims, such as picture-graph confusion, an
assumption of proportionality, and a tendency to term-to-term reasoning. These,
therefore, are not Bgivens^ about student cognition but constructed, or not, by
curriculum and pedagogy.

Most importantly, we do not suggest that one curriculum route is Bbetter^ than
another but that different curricula can shape different conceptualisation of functions.
Within that overall shaping, task design matters since different tasks draw differently
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on mixtures of formal and informal knowledge, and pedagogic approaches matter
because they generate familiarity with certain formats and task types and unfamiliarity
with others.
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