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Abstract This paper provides an analysis of a teaching episode of the multidigit algorithm for
multiplication, with a focus on the influence of the teacher’s mathematical knowledge on their
teaching. The theoretical framework uses Mathematical Knowledge for Teaching, mathemat-
ical pertinence of the teacher and structuration of the milieu in a descending and ascending a
priori analysis and an a posteriori analysis. This analysis shows a development of different
didactical situations and some links between mathematical knowledge and pertinence. In the
conclusion, the contribution of the frameworks from both French and Anglo-American origins
is briefly addressed.
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1 Introduction

The question of the influence of teachers’ mathematical knowledge on their students’ achieve-
ment in mathematics is important when it comes to prioritising the resources and the time
devoted to different subjects in teacher education. This question has occupied a lot of research
since the 1990s, and many papers and reports addressing the question have been produced.
Many studies have tried to quantify this influence, but Bevidence about the relationship of
elementary and middle school teachers’ mathematical knowledge to students’ mathematics
achievement remains uneven and has been surprisingly difficult to produce^ (National
Mathematics Advisory Panel, 2008, p. 37). This paper and the related research (Clivaz,
2014) adopt another point of view on this question. The focus here is not to measure but to
describe and analyse the influence of the mathematical knowledge of primary school teachers
on their management of school mathematical tasks. I believe this research offers specific value
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by combining analytical frameworks from both Anglo-American mathematics education
research and the French didactique des mathématiques. Ball’s categories of Mathematical
Knowledge for Teaching (Ball, Thames, & Phelps, 2008) are used to describe teacher’s
knowledge in practice. In this paper, I describe the effect of Mathematical Knowledge for
Teaching (MKT) on teaching through the mathematical pertinence of the teacher (Bloch,
2009). I analyse the teacher’s knowledge and the effect of this knowledge in ordinary
classroom situations, utilising the model of structuration of the milieu (Margolinas,
Coulange, & Bessot, 2005) in order to take into account the complexity of the teacher’s
activity. The present case study focuses on an episode about the teaching of the multidigit
algorithm for multiplication in a grade 41 class in the Lausanne region (French-speaking part)
of Switzerland.

After a brief overview of these three frameworks, I highlight some points about the
algorithm for multiplication.2 The frameworks are then combined through an episode about
this topic. Finally, I discuss interactions of these frameworks in analysing the teacher’s
knowledge and teaching.

2 Relevant theoretical perspectives and research

The nature of teacher mathematical knowledge has been a controversial subject since
Shulman’s (1986, 1987) seminal work. A body of solid research work regarding teacher
mathematical knowledge has now been produced by international scholars (Tchoshanov,
2011, p. 141), and many authors have summarised these studies (e.g., Davis & Renert,
2013; Hart, Oesterle, & Swars, 2013; Tchoshanov, 2011; Zazkis & Zazkis, 2011). As the
review by the National Mathematics Advisory Panel (2008) notes, many studies have
concentrated on the attempt to provide evidence for the relationship between elementary
and middle school teachers’ mathematical knowledge and students’ mathematics
achievement. Evidence of such outcomes has been surprisingly difficult to produce and
the search for such evidence has given rise to many categorisations of this knowledge.
The most influential reconceptualisation of teachers’ pedagogical content knowledge is
the categorisation of Mathematical Knowledge for Teaching (Depaepe, Verschaffel, &
Kelchtermans, 2013, p. 13).

2.1 Categories of mathematical knowledge for teaching

Refining Shulman’s (1986, 1987) categories of teacher knowledge for mathematics, Ball et al.
(2008) provide a practice-based division of MKT (Fig. 1).

One of the special features of this categorisation is the existence of a Specialised Content
Knowledge (SCK), defined as

the mathematical knowledge and skill unique to teaching. In looking for patterns
in student errors or in sizing up whether a nonstandard approach would work in
general, […] teachers have to do a kind of mathematical work that others do
not. […] This work involves an uncanny kind of unpacking of mathematics that

1 Nine to ten-year-old students
2 A detailed presentation of the three frameworks and of the epistemological analysis can be found in Clivaz
(2011, 2014).
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is not needed—or even desirable—in settings other than teaching. (Ball et al.,
2008, p. 400)

The categorisation of MKT was successful in showing the influence of Specialised Content
Knowledge on students’ results (Hill, Rowan, & Ball, 2005). It was also used to try to capture the
mathematical quality of instruction (Hill et al., 2008) by the means of a quantitative classroom
observation study. But, as Ball acknowledges, the framework remains quite static (Ball et al., 2008,
p. 403) and is not focused on describing how teacher mathematical knowledge influences teaching
and learning. As stated by Davis and Renert (2013), Bthis will require more fine-grained analyses
than large-scale assessments^ (p. 20).

The framework for such a qualitative, fine-grained and mobile analysis can be found in the
Theory of didactical situations (Brousseau, 1997). At its beginning in 1970, this theory first
modelled a learning situation where the teacher was rather absent (Bloch, 2005). But, since
the 1990s, the importance of the teacher’s role has been increasingly evident in the study of
ordinary classroom situations (Bloch, 1999; Dorier, 2012; Roditi, 2011). This development
applies to the mathematical pertinence of a teacher’s actions and for the structure of the
milieu I used in my study.

2.2 Mathematical pertinence of a teacher’s actions

In order to identify the effects of a teacher’s mathematical knowledge, Bloch (2009)
suggests considering the mathematical pertinence of a teacher’s actions. A teaching
action is pertinent if it allows the student to grasp the functionality of mathematical
objects, if that action is stating mathematical properties and mathematical arguments

Fig. 1 Domains of mathematical knowledge for teaching (Ball et al., 2008, p. 403)
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for the validity of procedures or for the nature of mathematical objects.3 The main
criterion to evaluate this pertinence in teaching is the Bability of interacting with the
students on mathematical aspects of the situation and to encourage their activity by
the means of interventions and feedback on their mathematical production"4 (p. 32).

2.3 Structure of the milieu

The concept of milieu5 is central to the theory of didactical situations. The milieu is defined by
Ball of the pertinent features of the student’s surroundings, including the space, the teacher, the
materials and the presence or absence of other students^ (Warfield, 2014, p. 66). To describe
the teacher’s activity, Margolinas (2002) has developed a model structuring the milieu, based
on Brousseau (1997). This model was designed to take into account the complexity of the
teacher’s activity and in particular to capture the elements the teacher is dealing with
(Margolinas et al., 2005, p. 207). A simpler version of this model is presented by Margolinas
and her colleagues as a model of the teacher’s activity (cf. Table 1).

At every level, the teacher has to deal not only with the current level but at least also with
the levels directly before and after the current level. These multidimensional tensions make a
linear interpretation of teachers’ work inaccurate (Margolinas et al., 2005, p. 208).

In fact, a more complete model can be considered, including the student (E, for élève), the
teacher (P, for professeur) and the milieu (M). Brousseau characterised the milieu as an
Bonion^, in a recursive structure. Each milieu Mi is constituted at each level i by the lower
Ei − 1, Pi − 1 andMi − 1 components. Then, the situation Si is made at each level i by Ei, Pi and
Mi. This can be written as Si = (Mi; Ei; Pi) andMi = Si − 1 (Margolinas, 2002, p. 146). At every
level i, Pi is the teacher in the level of activity described in Table 1.

This model can be represented in an onion diagram (Fig. 2) or in a table (Table 2) where the
teacher’s levels range from +3 to −1 and the student’s levels range from −3 to +1.

3 « Une intervention mathématique est pertinente si elle rend compte dans une certaine mesure de la
fonctionnalité de l'objet mathématique visé ; ou, s'agissant d'enseignement, si elle permet au moins de progresser
dans l'appréhension de cette fonctionnalité, avec des énoncés de propriétés mathématiques contextualisées ou
non, des arguments appropriés sur la validité de procédures ou sur la nature des objets mathématiques. » (Bloch,
2009, p. 32)
4 « […] capacité à interagir avec les élèves sur des éléments mathématiques de la situation et à encourager
l'activité des élèves par des interventions et des retours sur leur production mathématique. » (Bloch, 2009, p. 33)
5 Milieu is the usual translation for Brousseau’s French term Bmilieu^, but, in French, it refers not only to the
sociological milieu but it is also used in biology or in Piaget’s work. A more accurate translation would be
Benvironment^.

Table 1 Levels of a teacher’s activity (Margolinas et al., 2005, p. 207)

+3 Values and conceptions about learning and teaching
Educational project: educational values, conceptions of learning, conceptions of teaching
+2 The global didactic project
The global didactic project, of which the planned sequence of lessons is a part: notions to study and knowledge to

acquire
+1 The local didactic project
The specific didactic project in the planned sequence of lessons: objectives, organisation of work
0 Didactic action
Interactions with pupils, decisions during action
−1 Observation of pupils’ activity
Perception of pupils’ activity, regulation of pupils’ work
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Table 2 represents the fundamental idea of interlocking but in a manner that is less
clear than Fig. 2. The advantage of Table 2, however, is that it shows that teacher’s
levels Pi in Table 2 are the levels of teacher activity i in Table 1. Table 2 also better
presents the symmetry of the model around level 0. It is perhaps rather difficult to
understand the precise definitions of every level of the milieu without an example.
Therefore, more precise definitions and examples of the situations Si = (Mi; Ei; Pi)
and of the various teacher’s and student’s levels, which will clarify the terms used in
each level, are given in the analysis below.

In an a priori analysis, the didactical classroom situation S0 should be determined. There-
fore, this situation can be determined either from the teacher’s point of view, by a descending
analysis from level +3 down to level 0, or from the student’s perspective, by an ascending
analysis from level −3 to 0. In some cases, interpretation of the objective situation S−3 by the
generic active student (E−2) can be diverse and divergent, as illustrated in the analysis below. In
that case, the analysis may lead to several didactical situations S0 which may or may not be the
same as the situation determined by the descending analysis. The consequence is that students
and teacher would Binhabit^ various didactical situations. Margolinas (2004b) calls this a
didactic bifurcation (Fig. 3).

M
+2
=S

+1

M
+1
= S

0

M
0
= S

-1

M
-1
= S

-2

Fig. 2 Structure of the milieu,
level −1 to +1

Table 2 Milieu’s structuring (Margolinas, 2002, p. 145)

M+3: M-Construction P+3: P-Ideological S+3: Ideological situation
M+2: M-Project P+2: P-Constructor S+2: Construction situation
M+1: M-Didactical E+1: E-Reflective P+1: P-Projector S+1: Project situation
M0: M-Learning E0: Student P0: Teacher S0: Didactical situation
M−1: M-Reference E−1: E-Learning P−1: P-Observer S−1: Learning situation
M−2: M-Objective E−2: E-Active S−2: Reference situation
M−3: M-Material E−3: E-Objective S−3: Objective situation

Translation from Margolinas (2004a), my translation for the italicised terms
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The descending analysis usually uses an interview with the teacher, conducted before the
lesson. The ascending analysis is a priori Bin the sense that it doesn’t depend on experimental
or observational facts6^ (Margolinas, 1994, p. 30). Every student’s Ei represents a level of
activity of a generic, impersonalised student. Both descending and ascending a priori analyses
are then tools to analyse the classroom observations in an a posteriori analysis by a comparison
between the potential S0 situations and the actual ones.

Several case studies using the structuration of the milieu have been published in French
(e.g., Bloch, 1999; Bloch & Gibel, 2011; Comiti, Grenier, & Margolinas, 1995; Coulange,
2001; Margolinas, 1995, 1998, 1999; Perrin-Glorian, 1999; Perrin-Glorian & Hersant, 2003).
They fruitfully use the fine-grained analysis of the structuration to analyse a posteriori a
problematic classroom situation and find its roots through the a priori analysis.

2.4 The algorithm for multiplication

The choice of a mathematical topic for performing my analysis was guided by the typical
example used in Ball and colleagues’ analysis of MKT: the teaching of the multiplication of
whole numbers algorithm (Ball, Hill, & Bass, 2005, pp. 17–21). I have made a detailed
epistemological analysis of the algorithm for multiplication and the possible didactical choices
for its teaching in Clivaz (2014), mostly from a Swiss and French point of view. From a more
international perspective, one can note the Bsubstantial evidence […] that algorithms should be
learned with understanding^ (Ambrose, Baek, & Carpenter, 2003, p. 67). This understanding
is important for accuracy of the algorithm, as errors arise when procedures are separated from
meaning (Lampert, 1986). Particularly, the advantage of working with non-standard algo-
rithms, especially invented algorithms, is emphasised by many authors (e.g., Ambrose et al.,
2003; Baek, 1998; Van De Walle, Karp, Bay-Williams, Wray, & Rigelman, 2014). One reason
is that Bthe compact notation of standard algorithms tends to mask the underlying principles
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Fig. 3 Descending and ascending
analysis in case of a didactic
bifurcation

6 « dans le sens qu’elle ne dépend pas des faits d’expérience ou d’observation », my translation.
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that make them work^ (Ambrose et al., 2003, p. 66). This is particularly true for place value,
since Bstandard algorithms tend to make students think in terms of digits rather than the
composite number that the digits make up, so students lose the essence of the actual place
value of a digit^ (Van De Walle et al., 2014, p. 252). It is also the case for the other properties
for which non-standard algorithms Brequire a strong understanding of the operations and the
properties of the operations, especially the commutative property, the associative property, and
the distributive property of multiplication over addition^ (Van DeWalle et al., 2014, p. 252). In
many present materials and guidelines for teachers, the repeated addition model and the area
model are presented (e.g., Ashlock, 2010; Van De Walle et al., 2014), but

The area model encourages a visual demonstration of the commutative and dis-
tributive properties (unlike the number line or a model of equal groups). The area
model can also be linked to successful representations of the standard algorithm for
multiplication and future topics such as multiplication of fractions. […] When you
move to two-digit multipliers, the area model has some advantages. (Van De Walle
et al., 2014, pp. 256–257)

In the Lausanne region, the mandatory textbook used (Danalet, Dumas, Studer, & Villars-
Kneubühler, 1999) surprisingly has no activity or exercise to introduce or provide practice on
algorithms for multiplication and teachers have to find or create their own exercises (Clivaz,
2014, pp. 128–129). This is particularly relevant to the episode analysed in this paper.

2.5 Research questions

The study aims to identify the influence of primary school teachers’ mathematical knowledge
on their didactical management of school mathematical tasks. For the purpose of the study,
lessons that focused on the topic of teaching multidigit multiplication were observed. The
research questions were: What choices does a teacher make when presenting the multidigit
multiplication algorithm to his students? How does the teacher’s MKT influence these
choices? What are the consequences of these choices in terms of mathematical pertinence?

Fig. 4 Area model for 47 × 36 (Van De Walle et al., 2014, p. 259)
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As an attempt to answer these questions, I present in this paper a fine-grained
analysis of one of the classroom episodes observed. In order to acknowledge the
complexity of the teacher’s activity and capture the elements the teacher is dealing
with, this analysis will use the structure of the milieu and compare a priori (descending,
from the point of view of the teacher and ascending from the student’s point of view)
and a posteriori analyses.

3 The case of Dominique

3.1 Methodology

Focusing on the influence of mathematical knowledge of primary school teachers on their
management of school mathematical tasks, I observed four teachers in the Lausanne region
during their teaching of the multidigit algorithm for multiplication. The four teachers were
chosen randomly and all of them volunteered to participate in the study. This was a conve-
nience sample, but efforts were made to ensure that those teachers varied in terms of teaching
experience (from 6 to 18 years), geographical location (rural and urban) and gender (three
females and one male). All the lessons (between two and nine for each teacher) were observed
and video-recorded by the researcher. Teachers were interviewed before and after the series of
lessons according to a semi-structured framework of questions. The video recordings were
transcribed and coded with Transana software (Fassnacht & Woods, 2002–2011) according to
the categories of mathematical knowledge for teaching, mathematical pertinence and the levels
of the teacher’s activity described above. For all the data, features of MKT were coded first
and, for each MKT segment, the mathematical pertinence and the level of activity were then
coded (Clivaz, 2011, pp. 142–150).

A more detailed analysis was then conducted focusing on one particular episode from the
four segments of explanation of the algorithm by the four teachers. I decided to choose this
particular episode for more detailed analysis because, even after the coding and the analysis
with MKT, pertinence and level of teacher activity, the situation still appeared incomprehen-
sible. Hence, the decision to analyse this episode with the more complete model of the
structure of the milieu was made.

The episode, which lasted for 27 min, was taken from a series of seven lessons conducted
by Dominique, a grade 4 generalist teacher with 11 years of teaching experience, that were
devoted to teaching this algorithm to his class. The episode analysed in this paper features
the segments where Dominique demonstrated the multidigit algorithm of multiplication to
seven students.

The a priori descending analysis is presented in the following sections of this
paper. The a priori ascending analysis will then be presented and the a posteriori
analysis will suggest reasons for some highlighted issues, in terms of types of MKT
and mathematical pertinence.

3.2 A priori descending analysis: teacher’s point of view

Based on the interview with the teacher, the descending analysis goes down from level +3 to
level −1 and determines a priori the didactical situation S0 from the teacher’s point of view. The
topics Dominique addresses are various, so, starting from level +3, I focus only on the question
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about the type of algorithm presented, the MKT linked to the type of algorithm presented and
the consequence resulting from the determination of the S0 didactical situation. For each aspect
of the teaching and learning of the algorithm, this will allow us to better understand Domi-
nique’s choices about the didactical situation. It will also reveal some possible causes of these
choices: in his MKT in a general level (+3), in his MKT about multiplication and algorithm
(+2), in his MKT about the moment of explaining the multidigit algorithm (+1) and in his
MKT about observing his students (−1).

I will first analyse aspects linked to the choice of the algorithms. On the ideological level
(+3), Dominique thinks that pupils should understand what they do in mathematics. He also
feels this way about the algorithms, but he views algorithms as tools for problem solving (+3).
So, for the series of lessons about multidigit multiplication, his main goal is for pupils to
perform the algorithm and use it efficiently (+2). The type of algorithm is not important if it is
efficient for the pupils (+2). Dominique knows that there are several kinds of algorithms for
multidigit multiplication, and he plans to demonstrate two of them: the Btable algorithm^
(Fig. 5, left) and the algorithm en colonnes7 (EC) (Fig. 5, right). This way of demonstrating
more than one algorithm is consistent with the official regional instructions (DFJ, 2006) and
the teacher’s guide for the textbooks (+3) (Danalet et al., 1999). At the end of the chapter of the
textbook on this topic, Dominique will ask students to only retain and use the EC algorithm,
with the justification that this is the algorithm everybody learns at school, and it is more
efficient than the table algorithm (+2).

Dominique plans to demonstrate first the table algorithm on a two-digit by two-digit
multiplication and then to show the EC algorithm on the same example. He knows that the
two algorithms give the same results and that the partial results can be compared line by line
(Fig. 5, SCK, +2), and he plans to show that (+1). However, he does not mention any other
link between the table algorithm and EC—in general (+2), when planning the lesson (+1) or
when envisioning teaching the lesson (+1). In addition, he does not observe the students using
the two algorithms on the same multiplication (−1). To make the line-by-line comparison
possible, he plans on asking the students to Bput the tens below^: BIt’s not very logical, but it
allows the student to have the two (lines) in front of each other .̂8 He never mentions any other
reason or justification for this step and never mentions the possibility (and the effects) of the
inversion of the two factors (SCK, +2).

Considering pupils’ possible difficulties, Dominique thinks that the only problems
pupils will face in the EC algorithm are multiplication facts and the correct placing of
zero in the second line (Knowledge of Content and Students, KCS, +2). He foresees that
he will observe many errors about this zero (KCS, −1). So he plans to repeat the zero
rule: Bwhen one works with tens, a zero must be added^9 (Common Content Knowledge,
CCK, +1).

For Dominique, multiplication is a shortcut for addition (SCK, +2). For example, for Dom-
inique, the definition of 3 × 4 is 4 + 4 + 4. He never plans to mention any link with the measure of
area (area of a 3 by 4 rectangle for 3 × 4 in our example) when explaining the table or EC
algorithm (+1), even if he poses one area problem to introduce the necessity for building an
algorithm (+2) and even if the table algorithm represents the area model. Challenged about his
representation of multiplication during the post-lesson interview, he never gives any other

7 Literally Bin columns^ for what is known in English as Blong multiplication^.
8 « Mettre les dizaines en dessous. C’est. pas très logique, mais ça permet d’avoir les deux en face. »
9 « Quand on travaille avec les dizaines, on ajoute un zéro. »
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representation (SCK, +2), and when asked about the link between multiplication and measure of
the area, he answers that the area has to be computed with multiplication (CCK, +2).

These elements contribute to the determination of the didactical situation S0 from the teacher’s
perspective. It can be summarised in four points:

1 Show the table algorithm for the example 12 × 17, requiring writing the units first for 17.
2 Show the EC algorithm for the example 12 × 17. Write the EC algorithm next to the table.

After the first line, highlight the fact that the results of both algorithms’ first lines are the same.
3 Write the zero at the right place in the second line, because Bwhen one works with tens, a

zero must be added^. Carry out the second line and highlight the fact that the results of
both algorithms’ second lines are the same.

4 Finish by adding the two lines.

This way of presenting the algorithms has some common points with Van De Walle et al.
(2014, p. 259), as in Fig. 4. Nevertheless, the area model is replaced by the table algorithm and
the links between the algorithms are not explicit.

3.3 A priori ascending analysis: student’s point of view

The ascending a priori analysis below is conducted from the student’s point of view. The goal
is to determine the didactical classroom situation S0 from the student’s point of view. It starts
from level −3 (material milieu M−3) in order to determine a priori all the ways the student
could deal with the objective situation S−3 the teacher has put in place in the actual lesson and
thus later to analyse a posteriori what happened in the actual lesson. In this case, the ascending
a priori analysis leads to six didactic situations of level 0.

3.3.1 Level −3: objective situation

According to Margolinas (1995, p. 99), the material milieu M−3 for E−3 includes all necessary
components to enter the question. The situation is not finalised (Comiti et al., 1995, p. 106).10

10 There is no action and no learning intention at this level.

Fig. 5 Two algorithms for the multiplication 12 × 17, written by Dominique on a poster
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Therefore, M−3 consists of the raw description of the algorithms given by the teacher for an
example (see above) and a generic student’s prior and usable knowledge.

The generic student E−3 is able to compute a column addition and a long multiplication by a
one-digit number. He knows that Bto multiply by ten, a zero must be added^. This zero rule has
been recalled many times and inductively Bproven^ on several familiar products. It is completely
automated for the students. E−3 knows that numbers (implicitly smaller than 100) can be
decomposed into tens and units. Particularly, for a number between 11 and 19, Bthe one, it’s
not one, it’s ten.^

The material milieu also includes the description of the two algorithms (table and EC) given by
the teacher for 12 × 17 (Fig. 5) and the description of the links between these two algorithms for that
example. The first line of the table (84) provides the same result as the first line of EC algorithm, and
the same observation can be made for the second line. The final sum is identical (204).

3.3.2 Level −2: reference situation

The generic student in position −2, E−2, is an active student (Margolinas, 1995, p. 99), a student
who will act on the milieuM−2 constituted by the situation S−3 (Fig. 6). His action is to compute
the multiplication following the teacher who is interrogating the students at each step.

The M−2 milieu is composed of the S−3 situation which contains: the explanations and
knowledge it comprises, the justifications given by the teacher, the student’s knowledge of his
Bstudent job^ and his habit in interacting with this teacher and to meet the ostensive expectations of
this teaching. The possible answers can be determined a priori due to the elements of the milieu.

The table algorithm for 12 × 17 is presented as an extension of the table algorithm for one-digit
multiplication, which was studied in the previous school year. Based on what the teacher said (in
class as well as during the interview), it is purely a calculation layout. The link with the Cartesian
product or to the area of the rectangle is never made. Each product is computed for itself. For E−2,
the zero rule is mechanically applied, and summing each line of the table, as was discussed during
the previous lesson, seems obvious. E−2 applies this table multiplication algorithm automatically
to one line. The decomposition of the second factor 17 into 10 and 7 and thus the creation of a

S
-2

M
-2
= S

-3

M
-3

Fig. 6 Structure of the milieu,
level −3 to −2
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second line should not be questioned, since the teacher decided to put the units before the tens,
justifying that by a future usefulness for the EC algorithm. After summing the two lines (as it was
done in the one-digit table algorithm), the student is in an additive context and should add the two
sums. However, it is possible that a prompt by the teacher would be necessary to make him
compute 84 plus 120. The use of multiplication seems unlikely, since the two numbers are more
difficult to multiply than the first numbers.

The EC multiplication 12 × 17 is presented directly after the 12 × 17 table algorithm and
positioned next to the latter. Nevertheless, neither the drawing of the columns for the tens and ones
nor the fact of writing two lines by separating the two digits of 17 and the way of computing these
two lines is compared to the table algorithm. The two lines and the separation of 17 into 1 and 7
are simply stated by the teacher and the way of computing each line is brought back to a one-digit
EC multiplication. The parallel structure of the two algorithms is exclusively noted by comparing
the result of each line (84, 120) to the sums in the table.

Faced with this presentation, active student E−2 can choose between four potential attitudes
(columns of Table 3).

& He could use the same rules as the ones the teacher gave: correspondence between each
line.

& He could use the result of each cell (14 and 70, then 20 and 100) of the table to establish
the corresponding line (84, then 120): correspondence between each product.

& He could directly write the result of each line (84, 120) or even the final result (204) and
not carry on the EC multiplication: direct use of the table.

& He could also make no correspondence at all and carry on the two algorithms
independently.

Regarding the zero in the second line, according to the explanations of the teacher, we have
to Bdo 12 times 1, but, since it’s not 1, but 10, we have to add a zero^. For that part, three S−2
attitudes might be applicable: (lines of Table 3).

& Apply mechanically the Brecipe^, write the zero and carry on the rest of the multiplication:
application of the Brecipe^.

& Relate this zero to the zeros that are the last digits in every product of the second line in the
table: correspondence of zeros.

& Take into account the explanation of the teacher and therefore add a zero in the EC
multiplication each time a digit is a tens digit: add a zero when working with tens.

By crossing the possible reactions about the link between the two algorithms and about the
zeros, it is therefore possible to imagine the 12 situations shown in Table 3.

In Table 3, every situation matches one of the possible attitudes about the link between the
algorithms (coded as superscript) and one of the possible attitudes about the zero (coded as
subscript). Some of these situations are described below.

Situation S−2ð ÞLr represents the situation of an E−2 student who notices a correspondence
between each line of the EC multiplication and each line of the table. When beginning the
second line, this E−2 student writes a zero without questioning the signification of this zero.

In the S−2ð ÞPz situation, the student links every cell of the table to a partial product in the EC
multiplication. He notices then that every line of the EC algorithm is the result of an addition.
He also sees that every product of the second line in the table ends with a zero. He might even
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see that this zero is Badded^ because it comes from a multiplication by a number ending with
zero, and therefore this zero is Badded^ the same way in the second line of the EC
multiplication.

The S−2ð ÞLa situation is paradoxical. On the one hand, it respects the purpose of the teacher,
which was determined by the descending analysis, since it presupposes a student making a line
by line correspondence and applying the zero rule. On the other hand, it could lead this student
to Badd a zero^ each time he is working with tens, that is for each partial product of the second
line, as well as for the second product in line one. This situation is thus mathematically
incoherent, but it is the one that best corresponds to the didactical contract.11

Other situations have an internal incoherence. For example, for S−2ð ÞPa , if the student draws a
correspondence between each cell of the table algorithm and the corresponding partial product
of the EC algorithm, this correspondence will prevent him from applying the zero rule directly
and without asking questions. Since these situations are incoherent and do not match the
intention of the teacher, they are unlikely or even impossible. These cells are coloured grey
in Table 3.

However, one situation does not appear in the combinations of Table 3. E−2 can copy the
result of the lines of the table algorithm without worrying about the zero. This situation is

labelled S−2ð ÞD* . Hence, we can finally imagine six possible S−2 situations.
It is at level −2 that several situations appear in this analysis. This shows how, when acting

on the same objective milieuM−2, the generic active student E−2 has to choose between several
potential actions. These choices of action will influence the student in his position as a learner
(−1) and as an actual student in the didactical situation (level 0).

11 BThe didactical contract is the rule of the game and the strategy of the didactical situation. It is the justification
that the teacher has for presenting the situation, [...] a relationship [...] which determines—explicitly to some
extent, but mainly implicitly—what each partner, the teacher and the student, will [...] be responsible to the other
person for. This system of reciprocal obligation [and expectation, we argue] resembles a contract.^ (Brousseau,
1997, p. 31)
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3.3.3 Level −1, learning situation and level 0, didactical situation

Pursuing the ascending analysis enables the determination of the didactical situation from the

student’s point of view and therefore reveals six possible situations. One of these S0ð ÞLa seems
to match the S0 situation. This match is however not complete since Badding a zero when
working with tens^ is only used by the teacher for the first partial product of the second line of
the EC multiplication.

In this case, ascending analysis from the student’s point of view leads to determining
several didactical situations. Margolinas (2004b) speaks of didactical bifurcations. In this
episode, the material situation S−3 set by the teacher cannot lead to the intended didactical
situation S0.. In this case, Margolinas speaks of marginal branches. In other words, none of the
didactical situations determined by the ascending analysis from the student’s point of view
matches the situation determined by the descending analysis from the teacher’s point of view.

3.4 A posteriori analysis

The a posteriori analysis confirms the tensions that these bifurcations may generate. In our

observation, most the students are in a S0ð ÞLr situation, since they do a line to line correspon-
dence between the two algorithms and since they do not question the signification of the

second line zero. Only one student, Armand, is in S0ð ÞLa situation. He wants to add a zero each
time he computes a multiplication by a tens digit.

This happens particularly during the first explanation of the EC algorithm. After having
carried out a 12 × 17 table algorithm, Dominique writes multiplication and draws the columns
labelled Bu^ and Bd12^ (Fig. 5). He announces that he will first work with units because this is
what students already know. So he hides the 1 in 17 and carries out the first multiplication
while drawing descending arrows. He emphasises that the result he obtains is the same as the
one in the table (84) and indicates this using a horizontal arrow. He says: Bwe still have to do
12 times…^. The students say B1^, but Dominique makes them say B10^. He reminds them
that Bwhen one works with tens, a zero must be added^. He writes the zero in a different colour
while saying that it was times 10 and not times 1, and adds: B2 times 1, 2; 1 times 1, 1^. He
again draws an arrow between both 120 s (Fig. 5). He carries out the addition. The students
notice that it is the same result.

At this moment of the explanation, the S0 situation considered by the teacher seems
identical to that of the students. This is when Armand steps in.

1 A13: But why are we doing here… euh… there [Armand points at the 2 in 12 and the 1 in
17] … we did 2 times 10

2 D: Mm Mmm…
3 A: But why, there [he points at the 1 in 12 and the 1 in 17] we do 1 times 1? And not, for

example, times 10?
4 E: Because, then, you just have to add a zero.
5 A: Oh, because we have…

12 For Bunités^ and Bdizaines^ in French, Bunits^ and Btens^ in English.
13 A stands for Armand, D for Dominique, the teacher, and E for another student in the class.
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6 D (interrupting): But there, if I put it this way. I’ll try to use colours, so you can see what
the result is. We do 2 times 7.

7 A: Mm Mm…
8 D: OK? It’s this answer, over there. (Dominique circles the 14 in the table, see Fig. 5)
9 A: Mm Mm…
10 D: This way (Dominique draws the descending arrow, from 2 to 7). OK?
11 A: Mm Mm…
12 D: Then, we did 1 times 7, but it’s not 1 times 7, it’s… This one, how many is that, this

one (Dominique indicates the 1 in 12)?
13 E: 10 times 7.
14 A: That’s 10.
15 D: That’s 10! So, 10 times 7, what’s the result over there (Dominique shows the table)?
16 A: 70.
17 D: So, which one is that?
18 A: 70, there (Armand shows the 70 in the table).
19 D: OK (Dominique circles the 70 in red colour). […] Then, we worked with the ten, so we

did two times (Dominique draws again the descending arrow from the 2 to the 1 in 17)…
20 E: 10.
21 D: Which is?
22 A: 20.
23 D: So, where is it?
24 E: Well… there (student points at the 20 in the table and Dominique circles it).
25 D: This one. And then, to finish, we had to do… (Dominique draws again the descending

arrow from 1 to 1)
26 E: 10 times 10.
27 D: And the result, it’s this one (the student points at the 100 in the table and Dominique

circles it). So when we multiply (Dominique points at the EC multiplication) how many
calculations is that?

28 E: Four.
29 D: Four, plus the addition that we have at the end (Dominique shows the addition). Are

we good?

The students nod, but Armand seems to sulk.
The intervention by Armand (1, 2) suddenly reveals that at least one student cannot

follow the approach suggested by the teacher. More precisely, Armand wants to
strictly apply the rule Badd a zero when dealing with tens^, which was suggested

by the teacher. He is in a S0ð ÞLa situation. This situation is not the S0 situation, since
Armand wants to apply the rule Badd a zero when dealing with tens^ to every partial
product where tens are used. Since Dominique notices that Armand is decomposing
every product in the EC multiplication, he tries to use the table algorithm as his basis/
reference. He can now provide a correspondence between each product in the table
algorithm and each product in the EC multiplication and also indicate the correspon-

dence between the zeros, that is to place himself in a S0ð ÞPz situation. But he chooses
to simply indicate the correspondence between the products (interventions 8, 15–17,
21–24 and 27) and to notice that they are for Bcalculations^ (27–29). He is in the

S0ð ÞPa situation, which the a priori analysis determined as incoherent.
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This situation cannot be maintained. It needs to evolve into either a S0ð ÞLr , by giving up the
justification of Badding a zero when working with tens^, or a S0ð ÞPz situation, by indicating the
correspondence between the partial products and the zeros to understand this justification. The
first option is obstinately rejected by Armand who seems to refuse to apply a recipe without
understanding it. So he tries again four times. The second option is systematically avoided by
the teacher who tries to bring the student back to the S0 situation. But this situation is
incompatible with the material milieu he has set.

3.4.1 MKT and pertinence

The proliferation of didactical bifurcations and the inability of the teacher to notice that the
Armand’s S0 didactical situation radically differed from his S0 situation have their origin in the
teacher’s choices made at the +3 to 0 levels. Additionally, these choices may be understood as
a consequence of the teacher’s MKT, as described in this section.

The first choice was to use the table algorithm and particularly the correspondence between
the lines’ sum in the table and in the EC’s lines but with no explicit correspondence between
each partial product. As revealed in the interview, Dominique’s MKT about the table was
accurate (he knew the correspondence with EC, the role of the distributive property), but these

aspects of his MKT were not pertinent, since they did not allow him to move to the S0ð ÞPz
situation and to interact with the students on the mathematical parts of the situation (the first
criterion for pertinence, according to Bloch, 2009). The reason for this discrepancy between
knowledge and pertinence was the knowledge of multiplication itself. For Dominique, multi-
plication was only a shortcut for repeated addition. He never considered it as a Cartesian
product or as the area of a rectangle. Therefore, to Dominique, EC and table algorithm were
two ways to perform multiplication; they were not linked to multiplication itself and they were
only linked to each other because they gave the same result. As many teachers I have met in
my research, and as the teachers individually met by Davis and Simmt (2006), Dominique’s
response to Bwhat is multiplication^ is Brepeated addition^ and nothing else. Contrary to
observations by Leikin and Levav-Waynberg (2007), Dominique does not seem to learn
mathematics from his students’ responses.

The second choicewas the Brecipe^ for zero rule. This rule is problematic inmanyways: use of
additivewords (add a zero), lack of a linkwith place value and, above all, fallacy if literally applied.
Regarding these twochoices,DominiquehadaworkingCommonContentKnowledge, buthecould
not unpack it and couldnot use the corresponding SpecialisedContentKnowledge to explainwhya
zero appears when onemultiply by tens.

Other choices are made by the teacher and had an influence on the didactical situation.
Among the elements that influence the material milieu M−3 and thereafter the successive
situations S−2 to S0, I can mention the choices of the numbers for the first multiplications. They
are all between 12 and 19. Dominique gave no reason for this choice, but it could be
interpreted as his intention to begin with easy multiplications. This choice implies that the
second line of the EC multiplication is trivial. The teacher does not mention this in class or
during the interviews. This choice also implies that all the multiplications seems to be the same
and it leads Armand to ask several times the same question about different multiplications: BIs
it 1 × 1 or 10 × 10?14^. This choices of tens digit is an example of Bobscuring the role of the

14 « c’est 1 × 1 ou 10 × 10 ? »

320 Clivaz S.



variable^ (Rowland, 2008, p. 150) and a case of relation between teacher’s knowledge and use
of examples for teaching mathematics as studied by Zodik and Zaslavsky (2008). This
knowledge, which allows teachers to see the mathematical implication of choosing a particular
example, is an aspect of KCS in Ball’s classification.

These choices (table instead of area, no correspondence between the two algorithms, zero
rule and choices of example) all differ from Fig. 4 and the recommendations of Van De Walle
et al. (2014, p. 259). All of them have their origins in Dominique’s MKT and the teacher could
find no help in any mathematical content book or method book or textbook explicitly linking
student activity and unpacked mathematical knowledge. This lack of resources for teachers in
Lausanne’s region is certainly an aspect that needs serious consideration and should be
perceived as a gap that needs to be filled in the near future.

4 Conclusion

This analysis of an episode used the structure of themilieu to highlight and to analyse links between
MKT, pertinence and teaching choices of the teacher. The interactions between the different
situations in the structuring of the milieu allowed a better understanding of what happened during
this episodewhere the teacher and the studentswere inhabitingvarious situations. It also showed the
origin of this didactical bifurcation in the divergent interpretation of the objective situation S−3.
Moreover, it showed theoriginof thechoicesof the teacherabout thesituationS−3 inhisMKT.More
precisely, without the positioning of these aspects ofMKT in situations S+3 to S−1 and the focus on
their interaction across the levels, the didactical bifurcation could not have been explained. The
analysis showed that more than Common Content Knowledge is necessary to apply pedagogical
MKT but also Bthat each of these common tasks of teaching involves mathematical reasoning as
muchas itdoespedagogical thinking^ (Balletal.,2005,p.21). It isone illustrationof thewayoneUS
mathematics education framework and elements of theTheory of didactical situations (Brousseau,
1997) can interact to analyse an issue in the teaching of mathematics.

This interaction was vital to answer the research questions and neither of the two frame-
works was sufficient as a means to analyse the teaching situation. The original question was
about the mathematical knowledge of the teacher, to show how the subtle analysis of the

S+3

S+1

S-1

S0

S+2

Fig. 7 Descending analysis in
accordance with MKT categories
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structuration of the milieu was necessary to reveal the multiplicity of the various didactical
situations and to demonstrate Bhow different categories of knowledge come into play in the
course of teaching^ (Ball et al., 2008, p. 403). On the other hand, the distinction of Specialised
Content Knowledge within MKT was needed to analyse the causes of the phenomena, while
the structuration of the milieu and the pertinence of the teacher were crucial to capture the
dynamic movement of didactical situations beyond the static character of Ball’s categories.
The analysis has therefore illuminated not only mathematical knowledge for teaching but
mathematical knowledge in teaching (Rowland & Ruthven, 2011; Watson, 2008).

The combination, in the sense of Bikner-Ahasbahs and Prediger (Bikner-Ahsbahs & Prediger,
2010; Prediger, Bikner-Ahsbahs, & Arzarello, 2008), of the frameworks from two cultural back-
grounds were necessary for me to Bget a multi-faceted insight into the empirical phenomenon in
view^ (Bikner-Ahsbahs & Prediger, 2010, p. 496). Unlike Huillet (2009), who uses Chevallard
(1999) anthropological theory of didactics to formulate other categories of MKT, my two
categorisationsdivide the analysis of the teacher point of view in twodifferent directions as pictured
in Fig. 7. These two directions were complementary as shown in the above analysis.

One key assumption in Shulman’s and Ball’s theories is that the teacher’s knowledge makes a
difference to students’ learning. Along the same lines, Davis and Renert (2013) consider that the
Theory of didactical situations includes Bthe body of mathematical knowledge within the space of
teachers’ transformative influence^ (Davis & Renert, 2013, p. 254). This point is an argument for
some degree of coherence between the two frameworks used in my analysis. Nevertheless, going
further in networking these frameworks by coordinating them or locally integrating then would
require amuchmoredetailed studyof the coresofboth theories andBacareful analysis of themutual
relationship between the different elements^ (Bikner-Ahsbahs& Prediger, 2010, p. 496).

The models of levels of a teacher’s activity are a quite typical feature in French didactique des
mathématiques, for example, invoking structuration of the milieu or the levels of didactic codeter-
mination15 (Artigue&Winsløw, 2010;Chevallard, 1999).Whereas categorisationofmathematical
knowledge of the teacher is widely studied in the English-speaking mathematics education com-
munity, it is far lessdiscussed16 in theFrench-speakingdidactiquedesmathématiques. In this sense,
this combination can be seen not just as a combination of frameworks but also as a combination of
two research cultures in the field of mathematics education.

References

Ambrose, R., Baek, J.-M., & Carpenter, T. P. (2003). Children’s invention of multidigit multiplication and
division algorithms. In A. J. Baroody & A. E. Dowker (Eds.), The development of arithmetic concepts and
skills: Constructive adaptive expertise (pp. 305-336). Mahwah, NJ: Laurence Erlbaum.

Artigue, M., & Winsløw, C. (2010). International comparative studies on mathematics education: A viewpoint
from the anthropological theory of didactics. Recherches en didactiques des mathématiques, 30(1), 47–82.

Ashlock, R. B. (2010). Error patterns in computation: Using error patterns to help each student learn (9th ed.).
Upper Saddle River, NJ: Pearson.

Baek, J. M. (1998). Children’s invented algorithms for multidigit multiplication problems. In L. J. Morrow &M.
J. Kenney (Eds.), The teaching and learning of algorithms in school mathematics (pp. 151–160). Reston,
VA: National Council of Teachers of Mathematics.

Ball, D. L., Hill, H. C., & Bass, H. (2005). Knowing mathematics for teaching, who knows mathematics well
enough to teach third grade, and how can we decide? American Educator, 4–17, 20–22, 43–46.

15 Niveaux de codétermination didactique
16 With the notable exception of Quebec and the presence of a Working Group on the topic in EMF congress
(Clivaz, Proulx, Sangaré, & Kuzniak, 2012).

322 Clivaz S.



Ball, D. L., Thames, M. H., & Phelps, G. (2008). Content knowledge for teaching: What makes it special?
Journal of Teacher Education, 59(5), 389–407.

Bikner-Ahsbahs, A., & Prediger, S. (2010). Networking of theories—An approach for exploiting the diversity of
theoretical approaches. In S. Lerman (Ed.), Theories of mathematics education (pp. 483–506). Berlin: Springer.

Bloch, I. (1999). L'articulation du travail mathématique du professeur et de l'élève dans l'enseignement de l'analyse en
première scientifique. Détermination d'unmilieu– connaissances et savoirs. [The articulation of themathematical
work of the teacher and of the student in the teaching of analysis in Bpremière scientifique^. Determination of a
milieu—BConnaissance^ and Bsavoir^].Recherches en didactique des mathématiques, 19(2), 135–194.

Bloch, I. (2005). Quelques apports de la théorie des situations à la didactique des mathématiques dans
l'enseignement secondaire et supérieur: contribution à l'étude et à l'évolution de quelques concepts issus
de la théorie des situations didactiques en didactique des mathématiques. [Some contributions of the theory
of didactical situations to the didactique of mathematics in secondary and higher education: Contribution to
the study and to the evolution of some concepts derived from the theory of didactical situations in didactique
of mathematics]. (HDR), Paris 7, Paris.

Bloch, I. (2009). Les interactions mathématiques entre professeurs et élèves. Comment travailler leur pertinence
en formation ? [Mathematical interactions between teachers and students. How to work on their pertinence in
training?]. Petit X, 81, 25–52.

Bloch, I., & Gibel, P. (2011). Un modèle d'analyse des raisonnements dans les situations didactiques : étude des
niveaux de preuves dans une situation d’enseignement de la notion de limite. [A model for analyzing the
reasoning produced in didactic situations: A study of different levels of proof in teaching the concept of
limit]. Recherches en didactique des mathématiques, 31(2), 191–228.

Brousseau, G. (1997). Theory of didactical situations in mathematics. (N. Balacheff, M. Cooper, R. Sutherland,
& V. Warfield, Trans.). Dordrecht, The Netherlands: Kluwer.

Chevallard, Y. (1999). Analyse des pratiques enseignantes et didactique des mathématiques : l’approche
anthropologique. [Analysis of the teaching practices and didactique of mathematics: The anthropological
approach]. Recherches en didactique des mathématiques, 19(2), 225–265.

Clivaz, S. (2011). Des mathématiques pour enseigner, analyse de l’influence des connaissances mathématiques
d’enseignants vaudois sur leur enseignement des mathématiques à l’école primaire [Mathematics for
teaching: Analysis of the Influence of Vaud's teachers' mathematical knowledge on their teaching of
mathematics in primary schools] (Thèse de doctorat). Université de Genève, Genève.

Clivaz, S. (2014). Des mathématiques pour enseigner? Quelle influence les connaissances mathématiques des
enseignants ont-elles sur leur enseignement à l’école primaire? [Mathematics for teaching?What influence have
teachers’mathematical knowledge on their teaching in primary school?]. Grenoble: La Pensée Sauvage.

Clivaz, S., Proulx, J., Sangaré, M., & Kuzniak, A. (2012). Articulation des connaissances mathématiques et
didactiques pour l’enseignement : pratiques et formation – Compte-rendu du Groupe de Travail n°1.
[Articulation of mathematical knowledge and didactical knowledge for teaching: Practices and training—
Report of Working Group 1]. In J.-L. Dorier & S. Coutat (Eds.), Enseignement des mathématiques et contrat
social : Enjeux et défis pour le 21e siècle – Actes du colloque EMF2012 (pp. GT1, 155–159). Genève.

Comiti, C., Grenier, D., &Margolinas, C. (1995). Niveaux de connaissances en jeu lors d'interactions en situation de
classe etmodélisationde phénomènes didactiques. [Levels of knowledge involved in the interactions in classroom
situations and modeling of didactical phenomena.]. In G. Arsac, J. Gréa, D. Grenier, & A. Tiberghien (Eds.),
Différents types de savoirs et leur articulation (pp. 91–127). Grenoble: La Pensée Sauvage.

Coulange, L. (2001). Enseigner les systèmes d’équations en Troisième. Une étude économique et écologique
[Teaching systems of equations in grade 9. An economic and ecological study.] Recherches en didactique
des mathématiques, 21(3), 305-353.

Danalet, C., Dumas, J.-P., Studer, C., & Villars-Kneubühler, F. (1999). Mathématiques 4ème année: Livre du
maître, livre de l'élève et fichier de l'élève [Mathematics grade 4: Teacher's book, student's book and student's
file]. Neuchâtel: COROME.

Davis, B., & Renert, M. (2013). Profound understanding of emergent mathematics: Broadening the construct of
teachers’ disciplinary knowledge. Educational Studies in Mathematics, 82(2), 245–265.

Davis, B., & Simmt, E. (2006). Mathematics-for-teaching: An ongoing investigation of the mathematics that
teachers (need to) know. Educational Studies in Mathematics, 61(3), 293–319.

Depaepe, F., Verschaffel, L., & Kelchtermans, G. (2013). Pedagogical content knowledge: A systematic review
of the way in which the concept has pervaded mathematics educational research. Teaching and Teacher
Education, 34, 12–25.

DFJ. (2006). Plan d'édudes vaudois [Course of study, Canton of Vaud]. Lausanne: DFJ/DGEO.
Dorier, J.-L. (2012). La démarche d’investigation en classe de mathématiques : quel renouveau pour le

questionnement didactique ? [The inquiry based learning in mathematics class: What revival for didactic
questioning?]. In B. Calmettes (Ed.), Démarches d'investigation. Références, représentations, pratiques et
formation (pp. 35–56). Paris: L'Harmattan.

Teaching multidigit multiplication 323



Fassnacht, C., & Woods, D. K. (2002–2011). Transana (Version 2.42) [Mac]. Madison, WI: University of
Wisconsin. Retrieved from http://www.transana.org/

Hart, L., Oesterle, S., & Swars, S. (2013). The juxtaposition of instructor and student perspectives on mathe-
matics courses for elementary teachers. Educational Studies in Mathematics, 83(3), 1–23.

Hill, H. C., Rowan, B., & Ball, D. L. (2005). Effects of teachers’ mathematical knowledge for teaching on
student achievement. American Educational Research Journal, 42(2), 371–406.

Hill, H. C., Blunk, M., Charalambous, C., Lewis, J., Phelps, G., Sleep, L., & Ball, D. L. (2008). Mathematical
knowledge for teaching and the mathematical quality of instruction: An exploratory study. Cognition and
Instruction, 26(4), 430–511.

Huillet, D. (2009). Mathematics for teaching: An anthropological approach and its use in teacher training. For the
learning of mathematics, 29(3), 4–10.

Lampert, M. (1986). Knowing, doing, and teaching multiplication. Cognition and Instruction, 3(4), 305–342.
Leikin, R., & Levav-Waynberg, A. (2007). Exploring mathematics teacher knowledge to explain the gap between

theory-based recommendations and school practice in the use of connecting tasks. Educational Studies in
Mathematics, 66(3), 349–371.

Margolinas, C. (1994). Jeux de l'élève et du professeur dans une situation complexe. [Games of the student and of
the teacher in a complex situation]. In Séminaire de didactique et technologies cognitives en mathématiques
(pp. 27–83). Grenoble, France: LSDD-IMAG.

Margolinas, C. (1995). La structuration du milieu et ses apports dans l'analyse a posteriori des situations. [The
structuring of the milieu and its contributions in the a posteriori analysis of situations]. In C. Margolinas
(Ed.), Les débats de didactique des mathématiques : actes du Séminaire national 1993–1994 (pp. 89–102).
Grenoble: La Pensée Sauvage.

Margolinas, C. (1998). Etude de situations didactiques "ordinaires" à l'aide du concept de milieu : détermination d'une
situation du professeur. [Study of "ordinary" didactical situations using the concept of milieu: Determination of a
teacher's situation]. InM.Bailleul, C.Comiti, J.-L.Dorier, J.-B. Lagrange,B. Parzysz,&M.-H. Salin (Eds.),Actes
de la 9e école d'été de didactique des mathématiques (pp. 35–43). Paris: ARDM.

Margolinas, C. (1999). Une étude de la transmission des situations didactiques [A study of the transmission of
didactical situations]. Paper presented at the Actes du 2ème colloque international BRecherche(s) et
formation des enseignants.^

Margolinas, C. (2002). Situations, milieux, connaissances: Analyse de l'activité du professeur [Situations,
milieus, knowledge: Analysis of the activity of the teacher]. In J.-L. Dorier, M. Artaud, M. Artigue, R.
Berthelot, & R. Floris (Eds.), Actes de la 11e école d'été de didactique des mathématiques (pp. 141-155).
Grenoble: La Pensée Sauvage.

Margolinas, C. (2004a). Modeling the teacher’s situation in the classroom. In H. Fujita, Y. Hashimoto, B.
Hodgson, P. Lee, S. Lerman, & T. Sawada (Eds.), Proceedings of the Ninth International Congress on
Mathematical Education (pp. 171-173). Dordrecht: Springer Netherlands.

Margolinas, C. (2004b). Points de vue de l'élève et du professeur. Essai de développement de la théorie des
situations didactiques [Points of view of the student and of the teacher. Essay on the development of the
theory of didactical situations]. (HDR), Université de Provence - Aix-Marseille I.

Margolinas, C., Coulange, L., & Bessot, A. (2005). What can the teacher learn in the classroom? Educational
Studies in Mathematics, 59, 205–234.

National Mathematics Advisory Panel. (2008). Fundation for success: The final report of the National
Mathematics Advisory Panel. Washington, DC: U.S. Department of Education.

Perrin-Glorian, M.-J. (1999). Analyse d'un problème de fonctions en termes de milieu. Structuration du milieu
pour l'élève et pour le maître [Analysis of a problem of functions in terms of milieu. Structuring the milieu
for the student and for the teacher]. Paper presented at the Analyse des pratiques enseignantes et didactique
des mathématiques, Actes de l'université d'été de La Rochelle.

Perrin-Glorian, M.-J., & Hersant, M. (2003). Milieu et contrat didactique, outils pour l'analyse de séquences
ordinaires [Milieu and didactical contract, tools for the analysis of ordinary sequences]. Recherches en
didactique des mathématiques, 23(2), 217-276.

Prediger, S., Bikner-Ahsbahs, A., & Arzarello, F. (2008). Networking strategies and methods for connecting
theoretical approaches: First steps towards a conceptual framework. ZDM, 40(2), 165–178.

Roditi, E. (2011). Recherches sur les pratiques enseignantes en mathématiques: apports d'une intégration de
diverses approches et perspectives [Researches on mathematics teaching practices: contribution of an
integration of different approaches and prospects]. Université René Descartes - Paris V.

Rowland, T. (2008). The purpose, design and use of examples in the teaching of elementary mathematics.
Educational Studies in Mathematics, 69(2), 149–163.

Rowland, T., & Ruthven, K. (Eds.). (2011). Mathematical knowledge in teaching. Dordrecht: Springer.
Shulman, L. S. (1986). Those who understand: Knowledge growth in teaching.Educational Researcher, 15(2), 4–14.

324 Clivaz S.

http://www.transana.org/


Shulman, L. S. (1987). Knowledge and teaching: Foundations of the new reform. Harvard Educational Revue,
57(1), 1–22.

Tchoshanov,M. (2011). Relationship between teacher knowledge of concepts and connections, teaching practice, and
student achievement inmiddle gradesmathematics. Educational Studies inMathematics, 76(2), 141–164.

Van De Walle, J. A., Karp, K., Bay-Williams, J. M., Wray, J. A., & Rigelman, N. R. (2014). Elementary and
middle school mathematics: Teaching developmentally (8th ed.). Harlow: Pearson.

Warfield, V. (2014). Invitation to didactique. New York: Springer.
Watson, A. (2008, March).Developing and deepening mathematical knowledge in teaching: Being and knowing.

MKiT 6, Nuffield Seminar Series, 18th March, at University of Loughborough.
Zazkis, R.,&Zazkis,D. (2011). The significanceofmathematical knowledge in teaching elementarymethods courses:

Perspectives of mathematics teacher educators. Educational Studies inMathematics, 76(3), 247–263.
Zodik, I., & Zaslavsky, O. (2008). Characteristics of teachers’ choice of examples in and for the mathematics

classroom. Educational Studies in Mathematics, 69(2), 165–182.

Teaching multidigit multiplication 325


	Teaching multidigit multiplication: combining multiple frameworks to analyse a class episode
	Abstract
	Introduction
	Relevant theoretical perspectives and research
	Categories of mathematical knowledge for teaching
	Mathematical pertinence of a teacher’s actions
	Structure of the milieu
	The algorithm for multiplication
	Research questions

	The case of Dominique
	Methodology
	A priori descending analysis: teacher’s point of view
	A priori ascending analysis: student’s point of view
	Level −3: objective situation
	Level −2: reference situation
	Level −1, learning situation and level 0, didactical situation

	A posteriori analysis
	MKT and pertinence


	Conclusion
	References


