
Reinventing fractions and division as they are used
in algebra: the power of preformal productions

Frederick Peck1 & Michael Matassa1

Published online: 22 February 2016
# Springer Science+Business Media Dordrecht 2016

Abstract In this paper, we explore algebra students’ mathematical realities around fractions and
division, and the ways in which students reinvented mathematical productions involving fractions
and division. We find that algebra students’ initial realities do not include the fraction-as-quotient
sub-construct. This can be problematic because in algebra, quotients are almost always represented
as fractions. In a design experiment, students progressively reinvented the fraction-as-quotient sub-
construct. Analyzing this experiment, we find that a particular type of mathematical production,
which we call preformal productions, played two meditational roles: (1) they mediated mathemat-
ical activity, and (2) they mediated the reinvention of more formal mathematical productions. We
suggest that preformal productionsmay emerge evenwhen they are not designed for, andwe show
how preformal productions embody historic classroom activity and social interaction.
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Preformal productions

The study reported in this paper was motivated by our observations—as educators and researchers
in Algebra I classrooms—that there is often a mismatch between students’ prior experience with
fractions and the way that teachers use fractions in introductory algebra. How are fractions used in
algebra?Consider Eqs. 1 and 2 below,where, for each, the task is to solve for the unknown variable:

4x−8 ¼ 0 ð1Þ
9y−7 ¼ 0 ð2Þ
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Superficially, there seems to be little difference between the two equations.
However, there is one key difference: Eq. 1 has an integral solution, while Eq. 2
does not. In our experience, this difference makes the two tasks very different for
students in introductory algebra. The difficulty occurs at the division step in the
traditional algorithm for solving equations (for example, in Eq. 2, the division step
would come after adding 7 to both sides of the equation, and it would involve
dividing 7 by 9 in order to find y). Students’ solution processes up to the division
step are similar for both equations. However, we see many more mistakes in the
division step for equations without integral solutions, like Eq. 2. These mistakes take
many forms. Some students will state that the problem is not solvable, because, to
take Eq. 2 as an example, Byou can’t divide 7 by 9.^ Other students do the division
backwards (e.g., they solve Eq. 2 by dividing 9 by 7).

Furthermore, in our experience nearly all introductory algebra students who attempt the
division use the division symbol (÷) to represent the division operation, and use the long
division algorithm to express their final solution in decimal notation. Few students use the
fraction bar to represent the division operation or use fractions to represent their solutions. This
last point may seem trivial: why should it matter if a correct answer is expressed in decimal
notation or fraction notation? However, it is important because it suggests that students do not
seem to recognize that a fraction can be used to represent, simultaneously, a division problem
and the numerical result of the division problem (this is often referred to as the quotient sub-
construct of rational number, Kieren, 1980; see the review of the literature on fractions-as-
quotients below).

If this is true, it is especially concerning because the fraction bar will serve as a
division symbol, and hence fractions will serve as quotients, for the rest of a student’s
mathematical life (Rotman, 1991). Furthermore, fraction vocabulary will come to be
synonymous with division vocabulary. For example, the slope of a linear function can
be conceptualized as the change in the dependent variable per unit change in the
independent variable. Such unit rates are calculated by dividing, but they are repre-
sented by fractions (e.g., Δy

Δx), and they are verbalized using language that only makes
sense in terms of fractional representations (e.g., delta y over delta x or rise over run,
where the word over designates a position in a fraction, but mathematically can be
interpreted as a division operator).

It is therefore vital that students have experiences in which they come to under-
stand that fractions can represent quotients, and that the fraction bar can be interpreted
as a division operator. Our observations (discussed above) suggest that many students
who enter our introductory algebra course have not had such experiences. But is this
really the case? If so, how can it be addressed in an algebra classroom? To explore
these questions, we engaged in a design experiment (Cobb, Confrey, Lehrer, &
Schauble, 2003; Steffe & Thompson, 2000), the results of which are summarized in
this paper.

To begin, we will discuss our conceptual framework and then summarize the
relevant literature on fractions-as-quotients and on design experiments on fractions.
In doing so, we situate our study in the vast literature on how students learn fractions.
We will then describe the design of our experiment and our specific research ques-
tions. We follow this with a description of the learning activities that emerged in the
experiment. Finally, we discuss the pertinent results and highlight our contributions to
theory and practice.
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1 Conceptual framework and literature review

1.1 Realistic mathematics education

Our design experiment was guided by the principles of Realistic Mathematics Education
(RME; Freudenthal, 1973, 1991), which is based on Hans Freudenthal’s belief that mathe-
matics is not a ready-made structure, but rather the human activity of structuring the world
mathematically (which Freudenthal called mathematizing).

This belief led Freudenthal to conclude that mathematics education should not be con-
cerned with the transmission (or even the discovery) of formal mathematics, but rather with
engaging students in the activity of mathematizing. He recognized that in order to be
meaningful, such activities had to be rooted in the student’s reality. However, this did not
mean that Freudenthal rejected formal and abstract mathematics. On the contrary, he observed
that mathematicians use and discuss abstract (and in some sense, imaginary; Núñez, 2009)
mathematical productions as if they were real objects. Indeed, for the mathematician, these
imaginary productions are real objects, and formal mathematics is reality.

Mathematics education, then, should involve engaging students in activity such that
mathematical productions become real to students. Broadly, mathematical productions can
be categorized at three levels of formalization (Webb, Boswinkel, & Dekker, 2008). Students
begin by mathematizing contextual situations. As students engage with these problems, they
draw pictures and create models. These are models of learning (Gravemeijer, 1999), and are
specific to the problem at hand. These are called informal models. Through further problem
solving, these informal models can themselves be mathematized, leading to more general
models. These are models for learning (Gravemeijer, 1999), and they can be applied to
problems beyond the problem at hand. These are called preformal models. Further problems
encourage students to formalize preformal models into formal mathematics. Formal produc-
tions are stripped of all contextual clues, making them potentially very general, but also very
abstract.

This process of progressive formalization (van Reeuwijk, 2001) has been theorized as a
process of emergent modeling (Gravemeijer, 1999), in which models are reinvented through a
chain of signification (Gravemeijer, 1999; Whitson, 1997). At first, informal models signify a
particular context or situation. This forms a sign that consists of a signifier (the informal
model) and a signified (the problem context). In subsequent activity, this sign is itself signified
by more general models. The process continues such that models at one level signify those
signs that came before, and the new sign is signified by those that come after. We draw on this
notion to define learning as the reinvention of mathematical productions, and conceptualize
the process of learning formal mathematics as one of emergent modeling via a chain of
signification. However, in this paper, we do not limit ourselves to models when we discuss
the productions that form the chain of signification. Instead we demonstrate the value of a
broader view, and we include all manner of productions, including models, tools, and
strategies.

Chains of signification are created as students engage in mathematical activity. Problem
situations play a key role: they set the stage for students’ initial informal productions, and they
drive the creation of more formal productions. The focus on thoughtfully designed problem
situations in RME is reminiscent of the Theory of Didactical Situations (TDS; Brousseau,
1997). In both RME and TDS, students are presented with problem situations that are
Bbegging to be organized^ (Gravemeijer & Terwel, 2000, p. 787), and which the students
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can take ownership of. In TDS, these well-designed problem situations are called adidactical
situations. The term situation has a broader meaning in TDS, encompassing the task, the
students, the teacher, and the milieu in which teaching and learning take place. There is no
question that the elements of this broader situation play important mediating roles in learning,
and more recent conceptions of RME (Cobb, Zhao, & Visnovska, 2008) have attempted to
incorporate this broader perspective. In our discussion section, we consider the mediating role
of the teacher. However, for most of this paper we focus on the problem situations, the
students, and the mathematical productions that emerged as students interacted with the
problem situations.

1.2 Literature review: rational numbers as quotients

Kieren (1980) identified five sub-constructs for rational numbers: (1) Part/whole, (2) Ratio, (3)
Quotient, (4) Measurement, and (5) Operator. While these sub-constructs are related, the
contexts in which they arise are very different. For example, consider how the fraction 3

4 might
be interpreted under the part/whole and quotient sub-constructs: (Lamon, 2005):

Part/whole: I have one pizza, cut into four equal pieces. If I eat three of those pieces, I
have eaten 3

4 of the pizza.
Quotient: If three pizzas are shared equally among four people, each person receives 3

4
of a pizza. Hence, 3� 4 ¼ 3

4

Before discussing the literature on rational numbers as quotients, we first have to address an
issue of terminology regarding the terms fraction and rational number. Following Lamon
(2007), we define fraction as a form of notation that expresses a multiplicative relationship
numerically as a

b. We define rational numbers as the set of numbers that can be expressed as
the quotient of two integers. Rational numbers may be written as fractions, but they can be
expressed in other ways as well (e.g., 12 and 0.5). At the same time, two different fractions (e.g.,
1
2 and

2
4) may represent the same rational number. Finally, it is possible to express non-rational

numbers as fractions (e.g., π
2). In this paper, we are often interested in the fraction represen-

tation. When we mean to invoke the a
b notation, we use the term fraction.

The part-whole construct is the canonical sub-construct for most students and schooled
adults (Lamon, 2007). Students are more successful when solving problems that involve the
part-whole sub-construct than they are when solving problems involving the other sub-
constructs, and mastery of the part-whole sub-construct is only very weakly correlated with
mastery of the quotient sub-construct (Charalambous & Pitta-Pantazi, 2006; Clarke, Roche, &
Mitchell, 2007). Furthermore, evidence suggests that overemphasis of the part-whole sub-
construct can actually be detrimental to the development of the other sub-constructs (Pitkethly
& Hunting, 1996).

These results suggest that the quotient sub-construct is qualitatively different than the part-
whole sub-construct, and that students would benefit from more experience with problem
situations—such as fair-sharing multiple whole among multiple people—that lead to an
understanding of fractions-as-quotients. By mathematizing such contexts, students can come
to see that if a items are shared among b people, each person receives a

b items. Further
abstraction and formalization leads to the general statement that a� b ¼ a

b (Confrey, 2012;
Empson, 1999; Fosnot & Dolk, 2002; Streefland, 1993).

It is worth noting, however, that while the idea of sharing is natural for students, the process
of finding the amount that each sharer receives is not. For one, sharing is partitive division,

248 F. Peck, M. Matassa



which is generally more difficult for students to construct than quotative division (Fosnot &
Dolk, 2001). This is because partitive division involves problems in which the dividend and
the divisor do not have the same units and hence, repeated subtraction is not a valid strategy.

Consider the task of sharing 21 beads among three strings. As documented in Fosnot and
Dolk (2001), students first approach this problem through trial-and-error by guessing at the
number of beads on each string and then checking to see if their guess results in all 21 beads
being distributed equally. Eventually, students invent a dealing-out strategy, in which one bead
is placed on each string, followed by a second bead to each string, and so on until the beads are
exhausted (cf. Wilson, Myers, Edgington, & Confrey, 2012). In the language of progressive
formalization, this dealing-out strategy has the potential to be a preformal strategy because
although it does not take advantage of formal mathematics, it can be made general enough to
be applied to any fair-sharing problem (and can subsequently be made general enough to apply
to any partitive division situation).

Applying the same strategy to situations in which each sharer receives a non-whole
amount is yet more complicated, because the student has to (a) partition the wholes
into a number of pieces (unit fractions) that can be distributed equally, (b) reunitize
each unit fraction in order to operate on it independently, (c) distribute the unit
fractions equally among the sharers (possibly using the dealing-out strategy), and
finally (d) iterate the distributed unit fractions to create a non-unit fraction, which
describes the amount that each sharer receives (Lamon, 1996; Olive, 1999; Olive &
Steffe, 2001). We call this the partition-distribute-iterate strategy.

Students construct a number of strategies when they solve fair-sharing problems
(Charles & Nason, 2000; Empson, 2002; Empson, Junk, Dominguez, & Turner, 2006).
For example, Empson et al. (2006) classified strategies according to how the students
coordinated the number of items to be shared with the number of sharers.
Precoordinating strategies are distinguished by the lack of coordination between the
number of items to be shared and the number of sharers. Strategies in this category
include giving unequal amounts to the sharers, or giving equal amounts without
exhausting the quantity to be shared. Coordinating strategies are distinguished by
partitions that create a number of parts that is either equal to or a multiple of the number
of sharers. For example, each item to be shared may be partitioned into the number of
sharers (e.g., sharing four pizzas among six people by partitioning each pizza into
sixths). Using the language of progressive formalization, we consider precoordinating
strategies and to be informal strategies because they are not successful across a wide
variety of problems. We consider coordinating strategies to be preformal strategies
because they are general strategies that can be used successfully across problems.

In addition to strategies, researchers have explored various models that students use to
engage in equipartitioning activities. While the circle model seems to be the canonical model
for fractions, many students find it difficult to partition circles (Ball, 1993; Confrey, 2012), and
many researchers have found that a bar model (i.e., a rectangle) is easier for students to work
with (Connell & Peck, 1993; Keijzer & Terwel, 2001; Middleton, Van den Heuvel-Panhuizen,
& Shew, 1998; Moss & Case, 2011).

1.3 Literature review: teaching experiments on rational numbers

Student learning of rational numbers has received an immense amount of research scrutiny
(e.g., Pitkethly & Hunting, 1996). The research related to the quotient sub-construct is
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summarized above. In this section we broaden the lens, and summarize four seminal studies
involving teaching experiments from the USA, France, Russia, and the Netherlands. We then
situate our study in this literature.

In the USA, the Rational Number Project (RNP) has been conducting teaching experiments
on rational numbers for over 30 years (Behr & Post, 1992; Cramer, Post, & DelMas, 2002).
Researchers on the project have studied all aspects of rational number, and have distilled their
findings into a 2-year curriculum for rational numbers (Cramer, Behr, Post, & Lesh, 2009;
Cramer, Wyberg, & Leavitt, 2009). Through their work, researchers on the RNP have
convincingly demonstrated how Bunderstanding is reflected in the ability to represent math-
ematical ideas in multiple ways, plus the ability to make connections among the different
embodiments^ (Cramer, 2003, p. 450).

In France, Brousseau and Brousseau (1987; English translations in Brousseau,
Brousseau, & Warfield, 2004, 2007, 2008, 2009) designed a curriculum for rational
number as a proof-of-concept for Brousseau’s (1997) theory of didactical situations.
Guided by theory, the curriculum includes 65 imaginative and well thought-out
lessons which have been taught and refined in teaching experiments for over 15 years.
Through engaging in meticulously designed situations, students Binvent, understand
and become fluent with all the aspects of [rational numbers]^ (Brousseau, Brousseau,
& Warfield, 2007, p. 281). Students begin by inventing rational numbers as measures.
By the end of the 65 lessons, students have invented all of the sub-constructs of
rational number; fraction and decimal notation; formal operations on rational numbers
and decimals; and the topology of rational numbers.

A somewhat similar sequence comes from Russia, in the work of Davydov and
colleagues (Davydov, 1990; see also Schmittau & Morris, 2004). Davydov describes a
curriculum for rational number that is also organized around measurement and which
also results in students’ understanding the topology of the rational numbers.
Davydov’s curriculum, however, has vastly different theoretical underpinnings. It is
informed by activity theory (Schmittau, 2003), and takes an algebraic approach to
number in which students learn rational numbers by ascending from the abstract to
the concrete (Falmagne, 1995).

In the Netherlands, Streefland (1991, 1993) conducted teaching experiments over a 10-year
period on a series of lessons for rational number designed using RME principles. In these
lessons, students engage in two types of activities: fair sharing and splitting the group of
sharers. The activities were designed such that multiple sub-constructs of rational number were
intertwined from the beginning, and as students engaged in the activities, they reinvented all of
the sub-constructs of rational number.

Although each of the above research projects took place in different countries and
had different foci and theoretical underpinnings, there are some common themes. First
each research project explored students’ initial exposure to rational numbers. Second,
the projects were quite comprehensive, exploring how students learned multiple sub-
constructs of rational number, as well as formal operations on rational number, and—
in some cases—the topology of rational number. The study that we describe in this
paper differs from the above studies in both respects. First, our study involves
students who have vast prior experience with rational numbers. Second, our intention
is not to understand how students come to a comprehensive understanding of rational
numbers, but instead to explore how students come to understand fractions as they are
used in algebra.
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2 Research questions

Our study was guided by the following two research questions:

RQ 1. How do our students solve partitive division problems with integral and non-
integral results?
RQ 2. How do our students reinvent the fraction-as-quotient sub-construct?

Notice that we are interested in how our students solve problems and reinvent the fraction-
as-quotient sub-construct. As detailed in our conceptual framework, we believe that reinven-
tion happens during mathematical activity, and thus we designed a sequence of activities to
encourage students to reinvent the fraction-as-quotient sub-construct. In what follows, we
present the sequence of activities along with our design rationale. We do so in order to
communicate the conditions under which our study took place. We do not intend that the
activities should serve as a model curriculum. Rather, the descriptions set the stage for our
analysis of how students reinvented the fraction-as-quotient sub-construct.

3 Materials and methods of analysis

A two-person research team (the authors of this paper) conducted the design experiment: a
teacher-researcher (FAP, the first author), and an observer (MM, the second author). The
learning activities took place in a public high school in a suburban area of the United States of
America (USA). In the USA, all students are required to attend high school, and with rare
exceptions students are not sorted into specific schools. The vast majority of students attend
so-called comprehensive high schools, which is the type of school in which our experiment
took place. FAP was the teacher of the class in which the study took place (Cobb, 2000), and
the entire class participated in the learning activities. The school served a predominantly white
(approximately 60 %) and Latino (approximately 30 %) population. We do not have access to
student-specific demographic data.

The course itself was a support class for ninth-grade students that were concurrently
enrolled in Algebra I. Algebra I is a common course in US high schools, and is generally
taken in ninth-grade (the first year of high school in the USA; students in ninth-grade are about
14 years old). In the study high school, Algebra I is a required course for all students. At the
time of the study, the school’s curriculum for Algebra I included solving single-variable linear
equations and systems of two linear equations, and in-depth study of linear and quadratic
functions.

Students were assigned to the support course based on the recommendation of their Algebra
I teachers, as well as on the basis of their scores on the previous year’s state-level standardized
test. With respect to teacher recommendation, Algebra I teachers were not given official
criteria to use when recommending students. In general, teachers recommended students for
the course based on the teacher’s subjective opinion that the student would benefit from having
more time to explore Algebra I concepts in a small-class setting. This recommendation was
cross-referenced with the student’s score on the state-level standardized test. The state cate-
gorized students into four proficiency levels based on their scores, and only students who were
categorized in the lowest two proficiency levels were selected for the support course. In total,
there were 12 students in the course.
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Thus the students in our study are not representative of the Algebra I students at the school,
or of some larger population of Algebra I students. However, our intention is not to make a
claim about the knowledge-level of some generalized population of Algebra I students, or
about the effectiveness of a particular curriculum. Rather, as discussed above, we want to
explore how students who are enrolled in high school Algebra I reinvent the fraction-as-
quotient sub-construct.

In the course, students engaged primarily in activities that were correlated with the
concurrent Algebra I topics, however, occasionally students also engaged in activities that
were designed to increase familiarity with signed integers and rational numbers (for a
description of such an approach, see Burris & Welner, 2005). FAP designed the entire course
using RME principles. Students were accustomed to engaging in mathematical activity prior to
being taught specific procedures, and they were accustomed to sharing strategies through math
congress (Fosnot & Dolk, 2001, 2002), in which a carefully sequenced subset of students
presented their solution strategies to the class.

Prior to beginning the experiment, we developed a hypothetical learning trajectory (elab-
orated below). The experiment itself consisted of seven learning activities, each of which took
a full (55-min) class session. In order to keep the primary focus of the support course on the
concurrent Algebra I topics, we distributed these learning activities throughout a 2-month
period, giving approximately one learning activity per week. After each learning activity, we
met as a research team to examine student work, update our models of students’ mathematical
realities, discuss our impressions of how the learning activity influenced those realities, and
design subsequent learning activities. In this, our approach was cyclical: BWhat is invented
behind the desk is immediately put into practice; what happens in the classroom is conse-
quently analyzed, and the result of this analysis is used to continue the developmental work^
(Gravemeijer, 1994, p. 449).

3.1 Data sources

During the experiment, we collected student work and MM recorded fieldnotes. When he felt it
was appropriate,MM recorded classroom discourse in the fieldnotes. In addition, we kept a record
of our meetings, and saved all analytical memos that we sent each other during the experiment. As
discussed above, the initial analysis happened concurrently with the design experiment. We
further analyzed the collected and created artifacts after the conclusion of the experiment.

3.2 Hypothetical learning trajectory

In a design experiment, the Hypothetical Learning Trajectory (HLT) is created a priori, and
represents Ba prediction as to the path by which learning might proceed^ (Simon, 1995, p.
135). Because we define learning as the reinvention of progressively more formal mathemat-
ical productions, our HLT describes a path of progressive formalization, as follows:

Stage 1: Students use informal models and strategies to solve problems involving fair-
sharing situations where multiple items are shared among multiple sharers.
Stage 2: Through social interaction (including math congress) and further experience with
progressively more abstract fair-sharing situations, students develop the bar model and the
partition-distribute-iterate strategy.
Stage 3: Students formalize the fractions-as-quotients sub-construct.
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The HLT is only a prediction about what might happen, and the actual path of learning
emerges in the design experiment itself as the research team interacts with student learning. In
the next two sections, we describe the path of learning that emerged in our design experiment.

4 Exploring research question 1, and building an instructional starting point

Our first research question was focused on how our students initially solved partitive
division problems. As such, exploring this question provides us with the instructional
starting point (Gravemeijer & Cobb, 2006) for the learning activities to follow. Based
on the literature described above, we chose to begin with a problem designed to elicit
student strategies and models in a fair-sharing context. This led to the design of
Learning Activity 1.

4.1 Learning activity 1: the sub-sandwich problem

4.1.1 Motivation and design

In order to explore the ways that students solve partitive division problems, we began our
experiment with a problem from a fair-sharing-based curriculum on rational number (Fosnot,
2007), henceforth called the sub-sandwich problem (see Fig. 1).

From an RME standpoint this is a very good introductory problem for the following
reasons:

1. The context can be made real to students, which we did by having a class discussion about
sub-sandwiches before giving the task. Furthermore, the question of fairness is motivating
(Paley, 1986).

2. Informal models of the situation (pictures of sub-sandwiches) are similar in shape
to the bar model, and sub-sandwiches can be physically cut and distributed in a
way that is similar to the partition-distribute-iterate strategy. Thus, the informal
models and strategies that we predicted that students would use in the sub-
sandwich problem can be mathematized to create the preformal bar model and
partition-distribute-iterate strategy.

Fig. 1 The sub-sandwich problem from Fosnot (2007)
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Because we used this activity to build our initial models of students’ mathematical realities,
students worked on the problem individually. We asked questions to probe for students
thinking, but we did not offer help or suggestions.

4.1.2 Analysis

In order to build our initial model of students’ mathematical realities, we coded the student
work for level of formalization. We did this as a team, and came to a consensus for each
student. Students used productions at all levels of formalization. For space purposes, we will
limit our discussion below to the models and strategies that students used to find the quantity
allotted to each person in Group 2 (four sandwiches shared among five people) as these
productions are illustrative of the productions that students used for the other parts of the
problem.

Informal productions Two examples of students who used informal productions are shown
in Fig. 2. Figure 2a shows an example of a student who used informal models. These were
models of the situation: pictures of sandwiches and people, with lines drawn to show how the
sandwiches were distributed to the people. Both examples demonstrate informal
precoordinating strategies, in which the partitions are based on benchmark fractions. None
of the students who used informal strategies shared the sandwiches equally.

Preformal productions Preformal models were models for the situation (e.g., bar model).
Preformal strategies were coordinating strategies. Figure 3 shows an example of a student who
used a preformal bar model and a coordinating strategy.

Formal productions Students who used formal productions expressed quantities in sym-
bolic fraction notation without any accompanying pictures or other work. When prompted,
none of these students could draw pictures to connect their formal notation to the problem
context, nor could they offer a mathematical justification as to why their solution was correct.
For example, Justin and Joshua were sitting next to each other. As shown in Fig. 4, they each
wrote fractions that were reciprocals of each other. FAP asked Joshua and Justin to justify to
try to convince each other why their solutions were correct. In response, Joshua drew a single
bar model, cut into fifths, with four-fifths shaded (demonstrating the part-whole sub-construct
of fraction). However, he did not explain how this model was related to the problem situation
of sharing four sub-sandwiches to five people. Justin justified his solution by pointing to the
numerals (5 and 4) in the problem. When FAP asked, neither Justin nor Joshua was convinced
by the other to change their solution.

Fig. 2 Two examples of students who used informal models and strategies
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Analysis When we created our HLT, we hypothesized that at the beginning of the experiment
students would use informal models and strategies in fair-sharing situations. Through this
learning activity, we learned that our students marshaled productions at all levels of formal-
ization when solving fair-sharing problems. However, only the students who used preformal
productions solved the problem correctly and justified their reasoning in the context of the
problem. This suggested to us that preformal productions are a vital part of a student’s
mathematical reality.

We also learned that students might not associate fair sharing with the division operation, as
only three students mentioned division in their written work or verbal descriptions. This
suggested that students might not recognize partitive division situations as opportunities to
use the division operation. We explored this with our next learning activity.

4.2 Learning activity 2: what operation?

4.2.1 Motivation and design

In order to explore the operations that students associate with partitive division situations, we
designed an online problem-solving environment in which students were presented with a
series of problems and an on-screen calculator. Students could use the calculator to perform
any arithmetic operation, and they were provided a space to enter their final answer. They were
also given the option of stating that a problem could not be solved. We used a screen-capture
utility to record the students’ activities in this problem-solving environment. This way, we
were able to capture the operations that students associated with each problem.

Students worked on the problems individually. During the activity, we monitored students
to ensure that there we no technical problems, but we did not provide problem-solving
assistance. As in Learning Activity 1, we made this decision because we used this activity
primarily to help build our models of students’ initial mathematical realities.

After the activity we saved the screen-capture videos, and later transcribed the students’
keystrokes. We each watched each video at least twice: once independently and once as a

Fig. 3 An example of a student (Theo) who used a preformal model and strategy

Fig. 4 Two examples of students that used formal fraction symbols to represent the quantity
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research group. Our primary focus during this analysis was on whether, when, and how
students used the division operation. We therefore coded each (student, problem) instance in
terms of whether the division operation was used correctly, and if so, whether the division
operation was the first and/or only operation used. Occasionally, when students entered a final
answer without using the calculator; we coded this as strategy unknown.

4.2.2 Analysis

Nearly all of the partitive division problems were solved using the correct division
operation. However, the correct division was the only operation just 70 % of the time
(this and other percentages presented in this paper are presented for summary pur-
poses only, and are rounded to the nearest 5 %). In other words, although many
students ultimately settled on the answer provided by the correct division operation,
many times students tried more than one operation.

We investigated these multiple operation instances further, and found that two students,
Justin and Robert, consistently divided both ways, and then chose one of the answers. For
example, Table 1 shows how Robert solved a problem by dividing both ways.

This was not the first time that we had observed such reciprocal division. For example,
recall Justin’s work on the sub-sandwich problem (Fig. 4b). Justin used formal notation to
express the quantity of sub-sandwiches that each person received, but his fraction (54) was the
reciprocal of the correct fraction (45). At the time, we believed this mistake stemmed from a
mathematical reality that did not include fractions as quotients (especially because Justin was
unable to explain his solution). However, we were now confronted with a more complicated
situation.

These two students recognized that division was the appropriate operation on all five
problems. However, each of them divided both ways on four of the five problems. For the
problems in which they divided both ways, they always chose the correct answer, even though
there is no evidence that the correct direction was their first instinct (Robert divided in the
correct direction first on 25 % of his both ways solutions and Justin divided in the correct
direction first of 50 % of his both ways problems). This suggests that Justin and Robert
recognized division situations from the structure of the problem, but that they were choosing
the direction of the division ex post based on the quotient, rather than on the structure of the
problem.

Justin and Robert’s divide both ways method accounted for some of the multiple operations
that we observed. However, we also observed that many students performed other operations,
even though they usually settled on the correct division as their final answer. For example,
Table 2 shows how two other students used multiple operations when solving a problem
involving sharing 546 candies among 13 people.

Table 1 Robert’s divide both ways strategy for a problem that involved finding the weight of one chicken given
that three chickens weigh 57 pounds

Calculator: 3/57 = 0.05263…

Calculator: CLEAR

Calculator: 57/3 = 19

Types: 19
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This suggests that although students almost always settled on the correct division, it was not
necessarily their first instinct. For some students, the problem did not indicate division right
away. For others, the problem indicated division, but not the direction of the division.

4.3 Summary: analysis of research question 1

Our first research question was: BHow do our students solve partitive division
problems with integral and non-integral results?^ Our analysis suggests that the
mathematical realities of our students did not include strategies for recognizing
division situations or for determining the direction of the division within a division
situation. Furthermore, it suggests that preformal productions are key components of
the mathematical realities of students who solve fair-sharing problems correctly, but
that such productions are not real for most students.

This analysis formed our instructional starting point for the learning path that emerged as
we explored our second research question.

5 Exploring research question 2

The first two learning activities gave us a good sense of our students’ mathematical realities
around partitive division problems and the fraction-as-quotient sub-construct. Our second
research question involved an intervention to see how students reinvented new productions
through mathematical activity. To explore this question, we engaged students in a series of
activities, designing each learning activity only after analyzing the results of the previous
activity. Figure 5 shows a schematic outline of the learning path that emerged from this
process. As shown, Learning Activities 3–5 initially involved fair-sharing situations, while
Learning Activities 6 and 7 involved division, and linked division to fair sharing. These
activities are described below.

5.1 Learning activity 3: math congress and sub-sandwich follow-up problem

5.1.1 Motivation and design

Our analysis of Learning Activity 1 suggested that preformal productions are key
components of the mathematical realities of students who solve fair-sharing problems
correctly. We therefore set out to design a learning activity to help students reinvent
these preformal productions.

Table 2 Two examples of how students used multiple operations to solve a problem that involved sharing 546
candies among 13 people

i. ii.

Calculator: 546-13 = 533 Calculator: 13*546 = 7098

Calculator: CLEAR Calculator: CLEAR

Calculator: 546/13 = 42 Calculator: 546/13 = 42

Types: 42 Types: 42
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In Learning Activity 1, two students had used preformal models and strategies to solve the
sub-sandwich problem, and we wanted to create a learning activity in which these students
could share their productions in such a way that they were rooted in the informal reality of the
sub-sandwich problem. We therefore designed a math congress (Fosnot & Dolk, 2001, 2002),
in which a carefully sequenced subset of students presented their solution strategies to the
class.

Specifically, we planned to ask Penny, then Julia, then Theo to present. We wanted to
begin with Penny because her informal model of the situation (Fig. 2a) was rooted in the
reality of actually cutting and distributing sub-sandwiches to a group of people. We chose
Julia to present next because her preformal model (Fig. 2b) signified this concept, with
squares representing sandwiches and shapes representing people. However, Julia’s model
still depicted the process of distributing pieces to people, thus rooting the abstraction in
the informal reality of Penny’ model. Theo also used a preformal model with different
designs corresponding to different people, but his model (Fig. 3) was even more abstract
because he did not show the process of distribution. Finally, while Penny and Julia both
used benchmark fractions in their informal precoordinating strategies, Theo used a
preformal coordinating strategy. Thus, we felt that this sequence of students would help
the class construct a chain of signification beginning in the problem context and culmi-
nating in Theo’s preformal productions. Notice that Theo’s strategy includes the first two
pieces of the partition-distribute-iterate strategy, but Theo did not iterate the shares. A
second goal of the math congress was therefore to reinvent this last piece of the strategy.
During the math congress, we encouraged the use of iteration by asking the students
questions about how much each person received.

After the math congress, we had students work on a follow-up problem (Fig. 6), based on
Group 3 from the initial sub-sandwich problem. We specifically focused the question on the
quantity each sharer received in order to encourage iteration (Wilson et al., 2012).

Fig. 5 A schematic of the path of learning. Each box represents a Learning Activity (LA), and the bulleted points
within boxes represent the key outcomes of the learning activity. Learning Activities are arranged in temporal
sequence from left to right. Bolded arrows represent ideational inheritance (i.e., LA 3 was informed by LA 1,
whereas LA 6 was informed by LA 2 and LA 5)
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5.1.2 Analysis

During the math congress, Penny, Julia, and Theo each presented their work. Penny and Julia
explained the partition and distribute strategy, and Theo explained his strategy for coordinating
the partitions with the number of sharers. Following these presentations, Joshua explained how
he could use iteration to quantify the share that each person received:

(1) FAP: Joshua, how much-
(2) Joshua: Four fifths
(3) FAP: Where do you see four fifths?
(4) Joshua: From each sandwich he is going to give him one fifth. One-fifth plus one-
fifth plus one-fifth plus one-fifth

By sharing their productions, Penny, Julia, and Theo helped to create a chain of
signification that included two preformal productions: bar models for fractions and a
coordinating strategy for partitioning. These preformal productions then mediated the
reinvention of new productions. Recall that in Learning Activity 1, Joshua wrote a
formal fraction (45) to quantify the amount that each sharer received, which he
supported with a single bar model with four-fifths shaded. As shown in the segment
of talk above, once the bar model and coordinating strategy emerged in class, rooted
to the informal reality of the sub-sandwich problem, Joshua’s thinking about 4

5
changed from a quantity that represented 4 out of 5 pieces in a single bar to a
quantity composed of four one-fifth pieces, scattered across multiple bars. Thus the
preformal productions mediated Jonathan’s reinvention of iteration, the last piece of
the partition-distribute-iterate strategy.

5.2 Learning activities 4 and 5

5.2.1 Motivation and design

These learning activities were motivated by stage 2 in our hypothetical learning trajectory.
In this stage, we wanted students to mathematize progressively more formal and abstract
fair-sharing situations. We hypothesized that such mathematization, along with social
interaction organized around students sharing their productions with each other, would
lead students to reinvent progressively more formal mathematical productions. As shown
in Fig. 7, the items to be shared in Learning Activities 3 and 4 became progressively
more abstract as compared to the sub-sandwiches that students initially shared. In
Learning Activity 3, the items were bottles of liquid, which, although still shaped like
a bar, cannot physically be cut like sub-sandwiches. Hence applying the bar model to a
bottle of liquid is more abstract than applying this model to a sub-sandwich. In Learning
Activity 4, the objects to be shared were pounds of chicken food. These are shapeless,
and hence using a bar model to model a pound is still more abstract.

Fig. 6 The Bfollow-up sub-sandwich problem^
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5.2.2 Analysis

As in Learning Activity 1, students used productions from all levels as they worked on
Learning Activities 3 and 4. However, by Learning Activity 4, all of the students used
preformal productions. As we discuss below, these productions mediated the students’ activity
and they also meditated the reinvention of more formal productions.

For example, in Learning Activity 4 a student initially used an informal precoordinating
strategy, distributing 1

�
2 of a pound to each chicken. She soon realized that she would have

1
�
2 lb. left over. Importantly, however, when she experienced the perturbation (von

Glasersfeld, 1989) caused by the remainder of 1
�
2, she could access a more general strategy,

namely a preformal coordinating strategy. This is an example of how preformal productions
mediated activity.

In other cases, preformal productions mediated the reinvention of more formal mathemat-
ical productions, by helping to make the connection between fair-sharing and formal fractions
real for students. For example, in Learning Activity 4, Joshua solved the problem correctly
using formal notation (47) without any supporting work. This was very similar to his solution in
Learning Activity 1, which was also a correct bald fraction. However, this time, when FAP
asked him to explain his work, Joshua used the preformal bar model and the preformal
partition-distribute-iterate strategy to show why each chicken got 47 of a pound.

Thus, through mathematical activity and social interaction, students created a chain of
signification, culminating in robust preformal productions for fair-sharing. These productions
mediated activity and they also mediated the reinvention of more formal productions. Indeed,
in Learning Activity 4, nearly half of the students initially used formal fraction notation to
express their answers.

Even as these formal notions of fractions were being invented, at one point or another in
Learning Activity 4, many of the students either wrote a reciprocated fraction (i.e., 7

4), or
modeled the problem backwards (i.e., they drew seven fraction bars and distributed them to
four sharers). In all cases, students were able to catch their mistake by moving backwards
through the chain of signification. For example, a group of students initially wrote the
reciprocal of the correct fraction (i.e., 7

4). When FAP asked them to explain their work, they
explained that the seven represented the number of chickens and the four represented the
number of pounds. From FAP’s perspective, they had essentially just explained that they had
found the number of chickens per pound, rather than the number of pounds per chicken.
Without indicating that their fraction was incorrect, FAP asked the students to draw a picture to
justify their answer. Despite their reciprocated fractions, the students drew four bar models,
which they explained represented the four pounds of food. They then proceeded to use the

Fig. 7 Learning activities 3 and 4
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partition-distribute-iterate strategy to conclude that in fact, each chicken received 4
7 of a pound

of food. Thus, the students were able to catch their mistake by reasoning from a formal fraction
to its real-world referent via preformal productions.

Why were the preformal productions necessary? Recall that when the students initially
justified their answer they referred to the referent of the numerator separately from that of the
denominator, without linking the two units (for example, by using the word per). It therefore
seemed that these students perceived the units of the numerator and denominator as two
extensive quantities, and not as two components of a single intensive quantity (e.g., pounds per
chicken; see Nunes, Desli, & Bell, 2003; Schwartz, 1988). We realized that while the preformal
bar model and partition-distribute-iterate strategy helped students reinvent formal fraction
notation as the outcome of fair sharing (henceforth referred to as the fraction-as-fair-sharing
sub-construct), these productions did not lead to a reality in which the fraction was perceived
as an intensive quantity or as a result of a division operation.

We hypothesized that understanding the notion of an intensive quantity might help students
(a) associate fair-sharing with division, and (b) perform the division in the correct direction.
This is because intensive quantities are created by division. The nature of these quantities
depends on two factors: (1) the units of the dividend and of the divisor, and (2) the direction of
the division. For example, in the chicken feed problem, the two units are chickens and pounds.
Through division, it is possible to create two different intensive quantities: pounds per chicken,
and chickens per pound. The operation of division creates the intensive quantity, and the
direction of the division determines the reference quantity (i.e., chickens in the intensive
quantity pounds per chicken). Thus, we felt that if students could recognize a situation in
which the final answer will be an intensive quantity, they could use this to recognize that
division is an appropriate operation as well as the direction of the division. This led to the
design of our next two learning activities.

5.3 Learning activity 6: scale up and down

5.3.1 Motivation and design

Our goal for this learning activity was to help students reinvent the notion of an intensive
quantity, and to associate this quantity with the division operation. One way that students can
reinvent these ideas is through engaging in missing value problems that involve proportional
reasoning with rate pairs (e.g., if 3 apples cost $0.90, how much does 1 apple cost?) (Clark,
2005; Cramer, Bezuk, & Behr, 1989; Post, Behr, & Lesh, 1988). Students use a variety of
strategies when solving such problems (Clark, 2005). Incorrect strategies are often additive,
and involve adding or subtracting the same numerical value to both extensive quantities in the
rate (e.g., adding 1 to both the apples and the cost in the example above). The most basic
correct strategy is the build-up strategy, which also relies on repeated addition, but with equal
quantities being added to both extensive quantities, rather than equal numerical values (e.g.,
adding 1 to the apples and $0.30 to the cost; Lesh, Post, & Behr, 1988).

More advanced strategies involve multiplicative reasoning that maintain constant ratios
between units and within units. For example, in the apple problem given above, a within-unit
strategy would involve students recognizing that the number of apples has decreased by a
factor of three, and hence the price should decrease by a factor of three. A between-unit
strategy would involve students recognizing that in the first rate pair, the numerical price is
0.30 times as large as the numerical apples, and hence in the second rate pair, the numerical
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price should also be 0.30 times as large as the numerical apples. This terminology is muddled,
with some authors using the terms within and between to refer to operations within and
between ratios, instead of within and between units, effectively switching the meanings of
within and between. To maintain clarity, we will use the terms within-units and between-units.
Under most circumstances, students prefer to use within-unit strategies (Brousseau, Brousseau,
& Warfield, 2008; Karplus, Pulos, & Stage, 1983; Vergnaud, 1988).

Using the language of progressive formalization, we consider strategies that rely on
additive reasoning (the incorrect additive strategy and the build-up strategy) to be
informal strategies because they are not successful across a wide variety of problems
(a build-up strategy is not successful when the ratio between the rate pairs is non-
integral; Kaput & West, 1994). We consider strategies that rely on multiplicative
reasoning to be preformal strategies because they are general strategies that can be
used successfully across problems. We felt that preformal multiplicative strategies
would mediate the reinvention of division as a fair-sharing operation, so we wanted
our learning activity to encourage these strategies. With this consideration in mind, we
designed a problem string (Kindt, 2010) of missing value proportional reasoning
problems (see Fig. 8).

As shown in Fig. 8, the problem string is composed of the following sequence, which
encourages the use of within-unit multiplicative strategies:

1. The Coke problem involves missing value problems that can be solved using a within-unit
strategy by doubling the quantities in the rate pair directly above.

2. The marker problem requires students to multiply by other factors, or to consider rate pairs
that are not immediately above the particular missing value.

3. The t-shirt problem requires division, first by two and then by other factors.
4. The pizza: make your own combinations problem allows students to make their own

combinations in a situation where the within ratio is not an integer.
5. The pizza: scale down to one problem combines the proportional reasoning structure of

the first four problems with a fair-sharing situation and a non-integral solution to the
missing value.

We chose very familiar contexts for these problems in order to make the additive strategy
unlikely (Karplus et al., 1983). Furthermore, we believed that the progression of the arithmetic
required would encourage the progression from the informal build-up strategy to preformal
multiplicative strategies, in particular the within-unit strategy.

This was important because the last problem in the string (pizza: scale down to
one) combines the proportional reasoning structure of the first four problems with a
fair-sharing situation and a non-integral solution to the missing value. We believed
that if students used multiplicative reasoning (that is, division) to solve this problem,
it would help them construct the association between division and fair-sharing, and
hence the association between the fraction-as-fair-sharing sub-construct and the
fraction-as-quotient sub-construct.

5.3.2 Analysis

In the first problem (Coke), students used build-up and within-unit strategies. In the subse-
quent math congress, students presented both strategies, and the class seemed to coalesce
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around the within-unit strategy. For the second problem (markers), all students used the within-
unit strategy. During the math congress, a serendipitous moment occurred: Jody used the word
per. FAP tried to capitalize on this moment, as shown below:

(1) Jody: I looked at the seven and the three and thought B21^. It is easier for me, a time
saver… it’s just easier… if there is three packages and seven per package
(2) FAP: Oooh—that’s a good word, per. What does Bper^mean? (writes B7 markers per
package^ on the board)
(3) Lori (overlapping): For every one package
(4) Joshua (overlapping): For every one

This was an important moment because, as discussed above, we hypothesized that an
understanding of intensive units could mediate students’ activity in partitive division situa-
tions. This hypothesis relies on (a) students using the word per when stating the intensive
units, and (b) understanding that per indicates for every one.

Fig. 8 The problem string for learning activity 6
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During the math congress for the third problem (t-shirts) a unit rate strategy (Cramer &
Post, 1993) emerged, and two students explained how they used division to find the unit rate.
At this point, FAP prompted the class use BJody’s word^ (per) to explain the unit rate. In the
fourth problem (pizza: make your own combinations), only two students used a build-up
strategy to make their own combinations, while the rest of the students used within-unit
multiplicative strategies. Thus, the problem string up to problem four, as well as social
interaction, encouraged reinvention of a within-unit strategy which then mediated subsequent
activity.

In the final problem of the string (pizza: scale down to one), we were specifically interested
in (a) whether students would associate the fair-sharing situation with the division operation,
and (b) the productions that students would use for fair sharing. All but one student indicated a
division operation to solve this problem, although there was great diversity in the ways that
students used division:

& Within-unit division by seven, which resulted in the correct answer. Students who used this
strategy used formal fraction notation to write their final answer, and used the partition-
distribute-iterate strategy to justify their solutions.

& Repeated halving, in which students initially tried to repeatedly divide both the people and
pizzas by two (i.e., a within-unit strategy of repeated halving) in order to get down to one
pizza. When this did not work, students used a within-unit strategy of dividing both
extensive quantities by seven.

& Different divisors, in which students initially divided the pizzas by seven and the people by
four, which resulted in the statement, B1 pizza can feed 1 person.^ Students who used this
strategy recognized the incongruence between this statement and the initial statement (4
pizzas can feed 7 people), and either used a within-unit strategy of dividing both extensive
quantities by 7, or the partition-iterate-divide strategy.

& Divide both directions. As in Learning Activity 2, Robert divided in both directions and
used the results to choose his answer. As shown in Fig. 9, Robert indicated a correct
division using a between strategy, but then used long division to divide seven by four and
four by seven. Upon examining the decimal results, he chose the incorrect answer because
Bit looks easier^ and rejected the correct answer of 0.57142 because one Bcan’t split a pizza
into that.^

Fig. 9 Robert divided both ways,
and chose the incorrect answer
because it looked easier
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Thus, by the end of the sequence, nearly every student saw the division operation in a fair-
sharing problem. Furthermore, many students linked the division operation to the partition-
distribute-iterate strategy. Finally, students continued to formalize the fraction-as-quotient sub-
construct: many students wrote the correct fraction without using the preformal partition-
distribute-iterate strategy to find it (although some of these students used this strategy to justify
their solutions, again showing the chain of signification in which the formal notion was built
on the preformal strategy).

However, we also observed a number of mistakes in the way students used division
on the final problem. Our next task was to design a learning activity that would
continue to help students (a) associate fair sharing with the division operation, and (b)
recognize how the units of the final answer can be used to determine the dividend
and divisor.

5.4 Learning activity 7: reciprocal unit rates

5.4.1 Motivation and design

At this point, students had created a chain of signification for fair-sharing, which included
preformal productions and culminated in a fraction-as-fair-sharing construct. Furthermore,
many students were linking fair-sharing to division, and hence formalizing the fraction-as-
quotient sub-construct. However, this trajectory was obstructed for some students because
either (a) they were making mistakes when using division to solve fair-sharing problems (using
incorrect divisors or reciprocating the dividend and the divisor), or (b) they had not yet
constructed the link between fair-sharing and division.

We felt that if students could recognize situations where an intensive quantity was the final
answer, they could use this to recognize the necessity of dividing two extensive quantities, as
well as the divided and divisor of this division operation. However, this relies on students
reinventing the division operation as a referent-changing operation (Schwartz, 1988), namely
one that transforms two extensive quantities into an intensive quantity. Our goal for this
learning activity was to help facilitate this reinvention.

To do this, we designed a two-problem string to explicitly connect the division
operation to the creation of an intensive quantity. As shown in Fig. 10, the problems

Fig. 10 The problem string for Breciprocal unit rates^
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invoke a fair-sharing context and have the same structure as the problems in Learning
Activity 6. This was to help students associate division with fair-sharing. Furthermore,
both problems share the same antecedent, and both problems ask students to create an
intensive quantity that can be interpreted as a unit rate. However, the two unit rates
are reciprocals of each other. This was to help students associate the direction of the
division with the compound units of the intensive quantity that is created. Our choice
of dollars and pizza for the antecedents was purposeful for two reasons. First, we
wanted to use quantities that were both partitionable, but which still invoked a fair-
sharing context. Second, we wanted the intensive quantity (e.g., pizza per dollar) to
feel new to students, as if they created it using division. We did not want to use
familiar quantities such as speed or density because students do not always associate
division operations with insensitive quantities that they are familiar with (e.g.,
Thompson, 1994).

5.4.2 Analysis

Our analysis of this problem centered on three aspects: (1) How students used division, (2)
how students used units, and (3) the continued formalization of the fraction-as-quotient sub-
construct.

How students used division All students used a within-units strategy and indicated division
by three for problem one and division by 12 for problem two. None of the students divided
both ways before choosing a final answer. This represented a significant change from Learning
Activity 6. For example, Lori initially used repeated halving in Learning Activity 6, but she
chose a more strategic divisor in Learning Activity 7 (Fig. 11).

Furthermore, recall that Robert divided both ways in Learning Activity 6, and relied on the
decimal representation of the division to guide him to an (incorrect) answer. In contrast, in
Learning Activity 7, Robert did not divide both ways. Rather, he recognized the correct
direction of the division on both problems, and he did so before dividing (Fig. 12). He
explained to FAP that he knew which direction to divide based on which quantity he was
finding one of.

We had hypothesized that the strategic use of units might help students understand how the
direction of the division is inherent in the problem structure, namely BIf students can state the
units of the final answer as a compound unit using the word ‘per’ before they solve the
problem, they will be able to recognize partitive division situations and the direction of the

Fig. 11 Lori chose a strategic
divisor in problem 2

266 F. Peck, M. Matassa



division.^ However, based on the student work, it seemed that students were not employing
this referent-transforming strategy. Students were considering the units in the problem in a
thoughtful way, but not in the way that we hypothesized.

How students used units, and the emergence of new preformal productions Consider
problem one, which involves finding the missing dollar value that corresponds to one pizza.
We hypothesized that students would recognize this as a situation in which they wanted to find
the intensive quantity, dollars per pizza, and that, by stating the units in this way students
would recognize the division of dollars by pizza.

As the learning activity progressed, however, it became clear that this is not how students
thought of the missing value problem. Rather than using compound units to construct a
division operation, students were choosing the dividend and divisor based on which of the
extensive quantities they were trying to find one of. This find-one strategy turned out to be the
dominant strategy. Rather than dividing dollars by pizzas to arrive at the intensive quantity
dollars per pizza, students were dividing both dollars and pizzas by a dimensionless scalar that
maintained the units in each extensive quantity, and then writing the per statement based on
which quantity they had found one of. It was not clear that students recognized their result as a
new quantity, nor was it clear that students had constructed the division operation as a referent-
changing operation.

We believe that the visual design of the missing value problems supported students in their
use of the find-one strategy. The vertical alignment of units helped students recognize the
within-unit scalar needed to find one, and the white space between the lines encouraged
students to draw arrows showing division as a dynamic operation that transformed a units into
1 unit. With respect to the arrows themselves, consistent with Brousseau, Brousseau, and
Warfield (2009), we see the students’ use of arrows as a way of reasoning Bwhose validity the
student checks by reference to the actual meaning^ (p. 109). We did not dwell on the arrows
themselves in the classroom (Brousseau et al., 2009, p. 107 suggest that this could lead to a
Bmeta-didactical slippage^), but rather asked students to explain their mathematical reasoning
in the context of the problem itself (e.g., the explanations in Figs. 11 and 12).

Students seemed to find the vertically aligned structure of the problems so helpful that they
even reproduced it themselves (see, e.g., the student work in Fig. 11). Thus, this structure soon
became a preformal tool that students used to solve missing value proportional reasoning

Fig. 12 Robert divided in the correct direction on both problems. He explained to FAP that he knew which
direction to divide based on what he was trying to find one of
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problems. As such, it is essentially a ratio table (Middleton & van den Heuvel‐Panhuizen,
1995; Streefland, 1993). One key difference is that the units are made more salient in this tool,
and hence, the division operation needed to find one is clearer. Because this tool keeps the
units salient, we called it a unit-salient ratio table.

The continued formalization of the fraction-as-quotient sub-construct When solving
problem 2, students were confronted with a division problem with a non-integral solution. In
this problem, all students recognized that 3� 12 ¼ 3

12, indicating a formalization of the
fraction-as-quotient sub-construct (see Figs. 11 and 12 for examples of how two students
demonstrated this formalization).

5.5 Summary: analysis of research question 2, and the importance of preformal
productions

Our second research question was, Bhow do beginning algebra students reinvent the fraction-
as-quotient sub-construct?^ Our hypothetical learning trajectory involved relatively unprob-
lematic movement through a progressive-formalization sequence: students would initially use
informal productions to solve fair-sharing problems, and—through mathematizing progres-
sively more abstract situations and social interaction—students would invent progressively
more formal mathematical productions culminating in the formal fraction-as-quotient sub-
construct. What we found was that the instructional starting point was considerably more
complicated, and that preformal productions played a larger role than we had initially
expected.

First, we found that our students initially solved fair-sharing problems using productions at
all levels formalization, but that only those students who used preformal productions could
explain their reasoning and solve the problem correctly. This was our initial clue on the
importance of preformal productions. As students shared their productions and mathematized
more abstract situations, we found that preformal productions played two key meditational
roles: (1) they mediated problem-solving activity, allowing, for example, students to solve the
chicken feed problem in Learning Activity 4 after they realized that their informal strategy
would not lead to equal shares; and (2) they mediated the reinvention of more formal
productions, resulting in a chain of signification that made the fraction-as-quotient sub-
construct real for students. Thus, preformal productions were important even for students
who initially solved the sub-sandwich problem correctly using formal mathematics.

Second, we found that many students did not automatically associate partitive division
situations with the division operation, and, even when students did use division, they some-
times performed the division operation both ways and compared the results to choose their
final answer. Many times, this strategy led students to choose the correct answer (e.g., Robert
and Justin in Learning Activity 2), but other times it did not (e.g., Robert in Learning Activity
6). Again, preformal productions—specifically the unit-salient ratio table and the find-one
strategy—played a key role, mediating the reinvention of division as a find one operation.

In contrast to the (expected) preformal productions that emerged for fair sharing, the unit-
salient ratio table and the find-one strategy for division emerged in class unexpectedly. We
now recognize that the referent-changing strategy that we had hoped to design for is a
between-unit strategy, and we designed for a within-unit strategy. In one sense, this is a failure
of design, and we highlight it so as to provide an avenue for future design work. Despite this,
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students reinvented a robust strategy that they could use to recognize when and how to divide
(Brousseau et al., 2004, describe a similar strategy used by students in their study to find the
thickness of a single sheet of paper). Thus, although students did not construct the strategy that
we expected, we still consider the outcome of the learning activity a success. In fact, we
believe that these productions could play a powerful role in an algebra class. We did not have
time to explore this in depth in our design experiment, but we have some evidence from the
class. During a review day for the final exam at the end of the school year, we gave students
the problem shown in Fig. 13. In the figure, the student coordinates the slope triangle with a
unit-salient ratio table and the find-one strategy. This leads us to conjecture that the unit-salient
ratio table and find-one strategy could mediate students’ reinvention of slope as a unit rate. To
be clear, the student whose work is shown in Fig. 13 had already learned slope by the time we
gave this problem. Thus, we present this work only as a suggestion of potential. We plan to
explore this conjecture in our future work.

6 A closer look at preformal productions

In the discussion above, we explained how preformal productions played two key roles for our
students: (1) they mediated mathematical activity, and (2) they mediated the reinvention of
more formal mathematical productions. We further showed how sometimes, preformal pro-
ductions emerge in unexpected ways. In this section, we take a closer look at preformal
productions, examining how they emerged in our classroom and reflecting on their epistemo-
logical and ontological status. We suggest that preformal productions can be designed for, and
that even when preformal productions emerge unexpectedly, they are not random. In both
cases, preformal productions embody historic classroom activity and social interaction. As
such, we define preformal productions ontologically as cultural artifacts.

6.1 Preformal productions can be designed for

Our goal for Learning Activities 3–5 was to design a sequence of activities and social
interactions that would lead students to construct the preformal bar model and partition-
distribute-iterate strategy. Following RME design principles (Gravemeijer, 1999), we explicitly

Fig. 13 How the find-one strategy and the unit-salient ratio table might mediate students’ reinvention of slope as
a unit rate
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designed math congresses and mathematical activity to support students’ reinvention of
progressively more formal mathematical productions. For example, we structured the math
congress in Learning Activity 3 such that the student presentations followed a trajectory of
progressive formalization. This notion of a progressive formalization trajectory also informed
the design of Learning Activities 4 and 5. As students engaged in these activities, the preformal
bar model and partition-distribute-iterate strategy came to embody the historic activity of fair
sharing and the social interaction of the math congress. That students reinvented these
productions as hypothesized suggests that preformal productions can be designed for by
designing activity and social interaction around a progressive formalization trajectory.

6.2 Preformal productions emerge unexpectedly, but they are not random

In contrast to the preformal productions that emerged for fair sharing, the unit-salient ratio
table and the find-one strategy for division that emerged in Learning Activities 6 & 7 were
unexpected. However, this does not mean that they emerged randomly. Instead, we suggest
that, like the designed-for productions discussed above, these preformal productions also
embody historic classroom activity and social interaction. Below, we justify this claim for
the find-one strategy.

6.2.1 Preformal productions embody historic classroom activity

Partitive division contexts can be sub-divided into the (non-mutually exclusive)
contexts of fair-sharing on the one hand, and finding unit rates on the other. In a
fair-sharing problem, the quotient represents the extensive quantity that one sharer
receives, and in a finding unit rate problem the quotient represents an intensive
quantity (Confrey, Maloney, Nguyen, Mojica, & Myers, 2009 call the former a
many-as-one conception and the latter a many-to-one conception). Of these two sub-
contexts, the fair-sharing sub-context is more focused on the concept of finding one
(i.e., how much pizza one person receives) as opposed to a unit rate problem (i.e.,
find the speed in miles per hour). To be sure, one can conceptualize the result of a
fair-sharing problem as a unit rate (i.e., conceptualizing the aforementioned quantity
of pizza as pizza per person): this, in fact, is how students wrote their final solutions
in Learning Activity 7. The key here is the framing of the task: Are we looking for
the (extensive) amount of pizza that corresponds to one person, or are we looking for
a brand new (intensive) quantity, pizza per person? The former framing suggests a
find-one strategy, while the latter farming suggests a referent-transforming strategy. In
the case of our experiment, all of our tasks were framed in the find one context.
Thus, the students’ historic classroom activity was strongly suggestive of the find-one
strategy.

6.2.2 Preformal productions embody historic classroom social interaction

Social interaction also played a role in shaping the find-one strategy. To explore how social
interaction shaped the find-one strategy, we analyzed the classroom discourse that MM
recorded in his fieldnotes. In analyzing discourse, we were guided by the notion that discourse
is not just communication about action, it is itself action. That is, discourse communicates, but
it also does (Gee, 2011; Jaworski & Coupand, 2006). These two uses of discourse are mutually
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implicated in interactive sequences, in which Bwe produce action methodically to be recog-
nized for what it is, and we recognize action because it is produced methodically in this way^
(Heritage & Clayman, 2010, p. 10). Actions are produced and evaluated in turns at talk. Thus,
we analyze the work of discourse by analyzing how turns are produced, taken-up, and
sequenced in interaction. In what follows, we analyze two sequences to explore how social
interaction shaped the find-one strategy.

First, recall the classroom discourse that occurred when Jody used the word per in Learning
Activity 6:

(1) Jody: I looked at the seven and the three and thought B21^. It is easier for me, a time
saver… it’s just easier… if there is three packages and seven per package
(2) FAP: Oooh – that’s a good word, per. What does Bper^ mean? (writes B7 markers per
package^ on the board)
(3) Lori (overlapping): For every one package
(4) Joshua (overlapping): For every one

In the first turn, Jody uses the word Bper^ to create an intensive quantity, markers per
package, without fully articulating the units. FAP writes the full units of the quantity on the
board, but rather than attend to this new quantity, FAP attends to the new word, Bper^, and Lori
and Joshua focus on the oneness of this word.

This focus on the oneness of per continued in the math congress held after students
worked on the next problem in the string (t-shirts, see Fig. 8). In the first part of this
problem, students were given the cost of six shirts, and asked to find the cost of three
shirts. We expected that students would recognize a within-unit ratio of two, and use this
to find the cost of three shirts. However, Zane explained that he multiplied Beight times
three^ to find the cost of three shirts. We pick up the discourse as Toni attempts to
explain Zane’s strategy to the class:

(1) Toni: He divided 48 by six, which is eight.
(2) FAP: That eight is an interesting number. What does the eight represent?
(3) Toni: How much one shirt costs
(4) FAP: What was Jody’s word?
(5) Many: Per
(6) Steve: It means one

Here, Toni starts by describing calculations on numbers, rather than calculations on
extensive quantities. That is, she describes dividing the number 48 by the number 6, rather
than on dividing the quantity B48 dollars^ by the quantity B6 shirts.^ Thus, while Toni has
explained how Zane found the number 8, it is not yet clear how she conceptualizes of this
number. When FAP asks about the meaning of her number, she focuses on the oneness of it,
and the subsequent discourse continues to reify the oneness of per. Again, we can imagine a
different situation where, instead of asking about the meaning of the 8 in turn 2, FAP asked
about the meaning of the 48 and the 6, and then asked what happens when you divide dollars
by t-shirts. Perhaps the notion of division as a referent-transforming operation may have come
out of the subsequent classroom interaction.

Thus, the find-one strategy emerged unexpectedly in our experiment, but it was not
random. Instead, this strategy embodies historic classroom activity (including solving fair-
sharing problems) and social interaction (including discourse that focused on the oneness of
the word per).
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6.3 Preformal productions are cultural artifacts

Having analyzed at some depth the role of preformal productions and their emergence in the
classroom, we now turn to a more fundamental question: what are preformal productions?
Drawing on the RME literature in our conceptual framework, as well as our expanded use of
preformal productions in this paper, we define preformal productions as mathematical pro-
ductions—such as models, tools, and strategies—that embody historic activity and social
interaction. They are simultaneously general and specific, and as such they exist between
students’ informal realities and formal mathematics. Through activity, preformal productions
can be made general enough so as to be applicable to a wide variety of problems, but they
retain contextual cues to specific situations.

In the definition above, we referred to the existence of preformal productions. In what sense
do these productions exist? One response is to think of preformal productions as having an
epistemological existence. From this perspective, we might consider G. Brousseau’s distinc-
tion between two types of knowledge: connaissance and savoir. Connaissances are an
individual’s internal ways of knowing within a situation, while saviors are the culturally
accepted ways of expressing and communicating these ways of knowing:

Events in class have the effect of provoking students to react, make declarations, reflect,
and learn, all of these manifesting their intellectual activity. This activity reveals their
connaissances: what they do, their intentions, their perceptions, their decisions, their
beliefs, their language, their reasoning. Only one part of this set of connaissances is
recognized as expressible, and expressed, whether by the student, by other students, by
the teacher, or by society. These connaissances are recognized with the help of a
repertory of reference connaissances: custom, language, rules of orthography,
established definitions and theorems, logic, communal beliefs, culture, etc. These are
the savoirs. Savoirs are the indispensable means of recognizing and expressing
connaissances. (Brousseau et al., 2009, p. 110)

Preformal productions seem to have elements of both connaissances and saviors. For
example, the partition-distribute-iterate strategy may be considered a way of knowing, and
thus a connaissance. On the other hand, the bar model may be considered a savoir because,
within the classroom, it was the culturally accepted external means through which students
expressed their ways of knowing (in our case, the bar model become culturally accepted within
the classroom through the math congress described in Learning Activity 3). However, we feel
that this does not quite capture the nature of preformal productions. First, notice that, tacit in
the excerpt above is a definition of culture as a static entity that is established a priori and
which exists to make the internal external. The implication is that the relationship between
individuals and their culture is a one-way relationship: from internal to external, via culture. To
capture the nature of preformal productions, we need a more dynamic definition of culture and
a different conception of the relationship between individuals and their culture.

We define culture as both a process and a product. As a process, culture accumulates the
prior accomplishment of a social group and propagates them into the present (Hutchins, 1995).
As a product, these accumulated accomplishments of history serve as resources for current
activity (Cole, 2010). These resources are cultural artifacts, and they function as follows:

(1) The historical nature of artifacts can be understood on many timescales: BSome artifacts
are inherited (e.g., cultural tools, methods, signs, software tools) and practically do not
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change during activities. Others are in perpetual transformation. They have been freshly
created as outcomes of previous actions and are used by the participants in further
activities^ (Schwarz & Hershkowitz, 2001, p. 251).

(2) Cultural artifacts mediate current activity: BHigher mental functions are by definition
culturally mediated. They involve not a direct action on the world, but an indirect action,
one that takes a bit of material matter used previously and incorporates it as an aspect of
action. Insofar as that matter itself has been shaped by prior human practice (e.g., it is an
artifact) current action incorporates the mental work that produced the particular form of
that matter^ (Cole & Wertsch, 1996, p. 252)

(3) The relationship between persons and artifacts is bi-directional: B[A]gents create mean-
ing by drawing on cultural forms as they act in social and material contexts, and in so
doing produce themselves as certain kinds of culturally located persons while at the same
time reproducing and transforming the cultural formations in which they act^ (O’Connor,
2003, pp. 61–62)

We suggest that the notion of a cultural artifact as defined above best captures the nature of
preformal productions. As we described above, preformal productions embody historic class-
room activity and classroom interaction, and they were used by students in service of current
activity. Thus, they meet our initial definition of a cultural artifact. Preformal productions fit
the remaining functions of artifacts as follows: (1) Students reinvented preformal productions
on the timescale of the design experiment. (2) Preformal productions played two mediating
roles: They mediated students’ mathematical activity, and they mediated students’ reinvention
of more formal mathematical productions. (3) In the combination of (1) and (2) above, we see
the bi-directional nature of the relationship between students and preformal productions:
Students acted to produce preformal productions, but preformal productions acted back to
produce students as cultural beings with particular mathematical realities.

7 Conclusion

We began this paper with a problem from our practice as algebra teachers and researchers,
namely, that beginning Algebra I students had more trouble with the division step in an algebra
equation when the quotient was non-integral than they did when the quotient was an integer. In
our practice, we observed that upon encountering such a division step, students often either (a)
abandon the problem, stating that the division can’t be done or (b) perform the division
backwards. Furthermore, in our experience, nearly all students who attempt the division use
the division symbol (÷) to represent the operation, and use the long division algorithm to
express their final solution in decimal notation. Few students use the fraction bar (the line that
separated a from b in the fraction a

b) to represent the division operation or use fractions to
represent their solutions.

We hypothesized that this was because students did not have enough prior experience with
the fraction-as-quotient sub-construct, and we conducted a design experiment organized
around fair sharing in order to help students reinvent this sub-construct. In the beginning of
the design experiment, we found that none of our students’ initial realities included the
fraction-as-quotient sub-construct. Furthermore, for many students, the division operation
was also problematic: students did not always associate partitive-division situations with the
division operation, and, even when students did use division, they did not always see the how
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the problem situation dictated the direction of the division. By the end of the experiment,
students had reinvented the fraction-as-quotient sub-construct, as well as the notion of using
division to find one of a particular quantity. In describing how students reinvented these
productions, we hope to have contributed to practice and to theory.

Our contributions to the practice of algebra teaching are (1) to highlight the importance
of the fraction-as-quotient sub-construct for algebra students; (2) to suggest that this sub-
construct, and indeed, the division operation itself, might not be a part of the mathemat-
ical realities for students entering Algebra I, and to have provided a detailed account of
students’ mathematical realities around division and fractions; (3) to show that students
might not construct the fraction-as-quotient sub-construct solely through experience with
fair-sharing situations, and that explicit activities may be needed to help these students
link the fraction-as-fair-sharing sub-construct to the fraction-as-quotient sub-construct; and
(4) to have provided one possible sequence of activities through which Algebra I students
might reinvent fractions and division as they are used in algebra. In the beginning of the
paper, we clarified that our goal was not to present a model curriculum, and we reiterate
this now. That said, we have shown that students learned powerful mathematics as they
engaged in the sequence of activities presented here. As such, our descriptions of this
sequence and the design decisions that motivated it may prove useful for teachers to
design their own sequences. Future work should explore the ways in the preformal
productions that students reinvented in this experiment mediate the reinvention of formal
algebra.

Our contributions to theory include an expansion of the emergent modeling para-
digm (Gravemeijer, 1999) to include all manner of mathematical productions, and an
in-depth analysis of the role of preformal productions in (a) mediating students’
mathematical activity and (b) mediating the reinvention of more formal mathematics.
Luria (1928, p. 493) famously stated that Bthe tools used by man not only radically
change his conditions of existence, they even react on him in that they effect a
change in him and in his psychic condition.^ This is precisely the role played by
preformal productions in our study. Preformal productions changed the conditions of
our students’ existence because they mediated students’ activity, rendering solvable
problems that were previously not solvable. Preformal productions further effected a
change in our students because they mediated the invention of more formal mathe-
matics. Indeed, the formal mathematical realities that emerged were—to a large
extent—dictated by the preformal productions that preceded them. Preformal produc-
tions are not Bcrutches for the weak^ as one teacher with whom we have worked once
described them. Instead, they are an integral and vital part of doing and learning
mathematics.

Given the importance of preformal productions, it is important to understand how
they emerge in the classroom. We suggest that the specific productions that emerged
in our classroom embody historic classroom activity and social interaction. As such,
they can be designed for. However, we have also shown that preformal productions
emerged even when they were not explicitly designed for. This analysis has large
implications for designers and teachers. Namely, it suggests that preformal productions
should be a key part of any designed curriculum, and that teachers should be aware
of the ways in which the activity and interactions within the classroom are shaping
the development of preformal productions, because it is on these productions that
students create their formal mathematical reality.
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