
Sense making in the context of algebraic activities

Alik Palatnik1,2 & Boris Koichu2

Published online: 2 February 2017
# Springer Science+Business Media Dordrecht 2017

Abstract This article concerns student sense making in the context of algebraic activities. We
present a case in which a pair of middle-school students attempts to make sense of a previously
obtained by them position formula for a particular numerical sequence. The exploration of the
sequence occurred in the context of two-month-long student research project. The data were
collected from the students’ drafts, audiotaped meetings of the students with the teacher and a
follow-up interview. The data analysis was aimed at identification and characterization of the
algebraic activities in which the students were engaged and the processes involved in the
students’ sense-making quest. We found that sense-making process consisted of a sequence of
generational and transformational algebraic activities in the overarching context of a global,
meta-level activity, long-term problem solving. In this sense-making process, the students: (1)
formulated and justified claims; (2) made generalizations, (3) found the mechanisms behind
the algebraic objects (i.e., answered why-questions); and (4) established coherence among the
explored objects. The findings are summarized as a suggestion for a four component decom-
position of algebraic sense making.

Keywords Sense-making . Algebraic activities . Project-based learning . Integer sequences .

Coherence

1 Introduction

Sense making has long been a focal concern of the mathematics education research community
(e.g., Kieran, 2007; NCTM 2009). NCTM (2009) recognized sense making as a means to
know mathematics as well as an important outcome of mathematics instruction. To review,
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NCTM (2009) refers to sense making in mathematics as Bdeveloping understanding of a
situation, context, or concept by connecting it with existing knowledge^ (p. 4). Nevertheless,
NCTM (2009), as well as many additional mathematics education publications, is rather
inexplicit as to what sense making comprises of and how it occurs. Moreover, it has been
broadly acknowledged (e.g., Schoenfeld, 2013) that empirically-based knowledge about the
processes involved in sense making, is insufficient.

The case of interest presented in this article occurred with two 9th graders, Ron and Arik
(pseudonyms) who participated in the Open-Ended Mathematical Problems project, which was
conducted by the authors of this paper in a school in Israel. The initial part of Ron and Arik’s
project is analysed elsewhere (Palatnik & Koichu, 2014, 2015). It lasted for three weeks and
resulted in an insight solution to the problem of finding a position formula (i.e., a formula
specifying the value of the nth term of a sequence in terms of n, its position, without a reference
to any of the previous terms) for a particular sequence. The discovery of the formula was a
highlight of the project. The students told us, however, that they found the formula Bby
chance^ and that it did not make sense for them. As a result, making sense of the obtained
formula became an explicitly chosen goal and the main theme of the second part of the
students’ project. This part had lasted for four weeks and ended when the students succeeded,
in quite an idiosyncratic way as will be evident shortly, to make sense of the formula.

Accordingly, the second part of the student project became for us a valuable opportunity to
explore the students’ sense making. The goal of our exploration was to discern the activities
and processes involved in their sense making effort. Specifically, we pursued the following
research questions:

While attempting to make sense of a position formula for a particular numerical sequence in
the context of a long-term problem-driven exploration,

& In which events and algebraic activities were the students engaged?
& What were some of the processes involved in the students’ explicitly expressed conviction,

by the end of the exploration, that the formula Bmakes sense^?

Based on the answers to these questions, we introduce our proposal for a decomposition of
the Bsense making^ notion in the context of school algebra.

2 Theoretical background

In mathematics education publications, sense making appears as a name of a broadly under-
stood process involved in the desirable ways of studying mathematics. For Schoenfeld (1992,
2013), who consistently argues for teaching mathematics as a sense-making activity, sense
making in mathematics is something that occurs through the dialectic of conjecture and
argumentation, as well as through problem solving and exploration of mathematical objects,
relationships or phenomena. NCTM (2009) defines sense making in rather a broad way (see
above), and points out that sense making should underlie all mathematical activity in a
classroom. In this publication as well as in a subsequent publication dedicated to instruction
of high school algebra (Graham, Cuoco, & Zimmermann, 2010) the sense making notion is
consistently used in conjunction with the reasoning notion. The main argument (NCTM 2009,
pp. 9–10) is that the desirable reasoning habits (e.g., seeking patterns and relationships, making
purposeful use of procedures, applying previously learned concepts to new problem situations,
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making logical deductions based on current progress, justifying or validating a solution,
considering the reasonableness of a solution, generalizing a solution to a broader class of
problems) develop in the processes of mathematical inquiry and sense making. NCTM (2009)
also asserts that refocus of mathematical instruction on reasoning and sense making can
increase understanding and foster meaning.

In empirical studies, the notion of sense making frequently denotes ways by which learners
of mathematics act upon a particular entity in the context of particular mathematical activity.
The expression Bto make sense of…^ is attributed in different studies to such entities as proofs,
instructional devices, concepts, solution methods and problem situations (e.g., Smith, 2006;
Rojano, Filloy, & Puig, 2014). For instance, in the study of Rojano et al. (2014) an intertextual
analytical perspective of algebraic activity was proposed. The context for sense production was
provided by algebraic activities focusing on solution of word problems and on solution of
systems of two linear equations. The theoretical framework of Rojano et al. (2014) study was
based on the broadly defined notion of a mathematical text. According to Rojano et al. (2014)
the sense of a new mathematical text (e.g., of a new solution method) is produced when
students are able to incorporate a Bnew^ text that they read/transform into their personal
networks of the related texts. Rojano et al. (2014) present algebraic equations and solutions as
open mathematical texts with embedded intentionality to introduce students with activities that
require production of new (for them) knowledge and sense by relation Bto the student’s
experience –to texts that have been previously built^ (p. 17). As one can see, the above
approach to sense making is quite in line with the abovementioned NCTM’s (2009) definition
of sense making as understanding by means of constructing connections to the past knowledge
and experience.

In our study we adapt NCTM’s (2009) perspective on sense making, and elaborate
on it in a particular context. Our theoretical framework is built upon the idea of
algebra as an activity (Kieran, 1996, 2007) and on analytical apparatus of Mason’s
(1989) model of mathematical thinking known as Manipulating – Getting-a-sense-of –
Articulating (MGA).

2.1 Algebraic activities

Kieran (1996, 2007) puts forward the idea of algebra as an activity. She identifies three types
of activities in school algebra: generational, transformational, and global/meta-level activities
and argues that each activity has affordances for meaningful learning of algebra and develop-
ment of students understanding of algebraic concepts.

The generational activity involves the forming and interpreting of the objects of
algebra (e.g., algebraic expressions or formulas) including objects expressing gener-
ality arising from geometric patterns or numerical sequences. Kieran (2007) argues,
with reference to Radford (2001), that the generational activity involves recognition
of the role of algebra as a language (cf. also Rojano et al., 2014, for the related
argument). The transformational activity includes various types of algebraic manip-
ulations. Kieran (2007) points out that transformational activity can contribute to
students’ manipulative fluency with symbols, but also to development of students’
notions of equivalence as a core idea of algebra. A related point is highlighted by
Hoch and Dreyfus (2006). They propose the notion of structure sense, which is
related to algebraic manipulations but includes much more than manipulative, proce-
dural skills. Structure sense is related to the learner’s capabilities to recognize a
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familiar structure in its simplest form, manipulate a composite term as a single entity,
and choose between appropriate manipulations. Further, Arcavi (1994, 2005) coins
the notion of symbol sense and points out its main attributes in relation to: a
friendliness with symbols as tools to uncover relationships, an ability to switch
between attachment and detachment of meaning, a capacity to express graphical and
verbal information, a search for the best symbolic representations, an examination of
the meaning of symbols, and an attention to the varying roles of symbols in different
contexts.

Finally (here we come back to Kieran’s model), algebra as a global/meta-level activity
refers to mathematical activity for which algebra is used as a tool. Kieran (2007) argues that
Bthese activities provide the context, sense of purpose, and motivation for engaging in the
previously described generational and transformation activities^ (p. 714). Examples of such
activities include problem solving, modeling, working with generalizable patterns, conjectur-
ing, justifying and proving. It is essential for the forthcoming analysis that when the learners
are engaged in a global/meta-level activity such as problem solving or proving, they can carry
out the activity in a variety of ways, and the decision to use the algebraic apparatus arises as a
choice of the learners.

2.2 MGA model

Manipulating – Getting-a-sense-of – Articulating (MGA) model (Mason, 1989; Mason &
Johnston-Wilder, 2004) considers a sense-making act to be an inseparable part of mathematical
thinking. The model postulates that manipulating familiar mathematical objects (M) leads to
the formation of a sense of generality or regularity based on properties of these objects (G), and
then to the articulation of that general property or regularity (A), which in turn forms new
objects for further manipulations. Thus, MGA model elaborates a helix of activity during
mathematical thinking, in which each cycle includes its own, local, sense-making act. Mason
(1989) suggests that the driving force behind this process is the gap between expected and
actual results of manipulations.

MGA was a core component of the analytical framework used by Sandefur,
Mason, Stylianides, and Watson (2013) in their study of the role of example gener-
ation in the proving process. As Sandefur et al. (2013) pointed out, Bgetting-a-sense-
of^ cannot itself be observed, it is implied in the connection between M and A. In
their analysis, Sandefur et al. (2013) inferred about the Bgetting-a-sense-of^ stage,
based on observed objects the students manipulated with and on the associated
Barticulations^.

The MGA model has an important role in the forthcoming analysis of the case of
interest: it enabled us to characterize at a fine-grained level the students’ struggle at
some (though not all) parts of their exploration. As will be explained in the section 3,
we also focus on objects of students’ manipulation, and on articulated features as
indirect indicators of Bgetting-a-sense-of^ stage. In addition we can infer from stu-
dents’ choices of activities to be engaged with and their explicitly stated intensions to
explore certain features of the sequence.

To summarize, we approach the given students exploration as a sequence of algebraic
activities (Kieran, 1996, 2007), chosen and enacted by students. Each activity in turn is
characterized in terms of MGA model (Mason, 1989) with particular attention to manipulated
objects and local sense making acts.
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3 Method

3.1 Research settings and participants

The Open-ended Mathematical Problems project, in the context of which the case of Ron and
Arik took place, has been conducted, since 2010, in 9th grade classes for mathematically
promising students in Israel. The students studied mathematics at the A-stream level (the
highest level of middle-school mathematics in Israel, cf. Leikin & Berman, 2016, for details),
and, in addition, has two enrichment classes a week. The learning goal of the project is to
create, for all students, a long-term opportunity for developing algebraic reasoning in the
context of exploring numerical sequences. It is of note that 9th graders in Israel, as a rule, do
not possess any systematic knowledge of sequences; this topic is taught in the 10th grade.

The project is designed in accordance with the principles of the Project-Based Learning
(PBL) instructional approach. Blumenfeld et al. (1991) define PBL as

…a comprehensive perspective focused on teaching by engaging students in investiga-
tion. Within this framework, students pursue solutions to nontrivial problems by asking
and refining questions, debating ideas, making predict, designing plans and/or experi-
ments, collecting and analyzing data, drawing conclusions, communicating their ideas
and findings to others, asking new questions, and creating artifacts (p. 371).

The organizational framework of the project is as follows. At the beginning of a yearly
cycle of the project, a class is exposed to 8–10 challenging problems. When introduced to the
problems, the students are briefly explained the terms Brecursive formula^ and Bposition
formula^. The students choose one problem and work on it in teams of two or three. They
work on the problem almost daily during leisure hours at home and during their enrichment
classes. Weekly 20-min meetings of each team with the instructor take place during the
enrichment classes.1 After the initial problem is solved, students are encouraged to pose and
solve follow-up problems. At the end of the project, all teams present their results to their
peers. Then 4–6 teams, chosen by their classmates, present their work at a workshop at the
Technion – Israel Institute of Technology, attended by students and lecturers of the Faculty of
Education in Science and Technology.

In terms of grades, Ron and Arik were not among the most mathematically advanced
students of their class, but they were eager to succeed and present their project at the Technion.
Similarly to many teams (though not all; see Palatnik, 2016, for an overview of all 23 student
projects), Ron and Arik retained an interest in the project from the beginning to its end; the
students appeared to us as enjoying the PBL approach. They never missed their meetings with
the instructor, always came prepared, and were open to discussing new ideas. Additionally,
they initiated many between-meetings conversations and email exchanges.

3.2 The problem

Ron and Arik chose to pursue the Pizza Problem (see Fig. 1).
This problem is a variation of the problem of partitioning the plane by n lines (e.g., Pólya,

1954). Pólya used this problem to demonstrate inductive mathematical research. He took the

1 The first author was the instructor and also the regular mathematics teacher for the class, in which the case of
interest occurred.
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reader into a multi-stage journey shaped by a series of questions, including questions about
partitioning a straight line by n points, partitioning a plane by n lines, and partitioning a space
by n planes. At no stage Pólya did provide rigorous proofs for the given formulas.2 Instead, he
helped the reader to make sense of the discovered regularities by showing how different
conjectures come to complement each other. Using Kieran’s (2007) terminology, we expected
the Pizza Problem to provide students with rich opportunities to engage with generational and
transformational activities in the context of a global/meta-level activity.

3.3 Data sources and analysis

Ron and Arik worked on the project for two months. We audiotaped and transcribed protocols
of the weekly meetings with Ron and Arik (eight 20-min meetings), collected written reports
and authentic drafts that the students prepared for and updated during the meetings (more than
40 pages) and interviewed the students by the end of the project. These data were used to
create a description of the students’ exploration and for dividing it into events/episodes.

We identified episodes in due course of the project where the students were engaged in
activities related to: proving, generalizing, pattern-seeking, question-generating etc. We looked
at the outcomes of these activities (e.g., patterns, questions, generalizations, proofs) and at the
moments where the students’ switched between the activities.

We also looked, by means of the MGA model, for how the students used the mathematical
objects they considered in the course of their exploration. Namely, in each episode/event we
discerned which objects the students considered, how they were manipulated, and how and
which articulated properties served as a basis for the next MGA cycle. These helped us to infer
about the local sense making acts (cf. Sandefur et al., 2013).

4 Prelude: Ron and Arik solve the Pizza Problem

The initial part of Ron and Arik’s project, up to the point at which the students experienced

insight and discovered the position formula Pn ¼ n2þn
2 þ 1

� �
, is analyzed in detail in Palatnik

and Koichu (2015). An element of that analysis is presented in the left-hand column of Table 1,
which consists of paradigmatic examples of the objects the students attended to when solving
the problem (e.g., the drawing in the first row is one of about 30 drawings produced by the
students during the first week). As a whole, Table 1 presents the MGA analysis of five main
steps in solving the Pizza Problem and precedes the analysis of the sense-making part of the
students’ project.

Every straight cut divides a pizza into two separate pieces. What is the largest 

number of pieces that can be obtained by n straight cuts? 

A. Solve for n = 1, 2, 3, 4, 5, 6. 

B. Find a recursive formula for the nth term of the sequence.  

C. Find a position formula for the nth  term of the sequence. 

Fig. 1 The Pizza Problem

2 The proofs are provided, for instance, in Golovina and Yaglom (1963).
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Table 1 Synopsis of initial part of Ron and Arik’s project

Object of attention Manipulating... Getting a sense 

of…

The articulated properties 

1. Handmade drawings of 

pizzas

…different 

position of the 

cutting lines for 

the cases of 1, 2, 

3, and 4 lines.  

…which numbers 

can be obtained 

for n=1, 2, 3 and 4 

… limitations of 

the handmade 

sketches.

The maximum number of 

pieces is achieved when 

exactly two lines intersect 

within the circle.

For the cases of 1, 2, 3, 

and 4, the maximum 

numbers of pieces are 2, 4, 

7, and 11.    

2. GeoGebra-made drawing …different 

positions of the 

cutting lines for 

the case of 5 

lines. 

…which number 

can be obtained in 

case of 5 cuts;

… limitations of 

GeoGebra-made 

sketches.

For the case of 5, the 

maximum number of 

pieces is 16. 

Increasing the number of 

lines makes it difficult to 

count the pieces even 

when GeoGebra sketch is 

used.

3. Two-column tables …the numbers 

in the tables. 

…how the 

observed 

relationships 

between the 

numbers can be 

expressed using 

algebraic notation.

The formulas representing 

the observed patterns: 

nPP nn 1 ,

111 nPP nn , 

1nP

4. Left column of the below 

table

…with the 

numbers of the 

left column of 

the table. 

…which 

arithmetic 

manipulations 

with the numbers 

of the left column 

can result in a 

number from the 

right column of 

the table. 

The following 

relationships: 

(4 2) 5 1 11

(5 2) 6 1 16 etc.

Mapping the relationship 

into the formula

1 1
2

n
nP = (n+ )+

.

5. Excel spreadsheet

...

… with n, a row 

number in a 

spreadsheet; 

n=100 is chosen 

as a generic 

example. 

… the result can 

be generalized for 

“big” values. 

The explicit formula is 

verified as it returned the 

number matching the 

number obtained by means 

of the spreadsheet.
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The MGA analysis reveals the nature of the local sense-making steps on the way to
discovering the position formula. In particular, it suggests that all the recursive formulas (see
row 3) and the position formula (row 4) were generated as symbolic expressions for the
discovered pictorial or numerical patterns. Furthermore, Table 1 implies that at each stage, the
students succeeded in Bgetting a sense of^ the pictorial (rows 1 and 2) and numerical (rows 3–
5) objects, but not of the algebraic/symbolic objects, as these had not been further manipulated
or used. Consequently, it should not be surprising that though the students solved the problem,
they later (see Episode 1) expressed the feeling that the obtained formula did not make sense to
them. Indeed, solving the Pizza Problem was a global/meta-level activity for the students’
generational and transformational activities, but transformations were of a geometric or
arithmetic nature.

5 Ron and Arik make sense of the obtained formula

According to the timetable of the Open-ended Mathematical Problems project, Ron and Arik
had about four more weeks to progress their work. Six milestone events that occurred during
these four weeks are presented and discussed below. Each event is concluded with analysis in
terms of algebraic activities and MGA cycles.

Event 1: Choosing goals
When the students presented their solution to the Pizza Problem at the third weekly

meeting with the instructor, they received very positive feedback from him (see Palatnik
& Koichu, 2015, for details). Then, the following conversation took place.

Instructor: Now you have a lot of work to do, and this is great. First of all, you see that
the formula works. Now we have to think why it works, and try proving that it works.
Ron (to Arik): Write it down. BWhy it works, and prove that it works^ (laughs), it is
interesting!
Instructor: To see, to understand the reason why it works.
Ron: The reason why it works… Interesting!
Instructor: In addition, there can be other interesting series that you can explore in a
similar manner.
Arik: We have thought to do so.

Ron gladly accepted the idea to keep thinking on the position formula. In his words: BWhen
we have a formula, but don’t know its meaning, it is not interesting. If we knew how the
formula is constructed, we would know it 100%.We got it by chance. So we do not know what
it means.^

This theme of meaning was not further discussed, and the conversation turned to Bother
interesting series^. Both students expressed interest in exploring the problem in the case where
there is no pizza to cut, but an entire plane to divide (see Fig. 2). In Fig. 2, they distinguished
between two types of pieces: open and closed.

In addition, the students suggested that they could explore the points of intersection of the
cutting lines amongst themselves and with a circle representing a pizza. They also planned to
find a formula expressing the number of mutually exclusive segments (i.e., segments that did
not intersect at their inner points) on the cutting lines within the circle representing a pizza.

Comments on Event 1
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The instructor’s suggestion (to understand why the formula worked and how to prove it)
seemed to resonate well with Ron’s own intentions. This is evidenced in Ron’s laughter,
repeated comment of Binteresting!^, and his explicit request for Arik to write down the
instructor’s words (a unique event in all of the students’ meetings with the instructor). Ron
accepted the goal of proving the formula as a worthwhile one, in spite of the fact that the
students had verified the formula empirically by testing it with big numbers (see row 5 in
Table 1). This observation implies that the students realized that empirical justification was not
enough, at least in the context of their project. Using Hewitt’s (1992) metaphor of a train-
spotter (B[train spotters] are left with numbers… not a train in sight,^ p. 8), Ron was not
content with the role of a train-spotter. He grasped that the lucky discovery of the position
formula by manipulating numbers could not be a self-contained goal of the project. However, he
did not know how to begin the quest for meaning and proving. Thus the instructor’s suggestion,
supported by Arik, to explore additional sequences appeared operational and timely.

In this event the students have chosen a new goal. To recall, according to Kieran (2007) meta-
level activity provide students the goal, overarching context, and motivation to be engaged in
various activities where algebra is used as a tool.

Event 2: Simultaneous exploration of several sequences
Having chosen the above goals, the students returned to making sketches and

counting: segments within the circle, closed and open parts of the plane and points of
intersection of the cutting lines, for different numbers of lines. They observed:

– The numbers of the intersections (both between the cutting lines and between the cutting
lines and the circle) were 2, 5, 9 and 14 for 1, 2, 3 and 4 cuts, respectively (Fig. 3a–c).

– The number of mutually exclusive segments on n cutting lines is represented by the
formula Zn = n

2 (see Fig. 3d).
– As a by-product, the students noticed that the sum of the first n odd numbers also

equals n2.
The students obtained each of these results using the same strategy as in

solving the Pizza Problem (cf. Table 1 and Fig. 3). When several observations
were made and articulated, the students tried something new: they began explor-
ing the connections between different sequences (see Fig. 3d–e). In particular,
Ron noticed the connection between the sequence 2, 4, 7, 11… (number of pieces
in the Pizza Problem) and the sequence 2, 5, 9, 14… (number of intersections), as
follows: the differences between the corresponding terms of the sequences form a
sequence 0, 1, 2, 3…

Fig. 2 The closed pieces are
hatched; there are three closed and
eight open pieces
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Comments on Episode 2
In the context of a meta-level exploration activity, the students were engaged

in new generational activities. They used the exploration strategy of counting
objects on the sketches, organizing the results in tables, exploring the tables, and
mapping the results as algebraic formulas, in a way similar to what was done
while discovering the position formula Pn ¼ n

2 nþ 1ð Þ þ1. An analysis in terms of

the MGA model of the generation of each formula led us to the same conclusion:
the students succeeded in getting a sense of the sketches and numerical patterns in
the tables, but not necessarily of the resulting formulas when taken separately.

In this episode, however, the students’ exploration included an additional MGA cycle.
The objects of manipulation were the separately obtained numerical sequences which were
used in a newway; the manipulation consisted of comparing the terms of the sequences; the
articulated property was related to the differences between the corresponding terms of two
sequences. The explored sequences represented different objects that appeared on the same
drawings. In this way, geometric mechanisms behind the numerical sequences became
clearer to the students.

Event 3: The first manipulation with the formula (adjustment)
To obtain an explicit formula for the sequence 2, 5, 9, 14 … (the numbers of

intersections of the cutting lines with each other and with the circle), Ron used the above

connection (see Event 2) and adjusted the formula Pn ¼ n2þn
2 þ 1 into the explicit formula

X ¼ n2þn
2 þ n (Fig. 3c).

In his words: BI thought it would be like the previous formula Pn ¼ n2þn
2 þ 1

� �
, but it

did not fit. So I got rid of 1 and added n [to the right side of the formula], and it was right.^
Comments on Event 3
Our interpretation of Ron’s actions in this transformational activity is as follows. For

the first time, an algebraic formula was object of Ron’s manipulations, it was used in a
new, though a very informal way. In thisMGA cycle, M (manipulatingwith) was related to

the formula Pn ¼ n2þn
2 þ 1 and A (articulation of a new property) – to the formula

X ¼ n2þn
2 þ n. We infer that G (getting a sense of) was the realization that that Bsimilar^

sequences can be represented by formulas of similar structure and, more importantly, that
one formula can be transformed into another, instead of being developed through an
exploration of numerical regularities in a corresponding numerical table.

Fig. 3 The strategy employed in Events 1 and 2
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Event 4: Producing an explanation of why the target formulas worked

The wish to understand why the formula Pn ¼ n2þn
2 þ 1 returns the maximum number

of pieces was a repeated theme in weekly meetings with the instructor. The students

eventually answered this query in the following way. After obtaining the formula X

¼ n2þn
2 þ n by adjustment (see Event 3), Ron and Arik came back to exploring the

drawings and slightly reformulated one of their prior observations. They realized and
articulated that the maximal number of pieces is obtained when a new cutting line crosses
all the previous lines in new points. As a result, the students observed that a new cutting
line added n new intersection points to the existing configuration of lines. For the

students, there was an explanation of why the formula X ¼ n2þn
2 þ n returned the

maximum number of the intersection points. They further asserted that this idea also

explained, for them, why the target formula Pn ¼ n2þn
2 þ 1 returned the maximum number

of pieces.
Comments on Event 4
The students succeeded to combine their prior discoveries made in the course of

generational activities and to connect geometrical and algebraic aspects of the process
of adding a new line to the system of the existing lines (cf. Radford, 2004, for the idea that
meaning is produced at the crossroad of different semiotic systems).

It is also of note that the students manifested some fluency when shuttling between
algebraic and geometric objects of manipulation, thus using a potential of the generational
activity they were engaged in. Ron and Arik succeeded in reattaching themselves to the
geometry context of the problem and thus exhibited developing symbol sense (cf. Arcavi,
2005, for the second component of symbol sense, namely, an ability to switch between
attachment and detachment of meaning).

Event 5: Emergence of a plan for Bproving^ the target formula

As mentioned, the need to prove the position formula Pn ¼ n2þn
2 þ 1 for the Pizza

Problem was an additional driving force for the students. This need remained unfulfilled
even when the students’ expressed an understanding of why the formula worked (see
Event 4). Eventually, the students invented their own method of proving. In Ron’s words:

Ron: We thought of a way to prove it [the position formula]…[in order to do so, we
wanted] to connect all the formulas we had, every table we’ve made… may be it will
give us the formula, then we will know that it is a true formula indeed. Then we’d have a
proof.

The realization of this quite vague plan is outlined below. Ron and Arik built upon the
following observation: for any number of cuts, the sum of the number of open and closed
pieces (see Fig. 2) equals the overall number of pieces into which a plane is divided. They
suggested that separate explorations of open and closed pieces might lead them to the target
position formula, and would be a more feasible for them task. The number of open pieces for n
cuts, 2n, was easy for them to find and explain: adding a new cutting line adds exactly two
open pieces to the drawing.

The story was different for the sequence of the numbers of closed pieces. The students
empirically (i.e., by counting on the drawings) obtained a sequence 0, 0, 1, 3, 6 for 1, 2, 3, 4
and 5 cuts, respectively. They evaluated it as Bquite close^ to the target sequence (2, 4, 7, 11,
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16…). They then continued their search for the connections between the sequences, and
observed the resemblance between the sequence of closed pieces (0, 0, 1, 3, 6…) and the
sequence representing the numbers of the points of intersections between the cutting lines, 0, 1,
3, 6… (see Fig. 4).

The students then began manipulating the target formula Pn ¼ n2þn
2 þ 1

� �
. They changed

the right part of the formula to n2þn
2 , and then to n2þn

2 −n (to recall, an adjustment to the

expression n2þn
2 þ n was successful, see Event 3). The expression n2þn

2 −n returned the numbers

0, 1, 3, 6…, and after several unsuccessful attempts to further adjust it, the students came back

to the expression n2þn
2 . Now they observed that it gave Bthe same numbers, but with a two-step

delay^ (i.e., 1, 3, 6, 10…). The expression n−2ð Þ 2þn
2 was expected to take care of this two-step

delay. It returned the numbers 1, 1, 2, 4, 7, …, which were different from the target numbers

only by 1. From here, Ron and Arik obtained the desired expression n−2ð Þ 2þn
2−1.

Intermediate summary and comments on Event 5
The students’ main achievements up to this point of the project are summarized in Table 2.

To recapitulate, the position formula Pn ¼ n2þn
2 þ 1 the students tried to make sense

of was not an isolated object for them at this stage. Each formula or expression in
Table 2 was a result of a particular combination of generational and transformational
activities with corresponding MGA cycle that the students’ went through. With each
new activity the students’ fluency in moving between representations and confidence
in their exploration strategy grew. As demonstrated above, some of the MGA cycles
were related to attempts to connect the formulas. In these attempts, some of the
manipulated objects were composite algebraic objects, specifically, the other formulas
(see Events 4 and 5). Here we note the students’ growing structure sense, as defined
by Hoch and Dreyfus (2006). Still, all the results were verified empirically by
checking whether the formulas returned Bthe right numbers.^

Fig. 4 Left table is for the closed
pieces; right table is for the points
of intersection
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Event 6: BProving^ the target formula
The last piece of the puzzle came from one of Ron and Arik’s classmates with whom

they consulted. Ron and Arik presented him the chosen direction: to look separately at the
numbers of open and closed pieces. The classmate’s suggestion was as follows. Since the

formula Pn ¼ n2þn
2 þ 1 represents the total number of pieces to which a pizza can be cut

by n cuts, and since Ron and Arik have obtained the formulas for the numbers of closed
and open pieces, the three formulas should match. After several unsuccessful attempts,
Ron and Arik implemented this idea and algebraically connected the three formulas. In
their final presentation, they showed a slide with the following transformations:

n−2ð Þ2 þ n
2

−1þ 2n ¼ n2−4nþ 4þ n−2þ 4n
2

¼ n2 þ nþ 2

2
n⋅ nþ 1ð Þ

2
þ 1 ¼ n2 þ nþ 2

2

These two rows were proudly presented as Bthe proof^ of the formula Pn ¼ n2þn
2 þ 1,

in addition to justifications for all three formulas based on numerical tables.
Comments on Event 6
The students used the formulas representing the sequences for proving, for the first

time in their project. In terms of Kieran (2007) the global algebraic activity (proving)
provided the context and goal for transformational activity (working with equivalent
expressions, expanding, simplifying). Each of the three formulas has previously been
articulated as a result of a particular MGA cycle. The students Bproof^ can be seen as an
algebraic test of a geometric connection between the formulas. Namely, they algebraically
manipulated the formulas and articulated that they all match as parts of an algebraic
equality. Obviously, the above Bproof^ contains a logical flaw: mathematically speaking,

Table 2 Intermediate summary of the students’ exploration

Formula/expression What it represents? How was it found? Why was it believed to be true?

Pn ¼ n2þn
2 þ 1 The sequence representing

the maximum numbers
of pieces to which a
circle pizza can be cut
by n cuts

By observing a numerical
pattern and mapping it,
step by step, into
the formula.

It fits the empirically found
sequence 2, 4, 7, 11,
16…It fits spreadsheet
results.

Zn = n
2 The number of mutually

exclusive segments on
n cutting lines

By generalizing a
numerical pattern

It fits the empirically found
sequence 1, 4, 9, 16…

X ¼ n2þn
2 þ n The number of points of

intersections between
the cutting lines and
between the cutting
lines and the circle
for n cuts

By adjusting the

formula Pn ¼ n2þn
2 þ 1

It fits the empirically found
sequence 2, 5, 9, 14, …

2n The number of open
pieces for n cuts

By generalizing a
numerical pattern

It fits the empirically found
sequence 2, 4, 6, …

n−2ð Þ 2þn
2−1

The number of closed
pieces for n cuts

By a series of
adjustments of the

formula Pn ¼ n2þn
2 þ 1

It fits the empirically found
sequence 0, 0, 1, 3, 6, …
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the fact that three empirically found formulas match does not necessarily mean that one of
them is correct. This observation, however, does not derogate the students’ achievement.
Let us remember that formal ways of proving were beyond their reach at the time of the
project. To us, the described results indicated an important step in the development of Ron
and Arik’s algebraic reasoning: they got sense of the convincing power of symbolic
manipulations (Arcavi, 1994, 2005; Hoch & Dreyfus, 2006; Kieran, 2007).

6 Discussion

The four-weeks-long exploration of two 9th grade students working on a particular project in
the context of numerical sequences has been presented. We begin this section from discussing
why Ron and Arik were so persistent when trying to make sense of their formula. We then
discuss the algebraic activities in which the students were engaged (i.e., answer the first
research question) and the processes involved in the students’ sense-making quest (i.e., answer
the second research question). This is followed by presentation of our proposal for decompo-
sition of sense making in algebra, as it emerges from the presented case.

6.1 Why did Ron and Arik persist in making sense of their formula?

The students started their sense-making quest having three weeks of exploration already
behind them. They justified the accuracy of the formula by checking that it returns Bright
numbers^ for the first few terms of the sequence. In addition, the students addressed the
generality of the formula by checking that it returned the Bright number^ in a generic case
(recall the use of Excel in Table 1). In Lannin’s (2005) study, 6th grade students who were
engaged in a similar activity, got the feeling that their formula Bmakes sense^ after making
comparable progress. In that study, the students did not wish to continue the enquiry despite
the attempts of the instructor to motivate them by raising why-questions. Similar situations
have been reported in some additional studies (e.g., Tabach, Arcavi, & Hershkowitz, 2008).
Thus, the natural question arises: why did Ron and Arik behave differently and persist
to make sense of their formula? We suggest below an explanation that seems to us
plausible.

The long-term sense-making quest of Ron and Arik was possibly triggered by what Sfard
(2008) called the sense of incomprehension. Ron’s manipulations with particular numbers
resulted in the needed formula, however the students were unable to explain, first of all to
themselves, the way of their serendipitous discovery (Palatnik & Koichu, 2015). This could be
considered as one of the sources for incomprehension. However, according to Sfard, student’s
sense of incomprehension may cause an emotional reaction that can motivate but also can
hinder learning.

We put forward two circumstances that may have converted Ron and Arik’s sense of
incomprehension into an incentive for learning. First, in the dialogue between the students and
the instructor (see Event 1), the instructor made his dissatisfaction with some of routines used
by the students explicit, and this dissatisfaction evidently resonated with the students’ inten-
tions. The sense-making questions about the meaning of the formula were treated by the
students as legitimate and even interesting. Second circumstance is the organizational setting
of the project. To recall, the project was organized in accordance with project-based learning
instructional approach (Blumenfeld et al., 1991). In such an environment the students had a
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chance to get used to the long-term, open-ended explorations, to the high level of expectations
and to having room and time to spend with a problem.

6.2 Algebraic activities and processes involved in student sense making

The answer to the first research question (about events and algebraic activities in which the
students were engaged while attempting to make sense of the previously obtained position
formula) straightforwardly follows from the exposition presented in Section 5. Briefly (here
we use Kieran’s, 2007 terminology), the students were engaged in generational and transfor-
mational activities in the context of the global/meta-level activities of explaining to themselves
why the formula worked and of proving the formula. It is of note that the students’ genera-
tional activity initially involved several separately explored sequences, and the search for
connections between the sequences was framed by global activity.

The answer to the second research question (about the processes involved in the student
sense-making quest) is presented below as a summative discussion of the ways by which the
students addressed their self-imposed queries while being engaged in the aforementioned
activities.

Briefly speaking, in order to answer the query Bwhy the formula works^ the students
experimented with concrete drawings (i.e., drawings with 4–6 cutting lines) and then articu-
lated properties of generalized drawings (i.e., drawings with n cutting lines). The concrete
drawings apparently served as a visual tool to reveal a generic process that occurs when an
additional line is added to a system of existing lines. Thus it looks like the processes of
generalizing and searching for geometric mechanism behind the formula were involved in the
students’ sense making.

The query Bhow to prove the formula^ turned to be the thorniest part of the project. Thus,
the process of justifying played an important role in the students’ sense making quest. The
students’ initial way of justifying formulas consisted of term-by-term comparing formula-
generated numerical sequences with the empirically generated sequences. However, the
students asserted that they fully addressed the how-to-prove query only when they had
succeeded to show how the target formula came to cohere with two geometrically related
formulas in a common algebraic structure (see Event 6). The related formulas were obtained as
results of the students’ attention to several sequences of their choice and by means of
exploration of algebraic and geometric connections between the sequences. It is of note that
the cloud of the formulas used by the students (see Events 5 and 6) did not exist when the
students began. Thus, the process of generating a cloud of formulas and checking the cloud for
coherence was a central process in the proving part of the students’ sense-making effort (cf.
Rojano et al., 2014, for sense production by means of connecting a new mathematical text to a
system of other texts). However, the presented story suggests that the process of establishing
coherence was an important one at different parts of the student sense-making quest, and not
only in producing the final justification of the target formula. The coherence was pursued and
achieved among various objects of exploration, such as diagrams, tables and formulas.
Namely, at different stages of the global explorative activity the students employed the
following strategy: they generated several objects of the same type and connected them, by
means of manipulations in a particular mathematical register and then among the registers. In
order to make sense of the target formula, the students established coherence first among the
objects in geometrical and numerical registers and then constructed and connected correspond-
ing algebraic objects.
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The pivotal role of the process of establishing coherence in the students’ sense making puts
forwards the importance of divergent algebraic reasoning (i.e., simultaneous consideration of
several related problems and search for connections) as a counterpart of convergent algebraic
reasoning (i.e., moving from a less general to a more general problem on the way to obtaining
a target result). From this perspective, Ron and Arik’s simultaneous attention to several
problems of their choice on the way to achieving their overarching goal – making sense of
the target formula, makes sense.

6.3 A proposal for decomposition of sense making in algebra

As argued, Ron and Arik’s sense-making process consisted of a sequence of generational and
transformational algebraic activities in the overarching context of a global, meta-level activity,
long-term problem solving. In this sense-making process, the students: (1) formulated and
justified claims; (2) made generalizations, (3) found the mechanisms behind the algebraic
objects (i.e., answered why-questions); and (4) established coherence among the explored
objects. We now take the liberty of formulating this summary by using a more general
language, and propose a four-component prismatic decomposition of sense making. It is
schematically presented on Fig. 5.

Each of the aforementioned processes was considered in past research (cf. Arcavi, 2005, for
the main attributes of symbol sense as well as Lannin, 2005, and Radford, 2010, for the role of
generalizing and justifying in development of students understanding of algebra). However,
consideration of all four processes as parts of the student sense-making quest in an algebraic
context can be seen as a theoretical contribution of our study.

In particular, the above four-component decomposition presents sense making as a com-
plex, multi-stage and multi-focus conjunction of processes. We deem that the decomposition
elaborates on NCTM’s (2009) conceptualization of sense making. Furthermore, we suggest
that the prismatic decomposition in the context of generational, transformational and meta-
level algebraic activities could be used as an analytic tool in future research on algebraic sense
making, especially in complex learning environments such as PBL or inquiry-based
environments.

Finally, the unusual characteristic of the documented case is that a sense-making goal was
self-imposed by the students. As mentioned, Ron and Arik’s determination was surprising to
us. We have presented an explanation of this phenomenon that seems to us plausible, but,
obviously, further research is needed in order to better understand factors involved in the
emergence of this goal and in order to be able to intentionally design algebraic activities that
can trigger and support sense making in students.

Sense making  

Generational activities Transformational activities 

Meta-level /Global activities 

Jus�fica�on 

Generalizing 

Justifying 

Searching for mechanism 

Establishing coherence

Fig. 5 Four processes involved in an algebraic sense making through algebraic activities
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