
Values and norms of proof
for mathematicians and students

Paul Christian Dawkins1 & Keith Weber2

Published online: 16 December 2016
# Springer Science+Business Media Dordrecht 2016

Abstract In this theoretical paper, we present a framework for conceptualizing proof in terms
of mathematical values, as well as the norms that uphold those values. In particular, proofs
adhere to the values of establishing a priori truth, employing decontextualized reasoning,
increasing mathematical understanding, and maintaining consistent standards for acceptable
reasoning across domains. We further argue that students’ acceptance of these values may be
integral to their apprenticeship into proving practice; students who do not perceive or accept
these values will likely have difficulty adhering to the norms that uphold them and hence will
find proof confusing and problematic. We discuss the implications of mathematical values and
norms with respect to proof for investigating mathematical practice, conducting research in
mathematics education, and teaching proof in mathematics classrooms.
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1 Introduction

Many mathematics educators consider proving to be one of the cornerstones of mathematical
practice and believe an important goal of mathematics education is to apprentice students into
the mathematical practices associated with proof (e.g., Harel & Sowder, 1998; Stylianides,
Bieda, & Morselli, 2016). The broad aim of this theoretical paper is to analyze particular
reasons why such apprenticeship is difficult and to propose a framework for proof that could
inform future research and instruction. In particular, we will argue that more attention is
needed on mathematicians’ values—that is, what features mathematicians believe to be
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necessary or desirable in the production of mathematical knowledge. Before doing so, we
clarify our use of key vocabulary for what follows.

By proofs, we are referring to the written artifacts that mathematicians call proofs, which
they produce and disseminate to sanction mathematical assertions as theorems.1 By proving,
we are referring to the activity that a mathematician engages in to produce proofs, which, as we
will explain, involves the simultaneous processes of advancing a mathematician’s own
personal values and satisfying communal norms so that these proofs will be acceptable to
her colleagues. By proving practice, we are referring to the constellation of activities that a
mathematician engages in with respect to proof, including producing proofs, presenting proofs
to her colleagues, evaluating the proofs that her colleagues present to her, and appreciating,
understanding, and learning from the proofs that she and her colleagues produce.

We define written classroom proofs to be the written artifacts that students produce to
affirm mathematical claims and demonstrate learning to their teacher (and sometimes their
peers). Classroom proving refers to the activity of writing proofs to simultaneously express
students’ understanding and chains of inference as well as satisfying teacher (and sometimes
peer) expectations. Classroom proving practice is the constellation of activities that students
and teachers in mathematics classrooms engage in with respect to proof, including the
production of written classroom proofs. We elaborate on these terms later in this paper.

While there has been a sustained push among mathematics educators for proof to play a
central role in mathematics classrooms (see Stylianides et al., 2016), numerous research studies
have shown that both teachers and researchers find it challenging to create classroom envi-
ronments in which students and teachers engage in target classroom proving practices (see
Stylianides, Stylianides, & Weber, in press, for a review). A central goal of this paper is to
provide new insights into why this might be the case.2 We contribute to the broad issue of why
mathematicians’ proving practice is so problematic to communicate to students and why
classroom proving practice is difficult to foster in three ways. First, we proffer a framework
for conceptualizing proof in terms of values and norms. This entails identifying particular
values that mathematicians seek to achieve and the norms adopted to uphold these values.
Second, we identify both specific and general ways in which these norms and values pose
pedagogical difficulties when they are incorporated into classroom proving practice. Third, we
discuss implications for investigating mathematical practice, conducting research in mathe-
matics education, and teaching proof in mathematics classrooms.

To accomplish these goals, we structure what follows into four sections. In the next section,
we frame what we mean by values and norms with respect to proof by integrating Laudan’s
(1984) philosophical work on values in science with recent sociocultural work in mathematics
education. In section 3, we propose specific epistemic aims that the community of mathema-
ticians values and discuss how some norms with respect to proof are in place to uphold these
values. In section 4, we discuss the difficulties inherent in communicating norms associated
with proof to those who do not share mathematicians’ values. In the final section, we conclude

1 Other scholars have taken a different perspective and have not treated the written artifacts that mathematicians
have produced as being proofs, but rather serving as a pointer to the true proof which must be enacted by the
reader (e.g., Livingston, 2006).
2 We do not mean to dismiss the numerous efforts to improve proof instruction or the lessons learned therefrom
(e.g., Brown, 2014; Douek, 2009; Durand-Guerrier, Boero, Douek, Epp, & Tanguay, 2012; Stylianides &
Stylianides, 2009; Stylianides et al., in press). We expect that our framework of norms and values could help
explicate many such instructional successes. For the sake of space, we reserve our analysis here to explicating
some learning challenges and not the various solutions currently provided by the literature.
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by discussing implications for researchers of mathematical practice, researchers of mathemat-
ics education, and teachers of proof-oriented mathematics.

2 Theoretical framing of values and norms

In any scientific community, there is a dialectic relationship between three levels of scientific
commitment: the community’s axiology, the community’s methodology, and the theories that
this community produces (e.g., Laudan, 1984). By axiology, Laudan referred to the shared
values, goals, and principles that the discipline is trying to achieve in the theories that it
produces. The methodologies of a community specify acceptable means for developing and
justifying theories. By the theories that mathematicians produce, we are speaking of the results
of successful mathematical investigations represented by coherent collections of mathematical
concepts and relationships between these concepts, such as group theory. These theories
include definitions, theorems, proofs, examples, and algorithms, in addition to the shared
conceptual tools that mathematicians use to understand, discuss, and reason about these
concepts. Laudan posited that each level of commitment influences the others. The most basic
examples of these influences are that axiology helps justify choices of methodology and
methodology helps justify claims within a theory.

To coordinate Laudan’s (1984) framework for scientific practice with cultural theory, we
investigate the values of mathematicians as part of their axiology and the norms of proof as
part of their methodology. In what follows, we outline our use of the terms values and norms
drawing on literature from mathematics education and sociology. Values represent a
community’s shared orientations and goals that underlie shared activity. We concur with
Herbst, Nachlieli, and Chazan’s (2011) notion that values are what Bmembers of a practice
use to justify or otherwise discard possible actions^ (p. 219) in a given situation. While values
may justify actions, values themselves are generally assumed without justification. By saying
that a community has adopted a value, we do not suggest that the value will necessarily be
achieved or even that the community will always act to uphold it. The community may fail to
achieve a value for many reasons, such as human fallibility, practical limitations, the value
being an unattainable ideal, or multiple values being in conflict. All we mean is that values
describe features in scientific theories that the community finds desirable and that the
community will take active steps to increase the likelihood or extent to which that value is
achieved.

To date, mathematics education research on the axiology of mathematics has been limited.
Researchers generally have described values as the subset of personal beliefs that are strongly
cherished, highly ingrained, or contain a moral dimension (DeBellis & Goldin, 2006). For
instance, mathematicians are said to hold the value of mathematical integrity, which entails
being open and honest about what one does not understand and taking active measures to try to
resolve gaps in understanding (Carlson & Bloom, 2005; DeBellis & Goldin, 2006). Our use of
the term values differs in that the values we identify are not only used to appraise an
individual’s behavior but also to evaluate the mathematical theories that an individual or
community produces; our use of value is therefore akin to the criteria that Tao (2007) discussed
for what constitutes good mathematics. Our investigation of values addresses Chinn,
Buckland, and Samarapungavan’s (2011) observation that educational research tends to ignore
the relationship between epistemic aims (which express values) and the epistemic actions
(which are guided and constrained by norms). It also addresses Solomon’s (2006)
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recommendation that enculturating students into classroom proving practice involves an
enculturation into mathematicians’ values, a topic of research that she noted had received
scant attention.

We use the term norm to refer to expectations on practice accepted by the scientific
community to uphold a value. By upholding a value, we mean that the community believes
that satisfying this norm will generally increase the likelihood or extent to which the value is
achieved. In particular, we say a community has adopted a norm if (i) the default assumption of
the community is that its individual members will conform to the norm, (ii) members of the
community are attuned to breaches of the expectation, and (iii) a community member
breaching the norm can be held to account for this violation (c.f. Herbst et al., 2011; Yackel
& Cobb, 1996). In this sense, scientific norms constrain the types of knowledge claims
practitioners may produce and how they justify those claims.

Several important clarifications are in order regarding norms, values, and their relationship.
First, values are often implicit, to the extent that they are invisible to some practitioners in their
daily work. As Taylor (1993) argued, much cultural Bknowledge^ is embedded in Bknow-
how^ about the rules of behavior within a community (what we call norms). Practitioners often
do not attend to the values that these rules were put in place to uphold lest everyday activities
become untenably cumbersome. For instance, a pure mathematician would not constantly be
comparing the merits of deductive justification versus empirical justification; in her ordinary
practice, she would instead simply accept deductive justification as a normative requirement
for making knowledge claims. Norms, as default expectations, facilitate human activity. They
allow practitioners the opportunity to practice their craft without constantly evaluating the
nature of their craft. Practitioners may be able to articulate how the norms that they follow
uphold their values, but these practitioners frequently enact rules without consciously attend-
ing to values (Taylor, 1993).

A second clarification regarding norms and values is methodological. The emergent
perspective (e.g., Yackel & Cobb, 1996) and the work of Herbst and his colleagues (e.g.,
Herbst & Brach, 2006; Herbst et al., 2011) represent two primary traditions of norm research in
mathematics education. What they share with much prior sociological work is the stance that
norms are often most noticeable when they are breached. By observing how people identify
and try to repair such breaches, one can identify the norms people treat as operative in a
situation and the values by which they legitimize or delegitimize behavior. We contend that
this occurs in mathematical practice. For instance, the publication of the computer-assisted
four-color theorem proof violated the norms that proofs are transparent and do not rely on the
author’s experience that a reader cannot independently verify. The publication of this non-
normative proof served as the impetus for a discussion on mathematicians’ values about
mathematical knowledge and the norms that uphold these values, especially with relation to
proof (e.g., Hanna, 1995; Swart, 1980; Tymoczko, 1979).

A third clarification regards the extent to which norms and values determine behavior. We
agree with Herbst et al.’s (2011) claim that norms are Bneither ineluctable like physical laws
nor compulsory like rules of a game. They are rather defaults, or tacit expectations about
behavior that, if done, go without saying^ (p. 226). Systems of related norms and values afford
human activity by simultaneously facilitating routine activity while creating space for individ-
ual agency (e.g., Holland, Lachicotte, Skinner, & Cain, 1998). An individual member of a
community may reject a value and so regularly deviate from a norm, but that individual will
generally be compelled to acknowledge and justify the breach. This consistent act of position-
ing one’s actions in relation to a perceived expectation is what marks the influence of the
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values and norms on individual behavior, rather than mere obedience to a rule. Thus, one can
distinguish an individual’s personal beliefs and expectations from what she perceives to be the
values and norms of the community in which they participate. Even if an individual personally
rejects a value or norm that she perceives their community to hold, that value or norm will still
influence her behavior. She will either act in accordance to the community’s norms so that the
community accepts her intellectual contribution or she will feel obligated to explain why she is
breaching this norm.

Much of the explanatory power of norms comes from this insight that social expecta-
tions often influence individual behavior not through direct enforcement of such expecta-
tions but rather through the individual’s curtailment of their own activity in light of their
expectation of others’ judgments. This closely links proof and proving inasmuch as proofs
are obviously the result of some proving process and the proving process takes into
account the anticipated expectations to be placed upon the proof artifact that is produced.
As our definitions above reflect, mathematicians and students enact proving not only to
reflect their personal understandings and values but also to satisfy the expectations by
which their work will be judged. While much mathematics education literature has shifted
toward focusing on the proving process, we acknowledge that the proof is the interface
between the prover’s activity and anticipations and the reader’s judgments. As such, we
shall frequently discuss proof in this paper with a clear understanding that a proof is not
and cannot be fully distinct from the process by which it was produced. Furthermore,
disparities in teacher and student understandings of proving often become manifest in the
student proof that serves as the interface between student anticipations of the norms of
proving and their teachers’ actual judgments.

3 Values of professional mathematicians

Although classroom practices are not, and cannot be, exact replications of mathematicians’
proving practice, mathematicians’ proving practice informs and constrains what classroom
proving practice should be (e.g., Harel & Sowder, 1998; Herbst & Balacheff, 2009; Weber,
Inglis, &Mejia-Ramos, 2014). In this section, we analyze mathematicians’ proving practice by
discussing mathematicians’ values and the norms of proof in place to uphold these values. In
the next section, we describe how the norms and values in mathematicians’ practice inform
and pose challenges for the creation of classroom proving practice.

The values and norms that we discuss below should be viewed as the conceptualization we
use to make sense of proving practice, which we have generated based on other researchers’
analyses of proofs (e.g., Burton & Morgan, 2000; Konoir, 1993; Selden & Selden, 2013),
mathematicians’ reflections on their own practice (e.g., Davis & Hersh, 1981; Devlin, 2003;
Halmos, 1970; Knuth, Larrabee, & Roberts, 1989; Thurston, 1994), and philosophers’ anal-
yses of mathematical practice (e.g., Buldt, Löwe, & Müller, 2008; Fallis, 2002; Paseau, 2011;
Steiner, 1978). We also incorporated the observations of mathematics educators (often not
made on the basis of systematic investigation; see, e.g., Alcock & Simpson, 2002; Balacheff,
1988; Selden & Selden, 2003) to highlight beliefs about mathematical practice that we believe
are common in the mathematics education community. We reiterate that what we report here is
only our conjectured framework and we urge systematic research to assess the accuracy and
utility of this framework for proof. We make recommendations for how this could be done in
the concluding section of this paper.
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At a broad level, the mathematical community aims to increase its list of statements that it
believes to be true while minimizing the likelihood that this list contains a statement that is
false. However, Fallis (2002) remarked that the goals of seeking truth and minimizing error are
hardly unique to mathematics; most sciences share these goals.3 What is more specific to
mathematics is the desire for a particular way of knowing why mathematical assertions are
true. As Paseau (2015) demonstrated, physicists and mathematicians would permit and desire
different justifications of the same mathematical claim. In this paper, we consider four specific
values we perceive as being held by the mathematical community4:

(1) Mathematical knowledge is justified by a priori arguments.
(2) Mathematical knowledge and justifications should be a-contextual and specifically be

independent of time and author.
(3) Mathematicians desire to increase their understanding of mathematics.
(4) Mathematicians desire a set of consistent proof standards.

This list is non-exhaustive, but we argue that many of the norms that students are expected
to adhere to when producing classroom proofs serve to uphold these values. As an important
caveat, these values are often not actually achieved in mathematical practice for a variety of
reasons. For the sake of brevity, we do not elaborate on this point here, but more detailed
arguments can be found in Ernest (1991) and Fallis (2002). In the following four sub-sections,
we discuss the nature of each value listed above and—for all but the last—identify norms that
we claim are intended to uphold it.

3.1 Value 1: mathematical truth is a priori

Buldt et al. (2008) observed that mathematicians take pride in the fact that mathematics is
regarded as a Bvery special science^ whose results carry Bthe characteristic objectivity that
other sciences lack^ (p. 310). Buldt et al. attributed the current privileged status of mathematics
to the work of the philosopher Immanuel Kant, who distinguished between a priori knowledge
(knowledge or justification that is independent of experience) and a posteriori knowledge
(knowledge or justification that is dependent on experience or empirical evidence). To Kant,
only mathematics could produce new knowledge that was independent of experience, provid-
ing mathematical knowledge with a more secure footing. Weber and Mejia-Ramos (2013)
elaborated on this common viewpoint. When scientists read a publication in their field, they
sometimes have no recourse but to rely on the testimony of the authors of the paper regarding
the empirical data presented. With mathematical proof, the situation is different. If a mathe-
matician reads the result of a calculation in a paper, she need not trust the author but could, in
principle, perform the calculation herself.

We emphasize that mathematicians’ desire for a priori knowledge extends beyond the
desires to obtain absolute certainty and to minimize the risk of error. As Fallis (2002) and
Paseau (2011) illustrated, there are some statements in mathematics when empirical evidence

3 Fallis (2002) acknowledged that mathematics might have a lower tolerance for error than other sciences,
although some (e.g., Grcar, 2013) question whether this is actually true in practice.
4 While subgroups like experimental mathematicians (e.g., Borwein, 2008) reject some of these values, the need
to classify them as Bexperimental^ and their publication of philosophical articles defending their consistent
breaches of community norms both justify that these values are part of proving practice. One would not call
someone a Bdeductive mathematician^ as it would be redundant.
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could provide more conviction than a proof because of the possibility that the purported proof
contained an error that was not detected. Nonetheless, mathematicians will continue to seek
proofs of such statements. Multiple norms about proof are in place to uphold the value a priori
knowledge; we discuss two such norms below.

3.1.1 Justification in proof must be based upon stipulated definitions

In contemporary mathematics, a concept is defined by a stipulated constructive definition; that
is, a well-defined criterion that unambiguously determines concept membership (Edwards &
Ward, 2008). In mathematical proof, deducing properties about a concept must proceed from
this definition or from other statements that had previously been deduced from this definition,
rather than from unstated or assumed properties of the concept, a concept prototype, or other
common representations associated with that concept (e.g., Alcock & Simpson, 2002). Such a
viewpoint is consistent with Kant’s view that a priori knowledge can be obtained from analytic
statements, which Quine (1951) defined as Btrue by virtue of meanings and independent of
fact^ (p. 21). For mathematical theorems to have a similar claim to be a priori, the concepts
within the theorem would need to be explicitly defined and the justification of the theorem
would need to be based solely upon these definitions.5

3.1.2 Justification in a proof should be deductive and not admit rebuttals

The need for deduction follows immediately from the desire for a priori truth. Proofs are
presented sequentially where the order entails logical or epistemic dependence (each claim
may depend upon what comes before, but not on what comes later). Every warrant applied in a
mathematical proof must be truth preserving. Mathematical statements and arguments are
brittle to single counterexamples (Durand-Guerrier, 2008).

3.2 Value 2: mathematical knowledge and justification should be independent
of (non-mathematical) contexts, including time and author

This value is a corollary of the previous value—if mathematical truth is to be established by an
a priori argument, it should not depend on the experiences of the author or the author’s
community (c.f., Selden & Selden, 2003). This provides some proofs with the feeling of being
objective and atemporal (c.f., Balacheff, 1988). We identify two norms intended to uphold this
value.

3.2.1 Mathematical proof is written without reference to author or reader’s agency

Because the purpose of a mathematical proof is to describe objective properties of mathemat-
ical objects, how an individual comes to understand these objects is not relevant. Likewise,
although some creativity and ingenuity may have been needed by the author to create (or
Bdiscover^) a proof, the correctness of the proof can be judged independent of the process used

5 This highlights Mariotti’s (2006) point that a proof of a theorem is dependent upon a reference theory. The
correctness of a proof is necessarily dependent upon the axioms, definitions, and rules of inference within that
reference theory.
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to create it. Davis and Hersh (1981) described the writing of the ideal mathematician as
follows:

His writing follows an unbreakable convention: to conceal any sign that the author or the
reader is a human being. It gives the impression that, from the stated definitions, the
desired result follows infallibly by a purely mechanical procedure. (p. 36)

In particular, in mathematical writing, the use of the pronoun BI^ is avoided, unless the
author’s identity had relevance (e.g., Knuth et al., 1989). Burton and Morgan (2000) inferred
that, Bthe unwritten assumption here is that, in most cases, the author’s persona is not relevant^
(p. 437). Burton and Morgan (2000) noted that the presence of human agency is often lacking
in mathematical papers, although this convention is sometimes broken as a way of positioning
oneself within the mathematical community.

3.2.2 A proof is an autonomous object, not a description of a problem-solving process

In a proof, the author does not usually describe the processes that she used to create the proof
(e.g., Selden & Selden, 2013). A report of the problem-solving process is necessarily expend-
able; if it were not, the validity of the proof could not be judged a priori as it would depend
upon the experiences of the author.

3.3 Value 3: proofs should increase mathematicians’ understanding

Some mathematicians argue that what they desire is not only a list of true mathematical
theorems but also (and perhaps primarily) an understanding of the mathematical theory that
they are studying (e.g., Thurston, 1994; Rav, 1999). Thurston (1994) specifically made this
point as follows: Bwhat we [as mathematicians] are doing is finding ways for people to
understand and think about mathematics^ (p. 162, italics were the author’s emphasis).
Articulating exactly what constitutes mathematical understanding is an elusive theoretical
problem that has vexed philosophers and mathematics educators for decades; the issue of
how this understanding is constructed also remains open. Nonetheless, there is consensus that
some mathematical proofs can help convey mathematical understanding, both for mathema-
ticians (e.g., Steiner, 1978; Rav, 1999) and for students (De Villiers, 1990; Hanna, 1990).

Unfortunately, the quest of a priori truth and mathematical rigor is sometimes at odds with
gaining understanding. Thomas Hales, a mathematician, observed:

Traditional mathematical proofs are written in a way to make them easily understood by
mathematicians. Routine logical steps are omitted. An enormous amount of context is
assumed on the part of the reader. Proofs, especially in topology and geometry, rely on
intuitive arguments in situations where a trained mathematician would be capable of
translating those intuitive arguments into a more rigorous argument. In a formal proof,
all the intermediate logical steps are supplied. No appeal is made to intuition, even if the
translation from intuition to logic is routine. Thus, a formal proof is less intuitive, and yet
less susceptible to logical errors. (Hales, 2003, as cited in Devlin, 2003, para. 37–38)

Hales lists several norms of proof that are in place to increase comprehensibility, including
the omission of routine logical steps and the allowance of intuitive arguments, provided a
knowledgeable mathematician could provide a more rigorous argument. To Hales, these norms
do not affect the proof’s validity, or as the above excerpt indicates, pose only minor threats to
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the validity of the proof. Proofs that violate these norms might still be judged as Bcorrect^ by
the community, but as Burton and Morgan (2000) documented, mathematicians may find these
proofs to be insufficiently comprehensible to warrant publication or acceptability. Below, we
discuss four examples of norms meant to increase comprehensibility.

3.3.1 Routine calculations and obvious justifications are omitted from a proof

As noted above, these are not included in a proof (see also Selden & Selden, 2013). One
rationale for this is that a reader bogged down in extensive calculations would be less able to
perceive the overarching arguments contained in the proof. Furthermore, because a trained
mathematician can carry out such calculations or identify implicit warrants, the omitted details
are understood as being available without being articulated.

3.3.2 Irrelevant statements are not presented in a proof

There is the expectation that when an inference or assumption is introduced in a proof, it will
be built upon at a later point. As Selden and Selden (2003) noted, stating a true statement or
adding an irrelevant assumption cannot render the proof invalid, but it is not ordinarily done.
One reason is that the reader of a proof will assume all statements in the proof play some role
in the final chain of argumentation. Adding irrelevant statements or assumptions will confuse
the reader as she struggles to find out how this is relevant (Lai, Weber, & Mejía-Ramos, 2012).

3.3.3 Published proofs are typeset to reveal their mathematical structure

Konoir (1993) noted that mathematicians employ a number of typesetting conventions to
reveal the structure of their proofs. For instance, portions of a proof that are indented indicate
to the reader that a sub-proof is being discussed and that its contents are independent of the rest
of the proof (implicitly suggesting that if the reader accepted the claim being proven, the reader
can simply omit this part of the proof). The mathematicians in Lai et al. (2012) study indicated
that they would center particularly important statements in their proof for emphasis.

3.3.4 Symbol choice follows conventions

In mathematical writing, close attention is paid to symbol choice (Halmos, 1970). Mathema-
ticians avoid using the same symbol to refer to different objects in the same proof (Selden &
Selden, 2013) and some symbols are typically used to refer to the same class of objects. For
instance, B+^ usually denotes a binary commutative operation, f usually refers to a function,
and x usually refers to a variable. As Halmos (1970) humorously noted, you would not expect
to read Blet 6 be a group^ even though such a statement would be syntactically permitted.

3.4 Value 4: mathematicians desire a consistent set of norms and practices

To the extent possible, it is desirable to have a consistent set of norms and practices across
mathematical disciplines. In this sense, mathematicians have a paradigm (in the sense of
Kuhn, 1962) for what constitutes an appropriate problem (provable theorem), method of
solution (proof), and standards for evaluating proposed solutions (the aforementioned cluster
of norms). While there is some variety in the standards of proof held by various sub-
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disciplines, there is a general consensus among the mathematical community that conjectures
become theorems when they are proven and the proofs should (to the extent possible) be a
priori, verified independently of the author’s experience, and written so that reasonable
attempts are made to foster comprehension. Manin (1998) argued as much when he said:

Epistemologically, all of us who have bothered to think about it know what a rigorous
proof is. It has an ideal representation which was worked out by mathematical logicians
in this century, but is now only more explicit and not fundamentally different from the
notion Euclid had. (p. 154)

His claim that the original notion of proof is Bnot fundamentally different^ but is now
Bmore explicit^ could be reframed to say that Euclid’s Elements has always served as the
paradigm; it was based on the same axiology and broad methodological principles as contem-
porary mathematics. Modern mathematicians have only changed in how they codified explicit
norms. Having this shared paradigm permits normal science to occur, allowing mathemati-
cians to make steady and shared progress without having to continually engage in methodo-
logical or philosophical debate (Kuhn, 1962).

4 Challenges with establishing classroom proving practice

Numerous mathematics educators and influential organizations desire that proof play a central
role in mathematics classrooms at all levels (e.g., Common Core State Standards for
Mathematics, 2012; Department of Education, 2013; NCTM, 2000; Stylianides et al., 2016).
What should these classroom proving practices entail? One cannot expect the practices of
mathematics classroom communities to perfectly mimic the practices of professional mathe-
matical communities. Classroom communities are, at best, approximations of professional
communities (e.g., Dowling, 1998). This is necessarily the case with proving practice, both
because mathematicians have access to representational systems and conceptual tools that
students lack (Weber et al., 2014) and because the needs of the classroom community
sometimes differ from those of the mathematical community (Staples, Bartlo, & Thanheiser,
2012). Nonetheless, mathematics educators’ pedagogical aims with respect to proof are
informed by mathematicians’ proving practice (Harel & Sowder, 1998; Herbst & Balacheff,
2009; Weber et al., 2014). In particular, one obligation that mathematics educators and teachers
have is to avoid presenting proof to students in a way that distorts the proving practice of
mathematicians (Herbst & Balacheff, 2009).

There is not a consensus among mathematics educators as to what classroom proving
practice should be (e.g., Cirillo, Kosko, Newton, Staples, & Weber, 2015). Nonetheless, it
appears that there is general agreement that (i) classroom proofs should be based on deductive
reasoning and not on empirical generalizations (e.g., NCTM, 2000; Stylianides, 2007); (ii) at
least for older students, classroom proofs about a concept should be based on the stipulated
definition of that concept or other facts and theorems that were established as consequences of
those definitions (e.g., Alcock & Simpson, 2002; Edwards & Ward, 2008); (iii) classroom
proof should be more than a description of the proving process and some effort is required for
students to transform intuitive arguments into deductive arguments that show how acceptable
premises necessitate the conclusions that are drawn (e.g., Mamona-Downs & Downs, 2010;
Zazkis, Weber, & Mejia-Ramos, 2016); and (iv) the methods of inference in a classroom proof
should be methods of inference that mathematicians believe to be generally valid (e.g.,
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Stylianides, 2007). Thus, many of the mathematician proof norms that we described above are
analogous to the norms to which classroom proofs should also adhere.

There is ample evidence that students at all levels have difficulty producing these classroom
proofs (e.g., Healy & Hoyles, 2000; Ko & Knuth, 2009; Moore, 1994; Weber, 2001; Weber &
Alcock, 2004) and identifying which arguments should be classified as classroom proofs (e.g.,
Alcock &Weber, 2005; Healy & Hoyles, 2000; Selden & Selden, 2003; Weber, 2010). What is
more revealing is that students have difficulties with the norms themselves. For instance, many
students do not appreciate the role of definitions in the proofs that they write (Alcock &
Simpson, 2002). They think that empirical or perceptual arguments should constitute an
acceptable form of proof (e.g., Harel & Sowder, 1998). In general, many students are utterly
perplexed by what constitutes a proof (e.g., Mamona-Downs & Downs, 2005). Even when
students do follow these norms, they sometimes wonder why they are required to do so (e.g.,
Segal, 1999).

We argue that our analysis of proof with respect to norms and values can shed light on
why this is the case. In classroom proving practice, students are being asked to adopt
mathematicians’ proof norms, but students may not perceive the mathematicians’ values
that those norms are intended to uphold. To the mathematical community, the norms that
are in place represent an intellectual achievement. These norms are the mathematical
community’s solution, obtained through communal negotiation, to the difficult question
of how the community can increase the likelihood or extent to which their shared values
can be achieved. To students who do not share mathematicians’ values, classroom proof
norms represent arbitrary solutions, transmitted via imposition, to questions the students
never asked and might not even consider meaningful. As Solomon (2006) emphasized,
asking students to adapt norms without corresponding values can leave students feeling
passive and marginalized with respect to their learning of proof.

The transposition of proof and proving into the classroom also must respect the unique
values imposed by the pedagogical context. For instance, many researchers on teaching
proving have sensibly advocated loosening various norms for the purpose of encouraging
students’ genuine insights (such as acknowledging generic proofs that rely on examples, but
often display generalizable lines of inference, e.g., Ball & Bass, 2000). We find that attending
to values and their related norms helps frame and understand this shift in classroom proving.
We also think it could guide a much-needed discussion on how the transposition of proof and
proving to the classroom may vary at different levels of instruction.

In what follows, we explore how analyzing values and norms helps address four questions
relating to students’ misunderstanding of or resistance to mathematical norms (sections 4.1–
4.2), mathematicians’ deficit interpretations of some students’ proving abilities (section 4.3),
and an overarching view of what it means to enculturate students into proving practice
(section 4.4).

4.1 Do students prove to attain reliable knowledge or a priori knowledge?

The distinctions between the value of highly reliable knowledge and a priori knowledge has
been discussed by some philosophers (e.g., Fallis, 2002; Paseau, 2011), but generally has been
ignored by practitioners and mathematics education researchers. Mamona-Downs and Downs
(2010) acknowledged this difference when they noted that Bthe point [of proof] is not so much
about conviction, but how we can clarify the bases of the reasoning employed^ (p. 2338).
Elsewhere, we have argued that mathematics educators often conflate a priori knowledge and
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reliable knowledge, treating a convincing argument as the fundamental metaphor for what a
proof is (Stylianides et al., in press; Weber & Mejia-Ramos, 2015).

Prior research demonstrates that many students struggle when they are asked to adhere to
the norms upholding a priori and impersonal knowledge, particularly avoiding the use of
empirical evidence and relying strictly on deductive evidence (Healy & Hoyles, 2000; Harel &
Sowder, 1998). Prior studies indicate that some students may come to accept and act in
accordance with these norms, particularly with avoiding empirical arguments (e.g., Brown,
2014; Healy & Hoyles, 2000; Segal, 1999) and visual arguments (Weber, 2010), even while
these students think these norms serve no purpose.

In mathematics education, many researchers desire that students justify mathematical asser-
tions with deductive reasoning and not empirical reasoning on the grounds that deductive
reasoning alone is how mathematicians gain certainty in mathematical assertions (Harel &
Sowder, 1998). If students are told that the justification for using deductive reasoning is that it
alone eliminates the possibility of error, then one can see why students would be perplexed. There
are situations in which empirical and authoritative evidence provide legitimate grounds for
believing mathematical claims (and some mathematicians indeed believe mathematical claims
on these grounds, as documented in Weber et al., 2014). Demonstrations on dynamic geometry
software are common classroom occurrences where empirical evidence provides adequate
grounds for believing a claim for both students and mathematicians (De Villiers, 2004).

It becomes especially problematic to say that in order to increase the reliability of our
knowledge, proofs must be deductive while recognizing that students at all levels, even
mathematics majors, have difficulty detecting errors in proofs (e.g., Healy & Hoyles, 2000;
Selden & Selden, 2003; Weber, 2010). Hence, it is entirely sensible for students to question
whether norms of deductive reasoning fully and uniquely uphold the value of having reliable
knowledge.

4.2 Why should students desire methodological consistency?

Instructors of proof-oriented courses frequently present false proofs or deceptive diagrams
intended to teach students the Bdangers^ of empirical induction, non-generalizable deduction,
and diagrams. These spurious arguments are used to justify the norm that students should only
employ inferential techniques that are generally valid (or explicitly justify why a technique is
valid in this situation). For instance, a popular example in the mathematics education literature is
to present students with the claim that B1141n2 + 1 is not a perfect square for any natural number
n,^ a claim that is only true for the first 1025 natural numbers. This is done so that students will
cease arguing that a claim is true for all natural numbers by verifying the claim holds for a finite
set of natural numbers. Harel and Sowder (1998) claimed that their students were unreceptive to
this argument, although Stylianides and Stylianides (2009) and Brown (2014) found some
success with this, if the activities for students are structured in a particular way.

Using false proofs to teach the dangers of non-deductive reasoning implicitly relies on the
norm that methods that yield a false claim in one situation must be avoided or locally justified
in every situation. This notion of methodological generalizability is quite common in mathe-
matical practice. Logical validity, for instance, can be understood as designating whether a
form of inference is generalizable across semantic content.

However, one can understand why a student would not accept the value of methodological
consistency. In most situations, students are not obligated to use a method of inference in one
situation to all future situations that they encounter. For example, if a student said, Bthe train
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was late for the last three days, so it will probably be late today,^ she should not feel compelled
to say that anything that occurs three consecutive times will probably occur in another
circumstance. If a student did not have the value of methodological consistency, the student
may rightly question whether the Banalogous false proof^ arguments described above are
compelling.

While there are clearly times that students violate norms in ways that render their arguments
open to mathematical rebuttal, in many of these cases, students violate norms in amendable
ways. For instance, when students attempt to prove a trigonometric identity by manipulating
the equality to be proven with reversible algebraic steps, it is hard for students to accept a
justification for why they must reorganize those steps to begin with one expression and
manipulate it into the other. A teacher might choose to show spurious lines of algebraic
inference that involve squaring both sides of an equation. However, for a student who is aware
that each of their algebraic manipulations is indeed reversible, what further justification can be
given for revising the derivation? We have frequently heard students make an objection such
as, Bbut I never tried to justify that −2 = 2, so how is the bad argument that you are showing me
even relevant?^ The notion that the implicit warrant in an argument needs to be generalizable
across semantic content only makes sense when looking for context-independent rules that will
always work. Ultimately, mathematics teachers are asking students to adopt generalizable
forms of inference and argumentation, which is a methodological value mathematicians
maintain. It cannot itself fully be justified, especially in contexts where arguments of invalid
form are nevertheless sound (see Durand-Guerrier, 2008, for a textbook example).

4.3 Why might some mathematicians who teach proofs believe students incapable
of understanding proof?

When students do not recognize the mathematical values that mathematicians hold, they may
not understand the norms imposed to uphold those values. One would thus expect to find
mathematicians and students interacting according to different values to experience dissonance
in their cross-cultural communication. Indeed, in many mathematicians’ reflections on student
learning, one finds just such evidence. When mathematics professors are interviewed about
teaching proof-oriented mathematics, a number of them question whether all students were
capable of learning the material (e.g., Alcock, 2010; Harel & Sowder, 2009; Weber, 2012). A
common analogy that some mathematicians use is to compare learning proving practice to
learning music, suggesting that some students are Btone deaf^ when it comes to learning
proving practice (e.g., Harel & Sowder, 2009; Weber, 2012). Consistent with this view,
Halmos (1970) remarked (without citing evidence) that Bto understand syllogism is not
something that you can learn; you are either born with the ability or you are not^ (p. 124).
Hence, in this view, teaching proof-oriented mathematics to the unlucky students who are not
born with that ability will not be possible.6

We strongly disagree with the view that there are students who are innately Btone deaf^ with
respect to proof. We also note that some mathematicians disagree with this viewpoint as well,
such as Epp (2003) who has worked hard to develop instruction to help undergraduates learn
logic and proof. Nonetheless, we think it is important to understand why it seems plausible to

6 The work of Bieda (2010) suggested that this belief may be held by some elementary and secondary teachers as
well. Bieda found that some middle school teachers in the USA devoted little attention to proving activities
because they felt that only the most exceptional students were capable of writing a proof.
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the mathematicians that we described above. We offer a hypothesized account for how these
mathematicians’ beliefs can develop. Students who are not cognizant of mathematicians’ values
may nonetheless learn to adhere to some of the norms with respect to proof. However, we
hypothesize that when students do not recognize how these norms support their mathematical
values, the norms will appear arbitrary. Therefore, they will not use the norms flexibly. They
might misapply the norm in a novel situation or over-apply the norm in other situations. They
also might not appreciate a mathematician’s rationale for breaching a norm.7 Using the musical
analogy above, we might figuratively say that these students may be able to play the Bright
notes^ but they will not hear Bthe mathematical music.^ However, we stress that this is not due
to students lacking the innate ability to do advanced mathematics, but rather due to their
operating with a different value system from mathematicians (c.f., Solomon, 2006). Further,
as we argue below, it is not that the students’ value system is necessarily deficient. This accords
well with the pattern of cross-cultural miscommunication. Because mathematicians simply act
within their value system, they may truly perceive it impossible to teach someone who fails to
share those values. As with many cultural interchanges, it is common to attribute failed
communication or understanding to qualities about the other person (e.g., cognitive ability)
rather than to their cultural background (Solomon, 2006; Tannen, 1984).

4.4 Why should students adopt mathematicians’ values?

Our preceding analyses highlight the importance of students adopting mathematicians’ values
if their classroom proof norms are going to be meaningful to them. However, this is
fundamentally difficult as mathematicians’ values are often held without justification. Consider
the following passage from Paseau (2011) in which he argued that mathematicians’ desire for
proof does not mean that one cannot gain legitimate conviction from inductive evidence.

Mathematicians prefer deductive evidence and actively look for it even in the presence
of overwhelming inductive evidence. The reason for this is that they are mathematicians
and as such value deduction […] Mathematicians go on seeking proofs of [conjectures]
in the presence of overwhelming inductive evidence. (p. 144, italics are our emphasis)

In this passage, Paseau claimed that mathematicians value deduction (a hallmark of a priori
justification) not because it offeredmore compelling accounts that theoremswere true but because
they were mathematicians. To us, this is a key point: part of enculturation into the community of
mathematicians involves adopting the value of a priori justification via the deductive paradigm.
Training students to adopt this value ultimately entails training students in an epistemology. We
discuss how teachers might meet this challenge in the last section of this paper.

5 Implications

In this paper, we proposed a theoretical framework for the axiology and methodology of
proving practice in terms of the values mathematicians seek to uphold and example norms to

7 For instance, when lecturing, mathematicians’ proofs violate standards of rigor that they use when evaluating
students’ proofs in an effort to increase student’s understanding of the mathematical content (e.g., Lai & Weber,
2014). However, Lew (2016) demonstrated that students do not consider the role of context, specifically the
differences between lecture, textbook, and student-generated proofs, when deciding how rigorous a proof should
be.
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support those values. Here, we discuss implications of our framework for investigating
mathematical practice, conducting research in mathematics education, and teaching proof in
mathematics classrooms.

5.1 Investigating mathematical practice

Philosophers of mathematical practice often rebut claims that proofs aim to achieve some
epistemic value or that a norm for proof exists via counterexamples. For instance, the existence
of computer-assisted proofs has been used to refute the idea that proofs aim to be a priori or
that there is a firm rule that proofs must be strictly deductive (Fallis, 2002). It is telling that
Laudan (1984) dismissed values that are not realistically achievable as Butopian^ and therefore
irrational; Laudan also described methodology in terms of Brules.^ Our framework challenges
the legitimacy of dismissing values and norms via counterexamples. To us, norms are not rigid
rules that guarantee that some epistemic value is achieved.8 Instead, norms are default
expectations that increase the likelihood of an epistemic value being achieved, but a mathe-
matician can violate a proof norm provided that she supplies a good justification for doing so.
Likewise, simply because mathematicians may sometimes act against a value in a particular
situation does not imply that the value is not influencing their behavior more generally.

In this paper, our delineation of mathematical values and norms is admittedly conjectural.
However, we believe that such claims can be placed on more secure empirical footing. First, to
see if published proofs actually follow a norm (e.g., mathematicians avoid pronouns and
references to personal agency), one can follow Selden and Selden (2013) in selecting a
representative corpus of published proofs and see the proportion of time that this norm is in
place. If the conjectured norm is followed most of the time, a researcher can better understand
the norm by conducting breaching experiments as is advocated by Herbst et al. (2011). One
can create proofs where this norm is violated and show this proof to focus groups of
mathematicians. If the hypothetical norm were operative, we would expect the mathematicians
to recognize the violation of the norm. In discussing how to repair the norm, we would expect
them to reference their mathematical values. Alternatively, and more naturalistically, one could
examine how papers that contain proofs in which a norm is violated are reviewed. If the norm
were operative, we would expect the breach of the norm to be noted in the review.

5.2 Conducting research in mathematics education

At a broad level, we encourage the mathematics education community to devote more
attention to the axiology of mathematics. We considered this in relation to proof, but
researchers can do similar analyses with other activities. For instance, many recommend that
students engage in mathematical modeling (e.g., CCSSM, 2012; Saxe & Braddy, 2015).
Analyses of what constitutes a good mathematical model, why mathematicians create mathe-
matical models, and whether and how mathematicians’ models might differ from engineers’
models would be an interesting research to undertake that could potentially have useful
consequences for classroom design. Because mathematicians teach future engineers and
scientists, how should the axiologies of those fields influence mathematics instruction?

8 Indeed, we question whether in a realistic social scientific practice if there is any set of rules that guarantee an
epistemic value is achieved.
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In the specific case of proof, we challenge the assumption that students’ violation of a proof
norm is an indication of an innate deficit. For instance, if a student favors an empirical
argument to a deductive one, many researchers attribute this to students failing to see the
limitations of empirical arguments and the generalizability of deductive ones. This account
might be accurate but other accounts are plausible as well. As a methodological principle, we
suggest it is important to understand what the students are trying to accomplish with the
arguments that they produce. Such students may have epistemic aims other than guaranteeing
the truth of a claim or viewing the claim as a priori knowledge. For instance, an empirical
argument might be sufficient if one only aims to show a claim is very likely (but not
guaranteed) to be true (a point discussed in Weber & Mejia-Ramos, 2015). As Bieda and
Lepak (2014) illustrated, eliciting such perspectives from students can make students appear
far more rational than one might infer given only the products of their work.

5.3 Teaching proof in mathematics classrooms

At the heart of our cultural frame for mathematical practice is the view that students and
teachers in proof-oriented classrooms are engaging in cross-cultural interactions according to
distinct sets of values. The acknowledgement that values often remain implicit behind the
norms intended to uphold them helps us make sense of the challenges inherent to proof-
oriented instruction and students’ apprenticeship into classroom proving practice. In line with
the view that cultural understanding is generally embedded within cultural know-how, we
maintain that proof instruction—as an apprenticeship in mathematical practice—should not
shift away from proving practice itself. However, our framework of values and norms suggests
that proof instruction must also seek to expose the underlying values that guide that practice. It
is insufficient to train students in the norms of proof if students never develop some means of
understanding and justifying their purpose. Alternatively, we do not advocate teaching the
values of proof apart from the practice of proof.

Teaching at the level of axiology poses a particular challenge. We do not advocate
explaining to students why they should adopt mathematicians’ values, as this would involve
recourse to philosophy or some extra-mathematical activity, which philosophers in the natu-
ralistic tradition have abandoned as pointless (e.g., Maddy, 1997). Instead, we propose two
mechanisms for aligning students’ axiology with those of mathematicians. First, we anticipate
that students are more likely to accept an epistemic aim if they experience that epistemic aim
being achieved. Skemp (1976) made this point with relational understanding, describing
relational understanding as organic. He postulated that once students experience genuine
mathematical understanding in one context, they will value it and seek out similar understand-
ing in other contexts. Experiencing understanding will endorse the mathematical value of
understanding more than a logical argument for why this value is important. Having students
work with norms initially should provide them with the opportunity to experience the values
that the norms are in place to uphold (Pat Thompson, personal communication, September 18,
2006). In this case, the teacher can facilitate this process by encouraging students to reflect on
the epistemic aims that they achieved in their mathematical work.

A second approach is to appeal to the values that were achieved in excellent instances of
mathematics. This is based on the premise that although scientists, mathematicians, and
philosophers often cannot explicate what great science is, they intuitively know it when they
see it (Laudan, 1984; Worrall, 1988; although see Inglis & Aberdein, 2016, who question
whether this is true with proof). Laudan (1984) noted that one way in which scientists adjust
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their axiologies is to align their axiologies with outstanding pieces of science. For instance,
Laudan discussed how appeals to Newton’s theory of motion, which relied on the process of
gravitation that was not directly observable, convinced nineteenth century scientists to value
scientific theories that relied on unobservable entities and theories that did not strictly explain
complex phenomena in terms of simpler processes. This suggests that compelling instances of
deductive proofs may be more valuable for conveying mathematical axiology than false
proofs. Appealing to excellent proofs can help students appreciate the epistemic aims that
proofs can achieve and the norms that support them. Mathematicians, of course, have access to
a wide store of excellent proofs, which may be one reason why the values of proof seem so
natural and intuitive to them. The challenge is for students to be in a position to witness and
appreciate excellent pieces of mathematics themselves.
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