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Abstract While proof is central to mathematics, difficulties in the teaching and learning of
proof are well-recognised internationally. Within the research literature, a number of
theoretical frameworks relating to the teaching of different aspects of proof and proving
are evident. In our work, we are focusing on secondary school students learning the
structure of deductive proofs and, in this paper, we propose a theoretical framework based
on this aspect of proof education. In our framework, we capture students’ understanding of
the structure of deductive proofs in terms of three levels of increasing sophistication: Pre-
structural, Partial-structural, and Holistic-structural, with the Partial-structural level further
divided into two sub-levels: Elemental and Relational. In this paper, we apply the
framework to data from our classroom research in which secondary school students (aged
14) tackled a series of lessons that provided an introduction to proof problems involving
congruent triangles. Using data from the transcribed lessons, we focus in particular on
students who displayed the tendency to accept a proof that contained logical circularity.
From the perspective of our framework, we illustrate what we argue are two independent
aspects of Relational understanding of the Partial-structural level, those of universal
instantiation and hypothetical syllogism, and contend that accepting logical circularity
can be an indicator of lack of understanding of syllogism. These findings can inform how
teaching approaches might be improved so that students develop a more secure under-
standing of deductive proofs and proving in geometry.
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1 Introduction

The teaching and learning of proof is recognised internationally as a key component of
mathematics education and thus of mathematics curricula (Hanna & de Villiers, 2008,
2012). Yet it remains the case that students at the secondary school level (and beyond)
experience difficulties in understanding proof in mathematics in general, and in geometry in
particular. For example, research suggests that when students are asked to prove a mathemat-
ical statement there is a tendency for them to do one or more of the following: rely overly on
empirical data or concrete examples (e.g., Harel & Sowder, 2007; Küchemann & Hoyles,
2006; Martinez & Pedemonte, 2014); not know where to start as the problem statement may be
unfamiliar (e.g., Hoyles & Healy, 2007); or be unable to use existing knowledge strategically
(e.g., Weber, 2001). It seems that even if students might be able to construct a correct proof,
they may still verify its correctness via empirical data (e.g., Harel & Sowder, 2007), and when
asked to produce a proof they tend to construct an empirical-numeric proof (Stylianou,
Blanton, & Rotou, 2015). Paralleling this evidence is research reporting that students at school,
or even at undergraduate level, show difficulties when they try to read proofs that have been
provided for them (e.g., Inglis & Alcock, 2012; Lin & Yang, 2007), when they are asked to
judge the suitability of a proof (e.g., Hoyles & Healy, 2007), and when they are asked to write
deductive proofs (e.g., McCrone & Martin, 2004; Senk, 1989).

Here we take deductive proof to be Ban appropriate argument supported by valid
reasoning^ (Hanna & de Villiers, 2008, p. 329). Such a definition, of course, raises questions
about what is an appropriate argument and what constitutes valid reasoning. As Hanna and de
Villiers (2012, p. 3) explain, Ba narrow view of proof [as solely a formal derivation] neither
reflects mathematical practice nor offers the greatest opportunities for promoting mathematical
understanding^. In fact, in school geometry, proofs are often presented in a somewhat
formalised form of Btwo-column format^. Yet, as Herbst and Brach (2006) show, such an
approach does not necessarily support students through the creative reasoning processes that
they need if they are to be able to build up reasoned arguments for themselves. On the contrary,
teaching might usefully include a focus on the structural characteristics of deductive reasoning
because these characteristics become increasingly important as students develop from elemen-
tary school mathematics to secondary school mathematics and beyond.

In this paper, we focus on the development of secondary school student’s understand-
ing of the structure of deductive proofs in geometry. We do this because studies indicate
that, in addition to other aspects of proof, students need to understand the structure of
deductive proofs if they are to gain an understanding of, and a capability with, how to
construct proofs (Durand-Guerrier, Boero, Douek, Epp, & Tanguay, 2012). As we
illustrate later in the paper, our classroom studies are with students of about 14 years
of age as this is likely to be the time when they might just be starting to learn to
construct proofs in geometry. This means that they are just at the start of learning about
the structure of relatively simple proofs, but at the same time are at a stage of learning
when many students find proofs difficult to learn. The goal of this paper is to propose a
theoretical framework to capture students’ understanding of the structure of deductive
proofs in secondary school based on our research on students’ developing understanding
of the structure of deductive proofs. A further goal is to gain insights into how teaching
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approaches might be improved so that students can develop a more secure understanding
of proofs and proving.

In this paper, we concentrate on deductive proof in geometry where students are first
introduced to ideas of proof and proving. We mainly focus on two issues: why some students
cannot find proper reasons or theorems to deduce intermediate statements or a conclusion, and
why they might accept a proof that contains logical circularity.

This latter issue has not been fully scrutinised in existing research studies. For example, in a
comprehensive consideration of the key questions for mathematics education research on the
teaching and learning of proof and proving, Hanna and de Villiers (2008, p. 333) raise the issue
of the extent to which students are competent in identifying circular arguments in proofs. Rips
(2002) has argued that the psychological study of reasoning should have a natural interest in
patterns of thought like circular reasoning, since such reasoning may indicate fundamental
difficulties that people may have in constructing and in interpreting even everyday discourse.
However, Rips claims that up until his study published in 2002 there appeared to be no prior
empirical research on circular reasoning. While Rips reports on a study of young adults, later
research by Baum, Danovitch, and Keil (2008) with younger students indicates that by 5 or
6 years of age children show a preference for non-circular explanations and that this appears to
become robust by the time youngsters are about 10 years of age. Our intention is to contribute
to this matter in the context of the teaching and learning of geometry in secondary school.

In what follows, we begin by outlining what we consider as the structural aspects of
deductive proof; in particular, the relationships between singular and universal proposi-
tions (see Section 3). In so doing, we explain the necessity for students to understand the
structure of proofs. This leads to us proposing a theoretical framework to capture students’
developing understanding of the structure of the proofs. Finally, we utilise this framework
to analyse qualitatively some selected episodes from our classroom studies of geometry
lessons in secondary school in Japan in which students discussed the validity of a proof
that contained logical circularity.

2 The role of students’ understanding the structure of deductive proofs

In focusing on students who are beginning to develop their understanding of the structure of
deductive proofs, we start by considering three crucial aspects of proof and proving. The first
aspect relates to understanding a proof as a structural object (Miyazaki & Yumoto, 2009). The
second aspect is seeing a proof as an intellectual activity (Balacheff, 1987; Harel & Sowder,
2007). The third aspect entails focusing on the roles, functions, and meanings of proof and
proving (de Villiers, 1990; Hanna & Jahnke, 1993).

In relation to the first aspect, Duval (2002) proposes that, in order to be able to construct a
proof, it is essential to organise premises, conclusions, and theorems. In particular, Duval argues
that one of the awareness that learners need to develop entails Bbecoming aware of the
discrepancy between a valid reasoning and a non-valid reasoning^ (Duval, 2002, p. 63). Thus,
as well as being an appropriate argument supported by valid reasoning, we also take a deductive
proof to consist of the following components: singular propositions (premises, conclusions, and
intermediate propositions between them), universal propositions (theorems, definitions, etc.), and
the appropriate connectives between singular propositions and universal propositions.

Heinze, Cheng, Ufer, Lin, and Reiss (2008, p. 445) argue that constructing a proof with
valid reasoning in geometry entails a bridging process involving the following elements:
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understanding Bthe given information and the status of this information^; recognising Bthe
crucial elements (premise, argument, conclusion)^; constructing, especially in multi-step
proofs, Bintermediary conditions for the next step of deduction by hypothetical bridging^;
and coordinating Bthe whole process^ by organising Bthe discourse into an acceptable
sequence^. Within the bridging process, from a predicate logic point of view, at least two
types of deductive reasoning are employed: universal instantiation (which deduces a singular
proposition from a universal proposition) and hypothetical syllogism (which connects singular
propositions logically to bridge between the premises, the intermediate propositions and the
conclusion. Here we take hypothetical syllogism as a type of syllogism whose premises belong
to not less than one compound proposition including conditionals Bif, then^). In particular, in
the bridging process, these two types of deductive reasoning are intertwined like the warp and
weft of a textile to give legitimate reasons why the conclusion is a logical consequence of the
premises (see also Weber & Alcock, 2005, p. 35, in which they discuss the importance of
Bwarranted implications^).

As we have just explained, in our research, we consider the structure of deductive proofs as
the network of singular and universal propositions between premises and conclusions, con-
nected with universal instantiation and hypothetical syllogism. As an example, consider a
deductive proof of the statement Bif AB =AC in ΔABC, then ∠ABD= ∠ACD^ that uses the
angle bisector AD (see Fig. 1). Given that Bany mathematical theorem is characterised by a
statement and a proof and that the relationship between statement and proof makes sense
within a particular theoretical context, i.e., a system of shared principles and inference rules^
(Mariotti, 2000, p. 29), in this example the two inference rules (universal instantiation and
hypothetical syllogism) occur within Euclid’s parallel line axiom. Thence, as shown in Fig. 1,
the statement Bif AB =AC in ΔABC, then ∠ABD= ∠ACD^ can be proved.

In the proof in Fig. 1, the reasoning encompasses two singular propositions being deduced
by use of universal instantiation, and then the two propositions being connected through use of
hypothetical syllogism—all of which makes the reasoning valid (Duval, 2002).

With such examples in mind, we define the Bstructure of deductive proofs^ as the
relational network via deductive reasoning that combines singular and universal prop-
ositions. Seeing a proof as an object enables appreciation of the components of a proof
and their inter-connections, how a proof is composed of these components, and why a
proof needs the structure that it has.

The second aspect of proof and proving is seeing a proof as an intellectual activity
(Balacheff, 1987; Harel & Sowder, 2007). By focusing on the activity aspect of proving, it
is possible to consider questions of what is involved in the proving activity and what
supports it. The third aspect of proof and proving involves the roles, functions, and
meanings of proof and proving (de Villiers, 1990; Hanna & Jahnke, 1993). Examining
the functional aspects of proof and proving can contribute to clarifying how proving
contributes to understanding what mathematical knowledge is, why it is necessary, and
how the functions of proof get embodied with meaning.

These three aspects of proof and proving can be thought of as underpinning the curriculum
for the teaching of proof and proving across primary and secondary education (and beyond).
What is more, the three aspects need to be interrelated to establish the effective teaching and
learning of proof and proving over the long term. In this paper, we particularly focus on the
first aspect, the structure of deductive proofs. At the beginning stages of proof teaching,
mathematical reasoning is learnt informally; for example, through activities that involve
learners in explaining their reasoning inductively. In order to make such informal proving
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more formal, students learn that a deductive proof is a deductive method that draws a
conclusion from given premises and also how definitions and theorems (i.e. already-proved
statements) are used in such proving. Here, a focus on the structure of deductive proofs is
crucial. The explicit teaching of the structure of the proofs, in turn, enhances the quality of the
teaching and learning of the proofs. All this underlines that the teaching and learning of a proof
as a structural object plays a central role in the long-term learning of proof and proving.

3 Theoretical framework: three levels of understanding of the structure
of deductive proofs

In this section, we examine critically the ideas attained by previous studies based on the structure
of deductive proofs in the developmental process of understanding of proofs. From this we
propose our framework of three levels of understanding of the structure of deductive proofs.

3.1 Developmental process of understanding of proofs

According to Pegg and Tall (2010, p. 469), current frameworks describing conceptual growth
can be separated into Bglobal frameworks of long-term growth^ such as the van Hiele’s levels
of geometric thought (1959/1984) and Blocal frameworks of conceptual growth^ such as
procept theory (Gray & Tall, 1994). For example, the van Hiele model, a well-known model
of the long-term growth of thinking in geometry, characterises levels of geometric thinking.

Proof Reasoning

ΔABC is an isosceles triangle.

In ΔABD and ΔACD,

AB=AC (Definition of isosceles 

triangle)

AD=AD (the same side)

BAD= CAD (AD bisects BAC)

Because if two pairs of sides of triangles 

are equal in length and the included 

angles are equal in measurement, then 

these triangles are congruent, 

ΔABD ΔACD

Because in congruent triangles all 

corresponding interior angles are equal.

ABD= ACD

1)

AD=AD, BAD= CAD then 

ΔABD Δ
universal instantiation of the 

congruency theorem (a universal 

proposition) 

2)

ΔABD ΔACD then ABD=

is deduced by universal instantiation of 

triangles all corresponding interior 

angles are equal; 

3) These two propositions (i) and (ii) are 

connected by using hypothetical

AD=AD, BAD= CAD then 

ABD=

the singular proposition to be proved.

Fig. 1 Proof and reasoning that Bthe base angles of isosceles triangles are equal^

Students’ understanding of the structure of deductive proof 227



Using this model, existing studies have shown that students develop their understanding of
deductive reasoning and proofs in geometry in the latter stages of their thinking, around van
Hiele Level 3 and 4 (e.g., Senk, 1989; Usiskin, 1982).

With theories of local developmental processes, Pegg and Tall (2010) suggest, learners start
by recognising elements of a concept, then relationships between them, and finally they
understand the concept as a whole. In proof and proving, a model that reflects a local
developmental perspective is the Reading Comprehension of Geometry Proofs (RCGP) model
(Lin & Yang, 2007; Yang & Lin, 2008). This model hypothesises four levels of reading
comprehension of geometric proofs; these levels are Bcomprehension of surface (epistemic
value)^, Bcomprehension of recognising elements (micro level, logical value)^,
Bcomprehension of chaining elements (local level, logical value)^, and Bcomprehension of
encapsulation (global level, logical and epistemic values)^ (Yang & Lin, 2008, p. 63).

The RCGP model provides useful insights into how reading comprehension of geometric
proofs might progress, but several points remain to be investigated. First, the model is for
Breading comprehension of proofs^, but in school mathematics, the constructing of proofs is an
important reciprocal activity accompanying Breading proofs^. Both constructing and reading
proofs are regulated by the understandings of proof that contribute to developing related
learning progressions (Empson, 2011). Second, as described in Section 2, universal instantia-
tion and hypothetical syllogism are two types of deductive reasoning in the structure of
deductive proofs that function to chain the elements of proof but the RCGP, understandably,
does not pay detailed attention to the level of Bchaining elements^. Paying attention to universal
instantiation and hypothetical syllogism helps, we argue, to clarify better the Bcomprehension of
chaining elements^ and provide a clearer image of Bcomprehension of encapsulation^.

By refining and adjusting the ideas in the RCGP for our research focus, our framework
proposes a progression of understanding from recognising individual elements of a deductive
proof to recognising the relationships between the elements. In our model, students first pay
attention to the components of the proof (the singular and universal propositions to be used),
next the inter-relationships between these components, and then gradually they grasp the
relational network of the structure of simple proofs (i.e., proofs suitable for secondary school).
Our ideas are derived not only from theoretical reflections on the structure of deductive proofs
but also empirical insights gained from the accumulation of Japanese research findings on the
difficulties of learning and teaching of proofs (MEXT, 2014; Miyazaki & Fujita, 2015). In the
next section we outline our framework in more detail.

3.2 Three levels of understanding of the structure of deductive proofs

In our model, the BPre-structural^ level has the most primitive status in terms of understanding
the structure of deductive proofs. At this level, students regard a proof as a kind of Bcluster^ of
symbolic objects empty of meaning. As such, when they construct a proof, they cannot see
within the structure of the proof that singular propositions are those that are universally
instantiated from universal propositions, nor that hypothetical syllogism is necessary to
connect singular propositions, and so on (they would not, of course, utilise such terminology).
When students at this level are asked, for example, a question involving universal propositions
such as Bin order to prove that the base angles of an isosceles triangle ABC are equal, what
theorems are needed in order to deduce ΔABD ≡ ΔACD?^ (where D is the mid-point of BC,
see Fig. 1), they would not understand what they were being asked, or they may simply answer
with a random singular proposition BBD=CD?^.
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Once a student has started paying attention to each component, then in our framework we
consider them to be at the Partial-structural Elemental sub-level. This level has echoes of the
BRecognizing elements^ level of the RCGP (Yang & Lin, 2008) and the first processes of
Heinze et al. (2008)). However, just recognising elements of proofs is not enough to construct
valid proofs; a student at this level still needs to recognise some logical chaining relationships
between the components of a proof from premises to conclusions (c.f. Yang and Lin, 2008, p.
63; the third process of Heinze et al., 2008).

In order to understand the chaining relationship, first it is necessary to distinguish
premises from conclusion. This is because the students need to identify the premise as
the starting point (Fawcett, 1938). Further, as we argued above, two types of reasoning
(universal instantiations and hypothetical syllogism) construct the chaining relationship.
Once students have started paying attention to these two types of reasoning, then we
consider them to be at the Partial-structural Relational sub-level. For example, if a
student understands universal instantiation (without knowing the terminology), then,
when faced with a question such as BIn ΔABD and ΔACD (Fig. 1), with AB = AC
already assumed, what additional premises should be made to prove ΔABD ≡ ΔACD?^,
the student can answer by stating, for instance, something akin to BIn order to use the
condition of congruent triangles, ∠BAD = ∠CAD and ∠ABD = ∠ACD are needed.^

The understandings concerning universal instantiations and hypothetical syllogism are
independent; the former is related to seeking grounds for reasoning in proof steps and the
latter connects several steps of deductive reasoning. In other words, at the Partial-structural
Relational sub-level, corresponding to the Bcomprehension of chaining elements^ level of the
RCGP (Yang & Lin, 2008) and the Bbridging process^ of Heinze et al. (2008), there exist
students who understand only either hypothetical syllogism or universal instantiations. As
such, we argue that it is necessary to sub-divide the Partial-structural Relational sub-level into
(a) universal instantiation and (b) hypothetical syllogism. In other words, related to the two
types of deductive reasoning, we can distinguish two aspects of understanding the structure of
deductive proofs at the Partial-structural Relational sub-level.

Once a student sees a proof as Bwhole^ (c.f. Yang and Lin, 2008, p. 63; the fourth process
of Heinze et al., 2008) we call this level BHolistic-structural^. Here, premises and conclusions
are logically connected through universal instantiations and hypothetical syllogism as two
intertwined aspects, like the warp and the weft of a textile. After reaching the BHolistic-
structural^ level, students become able not only to reconstruct previously taught proofs, but are
also able to plan and construct their own proofs. In addition, students become aware of the
hierarchical structure of the theorems they use and understand the modular structure of their
proofs (Mejia-Ramos et al., 2012).

Figure 2 illustrates our overall framework. As we have described, this framework
accounts for the local development of the conceptual growth of the structure of deductive
proof. This framework can contribute to devising appropriate learning progressions for
the teaching and learning of the structure of deductive proofs (see Section 4.2) alongside
other conceptual learning. Nevertheless, this framework is not aiming at the long-term
developmental process of the structure of proofs from infants to adults. Our framework is
local rather than global.

Having given an account of our theoretical framework, an issue of which we are aware is
the question of whether actual students’ developmental processes would follow this progres-
sion. We need to be sensitive to such possibilities in empirical studies of our framework as we
turn to showing how we applied our framework to an episode from our classroom research.
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4 Study context and methodology

4.1 Students’ understanding of deductive proofs in Japanese secondary schools

In Japan, deductive proof is explicitly taught in BGeometry^ in Grade 8. Although there is
no official teaching sequence prescribed in the Japanese national BCourse of Study ,̂ a
progression can be found in the seven authorised textbooks and in the practice of many
schools (Fujita & Jones, 2014). Building on informal proofs in earlier grades, students in
Grade 8 are introduced to deductive proof through studying properties of angles and lines,
triangles, and quadrilaterals; here they learn the structure of deductive proofs and how to
construct the proofs, and then explore and prove properties of triangles and properties of
quadrilaterals. Recently, proving as an explorative activity (namely planning, improving,
and advancing a proof, in addition to its construction) is also stressed in teaching and
assessment (Miyazaki & Fujita, 2015). The geometrical statements studied in Grade 8 are
Blocally organised^ (Freudenthal, 1971) mainly via parallel lines and congruent triangles.
Within this Bsystem^ (in the sense of ‘Mathematical Theorem’; see Mariotti, 2000),
students learn deductive proofs in geometry (Miyakawa, 2016).

As in the case elsewhere in the world, many students in Japan find the learning of
deductive proofs very difficult. For example, there is evidence that students who have just
started learning the proof may often accept proof with logical circularity (Kunimune,
Fujita, & Jones, 2010).

4.2 A sequence of lessons to introduce the structure of deductive proofs

Informed by our theoretical framework, we have undertaken a research project that
entailed a series of lessons designed for the teaching of the introductory stages of proof
learning for Grade 8 students (aged 14 years old in Japan) in order to enhance their
capabilities with deductive proof in geometry. By Grade 8, students are given learning
opportunities to explain why geometrical properties are correct, and to deduce them by
using already-learned properties. The experimental lessons we designed aimed to initiate
Japanese students inexperienced in proof into mastering deductive proofs fruitfully so that
they could develop the competencies to construct such proofs for themselves and tackle
the more-complicated proofs encountered in subsequent lessons.

One of the features of the sequence of lessons that we designed is the use of flow-chart
proofs (see, for example, McMurray, 1976), a format that pictures the deductive relations
amongst singular and universal propositions from premises to conclusion, as per the example
in Fig. 3. The idea is that a flow-chart proof can be used before using other proof formats such
as paragraph proofs or two-column proofs. Related ideas can be found in Gardiner (2004), in

Fig. 2 A framework of understanding of the structure of deductive proofs
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Leron (1983), and in Back, Mannila, and Wallin (2010). Furthermore, the representational
characteristic of flow-chart proof can take the role of mediational means between natural
language and functional language (Balacheff, 1987) as symbolic systems. Accordingly, flow-
chart proofs as Btransitional auxiliary representation^ (Duval, 2006, p. 111) would help
provide a visualisation of both the connection between singular propositions via hypothetical
syllogism and the connections between a singular proposition and the necessary universal
proposition in the form of universal instantiation towards the Partial-structural Relational sub-
level of the structure of deductive proofs.

The design of the lessons had three learning phases as follows: (1) constructing flow-chart
proofs in an open situation (four lessons); (2) constructing a paragraph proof by reference to a
flow-chart proof in a closed situation (three lessons); and (3) refining paragraph proofs by
placing them into a flow-chart proof format in a closed situation (two lessons). Here, an open
situation is a proof problem for which there is more than one acceptable proof, while a closed
situation is a proof problem for which there is only one acceptable proof.

In the first learning phase, constructing flow-chart proofs in an open problem situation
helped to scaffold students’ understanding of the structure of deductive proofs (Miyazaki,
Fujita, & Jones, 2015). Since students at this early stage of learning about a deductive proof
might see it as a rather meaningless set of symbols about the properties of geometric shapes,
through the follow-chart proving we provided a visualisation of the structure of the proofs. By
this graphical representation, this phase was designed to support students to understand how to
Bassemble^ a proof as a structural entity. We expected this to support students’ shifts of their
levels from Partial-structural to Holistic level.

We illustrate the tasks by the example in Fig. 4 intentionally designed so that the premises
used to draw a conclusion can be chosen freely. Here, students are likely first to consider which
properties and theorems should be used to prove B∠B = ∠D^ (i.e. thinking backward), then
how premises and conclusions should be deductively organised, which theorems should be
used (i.e., thinking forward), and so on. In our design, such a task aims to stimulate flexible
forward/backward approaches to proof construction (Matsuda & VanLehn, 2005). Thus, we
can expect that flow-chart proofs in an open situation encourage thinking forward/backward
interactively, accompanied by relational understanding of the structure of deductive proofs.

In the second learning phase, during which the use of open problems is reduced, the
learning was designed to shift from graphical flow-chart format to paragraph format. Here
students were expected to construct flow-chart proofs in a Bclosed^ situation (a problem with
the proposed remises/Bgivens^ and conclusions, as typically appear in textbooks; e.g. a

Fig. 3 An example of a flow-chart proof
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problem as in Fig. 1). Given that during the first phase students would have become familiar
with constructing the Bstoryline^ of a proof, in this second phase they especially learnt how to
translate the arrows in the flow-chart proofs corresponding to hypothetical syllogism into the
appropriate linguistic tokens.

Finally, in the third learning phase, students constructed paragraph proofs in closed problem
situations from scratch, and then refined their proofs by placing them into flow-chart proof
format if necessary.

4.3 Data analysis procedure

For the purposes of this paper, we select episodes from the lessons from the three phases
implemented in 2008 in a class of Mr. Y, a teacher with more than 20 years of experiences of
mathematics teaching. In this Grade 8 class in a state school in Japan, there were 21 boys and 9
girls, all considered as Btypical^ for Grade 8. For our research, all lessons were video-recorded,
with this data supplemented by field notes.

After preliminary analysis, we particularly noted the first and fourth lessons in the first
phase were the most interesting, as students’ Pre- and Partial-structural elemental sub-level of
understanding was particularly observable. In the first lesson, the students had used a one-step
flow-chart proof to prove that two given triangles were congruent, but in the fourth lesson they
tackled the proof problem in Fig. 4 which consists of two steps of deductive reasoning:
deducing the congruency of triangles from the assumptions and deducing the equivalence of
angles from the triangle congruency. The two lessons were transcribed in full and were
analysed qualitatively in terms of the framework presented in Section 3.

5 Analysis of classroom episodes

5.1 Pre-structural level and partial-structural elemental sub-level of understandings

One example of pre- and partial-structural elemental sub-levels of understandings occurred in the
first lesson of the first phase when the students, who had just started learning about deductive
proofs with congruent triangles, undertook the multiple-solution problem illustrated in Fig. 5.

In the lesson, a student tried to use BAO= ∠BDO^ as one of the premises. This can be
considered as Pre-structural level because it is a rather random attempt to use a geometric fact.
Another student thought of using the SSS condition of congruency to complete a proof but

In the following diagrams, we would like to prove B= D. What do 
we need to show this, and what conditions of congruent triangles can 
be used? Complete the flow-chart !

O

A

DB

Fig. 4 A flow-chart proof in open situation provided for students
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could not specify which pairs of sides should be chosen. Later this student tried to use
B∠AOC = ∠BOD^ despite the SSS condition. This is an example of a Partial-structural
Elemental sub-level response as the student was starting to pay attention to some components
of proof, but did not know how to specify these components in accordance with the SSS
theorem chosen (i.e. universal instantiation).

Mr Y then gave this student a hint; he said BIn this diagram, which corresponding sides
should be chosen to use the condition ‘If corresponding three sides are equal, then the two
triangles are congruent’?^. At this point, the student said BOK, now I understand what I have
to do…^, and wrote BCO=DO, DB=AC^. This response can be considered as an illustration
of the early stage of the next level BPartial-Structural Relational^ as the student could deduce a
singular proposition BIf AO=BO, CO=DO, AC =DB then ΔABD ≡ ΔACD^ is deduced from
triangle a congruent theorem (a universal proposition). Nevertheless, it is unclear whether this
student would be able to understand the relation between universal and singular propositions in
general or whether their understanding remained limited to the case of congruent triangles.

5.2 Partial-structural relational sub-level of understanding

5.2.1 Understanding of syllogism but not universal instantiation

In the fourth lesson of the first phase, Mr Y posed the problem in Fig. 4 and asked students
BWhat do we need to have in order to prove ∠B = ∠C?^. The students worked on this problem
and, based on their ideas, agreed that a way to reach a solution would be to draw a line AO and
then show two congruent triangles ΔABO ≡ ΔADO. All of them constructed more than three
suitable proofs using the use of flow-chart format.

Most students could complete the boxes of singular proposition in the flow-chart format,
but some students could not answer the box which requests the property of congruent figures
(the boxes 4 and 5 in the flow-chart proof of Fig. 4) despite the boxes concerning singular
propositions being completed. For example, student M could answer correctly the boxes of
singular propositions as follows: OA =OA, BO=DO, AB =AD, but he left the box 4 blank
and wrote: BBecause ΔABO and ΔADO are congruent^ in box 5 rather than using the property
of congruent figures that Bin congruent triangles all corresponding interior angles are equal^.
Additionally, despite comparing his incorrect answer with the correct ones of his classmates,
he did not notice his error nor try to correct it. If this student fully understood universal

In the diagram below, we know AO=BO. We want to make ACO 
and BDO congruent. Which angles and sides should be equal and 
what condition of congruent triangles should be used? Complete the 
flow-chart !

Fig. 5 A congruent triangles problem for Grade 8 students
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instantiation, then we would have expected that he could distinguish singular propositions and
a universal proposition and tried to express the universal one with the general words not
including the symbols of the figure at least, which he could not do. As such, from the point of
view of the structure of deductive proofs, this indicates that student M did not notice that he
should show the theorem necessary to deduce ∠B = ∠D from ΔABO ≡ ΔADO although he
could connect premise OA=OA, BO =DO, AB=AD and conclusion ∠B = ∠D by reasoning
deductively with the use of hypothetical syllogism.

5.2.2 Understanding of universal instantiation but not syllogism

In the same lesson, after individual student working, Mr Y chose to display five students’
different proofs on the blackboard. Of the five proofs, three were correct; the other two used
the conclusion B∠B = ∠D^ as a premise—namely, the solutions fell into logical circularity. Mr
Y checked whether each proof was correct—or not—during the classroom discussion. At this
point, some students noticed that B∠B = ∠D^ was used in both the premise and conclusion
boxes in a proof by student A (Fig. 6).

Even though in the previous lessons student A managed to construct correct proofs using one-
step reasoning concerning triangle congruency (as in Fig. 5), in this lesson of two steps of
reasoning, student A constructed four flow-chart proofs, the first three of which were entirely
correct as she properly could decide the premises. Only one of her proofs, shown in Fig. 6, fell
into logical circularity. According to her correct proofs, she could understand which theorems
should be used to deduce a singular proposition from a universal proposition (i.e., universal
instantiation) although she might not have made it clear what should be considered as premises.

After checking the proofs on the blackboard (see the photograph in Fig. 6), the teacher led a
discussion about student A’s proof that used ∠B = ∠D in both the premise and conclusion

AB=AD
BAO= DAO
B D

Condition

ABO ADO
In congruent triangles, 
corresponding angles are the same

Fig. 6 Proof by student A

234 M. Miyazaki et al.



boxes. In this discussion, student K, for example, considered that it would not be appropriate to
use B∠B = ∠D^ in a proof as BWe do not have to write ‘∠B = ∠D’ in box 3 like you [student A]
because this is already there in the proof [on the board]^ (transcript line 283: K). Another
student, S, also pointed out this flaw B‘∠B = ∠D’ is the answer to the question, at the end of our
flow-chart, umm, and if we use it in our proof, then, we have already said they were equal? So,
there is no point to write it again if we have already said this?^ (transcript line 300: S). Even
so, student A defended her proof as BI meant ‘∠B = ∠D’ is a premise in my proof, and I used
premises to prove two triangles are congruent, and then I reached the conclusion, so I think it is
OK^ (transcript line 311: A).

Then the following conversation took place amongst the three students:

322 Student S I think, if we use a premise it would be something we assume is true, and if it is true, then isn’t
it already an answer? I think it is pointless [to use ‘∠B = ∠D’ in a proof]

323 Student A W, why is it pointless?

324 Teacher I think [student K] wants to add something? Please, [student K].

325 Student K I think in this problem we have to prove ‘∠B = ∠D’, or we want to prove this will be
true, and, I just thought we would not be able to use this there [in the box 3], I
just wanted to say this.

326 Student A I think we can use it (‘∠B = ∠D’)!

Student S and student K considered Balready true statements^ can be used as the
premises, and if B∠B = ∠D^ is used as a premise, then this means B∠B = ∠D^ is already
true before being proved. Moreover student K sharply pointed out that using B∠B = ∠D^
as a premise led them to tautology (transcript line 325), but student A could not be
convinced due to without recognising the appearance of tautology. This is an illustration
that there is a case that student A might understand universal instantiation but not
syllogism. In other words, that student A accepted logical circularity can be an indicator
of a lack of understanding of syllogism.

6 Discussion

6.1 Two independent aspects of understanding: universal instantiations
and hypothetical syllogism

In our theoretical framework of students’ understanding of the structure of deductive proofs
with three levels: Pre-structural, Partial-structural, and Holistic-structural, we consider that
understandings concerning universal instantiations and hypothetical syllogism are indepen-
dent, and the classroom evidence that we have provided suggests this is the case. In the first
episode (Section 5.2.1), some students who could logically connect the elements of proofs
could not state clearly which theorems should be used to ground the reason. In the second
episode (Section 5.2.2), the students could complete each box in the flow-chart proof and
could state correctly which triangles were congruent by using appropriate theorems (a use of
universal propositions). From these facts, their levels of understanding are at least at the
Partial-structural Relational sub-level, yet with only partial understanding of universal instan-
tiation. Thus, the necessity of sub-division of Partial-structural Relational sub-level into (a)
universal instantiation and (b) hypothetical syllogism has been empirically justified. What is
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more, some students, such as student S (transcript line 322: S) and student K (transcript line
325: K), could point out the roles of premises and they judged that it would not be appropriate
to use B∠B = ∠D^ as a premise to prove the conclusion B∠B = ∠D^. This is indicative of their
understanding being at the beginning of the Holistic level.

6.2 Acceptance of logical circularity as indicator of lack of understanding
of syllogism

We showed how studentA, for example, considered that a premise is necessary to prove a statement
locally, and she just used B∠B=∠D^ as a premise for her proof. We also noted that she understood
that the singular proposition B∠B=∠D^ is the conclusion. In addition, student A insisted that
B∠B=∠D^ can be used to prove B∠B=∠D^ (transcript lines 311: A; 326: A). She explained her
reasoning as B∠B=∠D^ can be used to deduce two triangles are congruent, and from congruent
triangles it can be deduced B∠B=∠D^; therefore, it would be no problem for her to use this in her
proof.We consider that this viewpoint was her lack of understanding of hypothetical syllogism that
connects singular propositions in a proof. She could see the following two parts of her proof were
logically true: (specifically, 1. AB=AD, 2. ∠BAO=∠DAO, 3. ∠B=∠D, Fig. 7 below upper left)
and (4. ΔABO ≡ ΔACO and 5. ΔABO ≡ ΔACO→ ∠B= ∠D, Fig. 7 upper right). Each part
includes a singular proposition of these components that was universally specified from theorems.

While this is not problematic when these parts are examined individually, to complete a
proof, these two parts (left and right) should be connected by hypothetical syllogism as shown
in Fig. 7. Yet in the case of student A this is impossible because the statement to be concluded
is used as an assumption, i.e., there is circular reasoning. As our data show, some students in
our study had no problem to accept this as a valid proof, because, we argue, they see that if
each part of a proof is logically true, and the connection of these parts is possible, then the
whole proof would be necessarily true. They could not see a proof as Bwhole^ in which
premises and conclusions are logically connected by hypothetical syllogism.

By considering students like A, we consider that this phenomenon of accepting logical
circularity is strongly related to their lack of understanding of hypothetical syllogism. Conversely,
rejecting such a proof can be used as in indicator for judging that these students might have reached,
or be reaching, Partial-structural Relational level (b) hypothetical syllogism.

Fig. 7 Representation of student A’s understanding of her proof with logical circularity
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7 Conclusion

The teaching and learning of deductive proofs in mathematics is one of the most important
goals in mathematics education. The framework presented in this paper, in focussing on
students’ developing understanding of the structure of deductive proofs, is offered as a
potentially valuable model to improve the teaching and learning of proof in mathematics.
While related studies (e.g., the work on proof schemes, Harel & Sowder, 2007) have revealed
how students perceive a proof, our framework has a possibility to identify other causes of
difficulties of proof in the introductory stage of learning to construct deductive proofs (around
Level 3 and 4 of van Hiele’s levels) and in the bridging process of their proving (Heinze et al.,
2008). At this stage of learning, students can find it difficult to identify which theorem (or
theorems) to use to deduce intermediate statements or a conclusion, or they can accept a proof
even when it contains logical circularity. As our classroom evidence indicates, such students
are still at the Partial-structural Relational sub-level as they lack the ideas of universal
instantiation and/or hypothetical syllogism. Existing studies have not fully explained this.
While we have not so far found different routes of progression to the one we suggest in our
framework (see Fig. 2), investigating this issue further is one of our future tasks.

Our framework offers insights that could inform curriculum design and instructional
development for effective teaching of deductive proofs. In designing an effective curriculum
for deductive proof in secondary school, we argue that it would help if the levels of
understanding of the structure of deductive proof were taken into consideration, with special
attention given to two independent aspects of Relational understanding: universal instantia-
tions and hypothetical syllogism. To develop instructional approaches, we argue that even after
Btelling^ students what is assumed and what is proved in a proof, it remains uncertain what the
students consider about circular reasoning and hence they may continue to accept proofs with
logical circularity. Meanwhile, we consider a proof with logical circularity provides a good
opportunity for students to consider what a proof is, what roles premises have, how the two
kinds of deductive reasoning work, and so on. Future research might focus on how teachers
can encourage learners to focus on the structural relationships between premises and conclu-
sion and how these can be bridged through forms of hypothetical syllogism.
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