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Abstract In this paper, we present a cognitive analysis of the relationship between the
argumentation process leading to the construction of a conjecture and its algebraic proof in
solving Calendar Algebra problems. To solve this kind of problem, students encounter two
sources of potential difficulties: the shift from using arithmetic in the argumentation to using
algebra in the proof and the shift from an inductive argument towards a deductive proof. Thus,
the aims of this article are to describe these cognitive difficulties and to show how students
overcome them. Methodologically, we compare students’ problem solving process corre-
sponding to three problems presented in the first four lessons of a teaching experiment. The
analysis and comparison between these three resolution processes is performed using
Toulmin’s model.
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1 Introduction

In this paper, we present a cognitive analysis of the relationship between the argumentation
process leading to the construction of a conjecture and its algebraic proof. Specifically, this
analysis aims to fill the gap for the case when the argumentation process is inductive and is
constructed in the field of arithmetic and the proof is deductive and in the algebraic domain.
Theoretically, this type of relationship would pose students two sources of potential difficul-
ties: the shift from using arithmetic in the argumentation to using algebra in the proof and the
shift from an inductive argument towards a deductive proof. Thus, the aim of this article is to
empirically examine such a relationship by studying students’ resolution process including
difficulties that emerge while solving each one of three Calendar Algebra problems (Martinez,
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2011). These problems were intended to promote the construction of conjectures studying
regularities in the calendar and its corresponding proof.

In addition, since we look at students solving a sequence of three related problems, we
compare the corresponding argumentations across the three problems paying attention to
potential changes in the nature of the argument (e.g., type of warrant, type of backing, etc.).

Consequently, in this report, our overarching research questions are:

(1) To what extent does the cognitive distance between inductive arithmetic argumenta-
tion and deductive algebraic proof become a challenge for students in the construction of
a proof?
(2) How do students learn to overcome this distance during the solutions of the three
problems?

Methodologically, we compare students’ problem solving process corresponding to three
problems presented in the first four lessons of a teaching experiment. The analysis and
comparison between these three resolution processes is performed using Toulmin’s model.

2 Relationship between argumentation and proof

The relationship between argumentation and proof is complex as reported in previous studies.
Some researchers highlighted the epistemological (Balacheff, 1988) and cognitive (Duval,
1995) distance between argumentation and proof. In contrast, researchers in the Italian
tradition focused on the continuity, called cognitive unity, that exists between argumentation,
as a process of production of statements, and the construction of its proof (Boero, Garuti, &
Mariotti, 1996; Garuti, Boero, & Lemut, 1998). Trying to clarify these different research
results, Pedemonte (2007) pointed out that in general, the comparison between argumentation
and proof should be carried out considering two complementary dimensions: the referential
system and the structure.

The referential system includes the representational system (e.g., language, heuristics,
drawing etc.) and the knowledge system (conceptions, theorems) of argumentation and proof
(Pedemonte, 2005). For example, there is continuity between argumentation and proof
in the referential system (or cognitive unity) if some words, drawing and theorems
used in the proof have been used in the argumentation process. On the contrary, for
instance, if argumentation and proof are constructed using elements from different
mathematical domains (e.g., arithmetic in the argumentation and algebra in the proof),
then there is discontinuity between argumentation and proof taking into account the
referential system.

The structure of either the argumentation or the proof is the logical cognitive connection
between statements (i.e., abduction, induction or deduction). It is relevant to include the notion
of structural continuity/discontinuity between argumentation and proof since it has the poten-
tial to explain some of students’ difficulties when constructing a proof. As highlighted in
previously reported results (Pedemonte, 2007), when solving open geometrical problems,
students are often unable to construct a proof because they are not able to transform the
abductive structure of the argumentation into the deductive structure of the proof (e.g., some
students often construct an “abductive proof” if they have previously produced an abductive
argumentation). This happened even in the case of continuity in the referential system between
argumentation and proof, that is to say, when all “elements” necessary to construct a proof are
present (Pedemonte, 2007).
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However, according to Pedemonte (2008), the structural continuity/discontinuity between
argumentation and proof does not always pose a challenge for students. Indeed, in solving
open problems requiring the construction of an algebraic proof, it seems that even if students
produce abductive steps in the argumentation phase, they do not use them in the proof because
the deductive structure is very strong inside an algebraic proof. In this specific case, it seems
that the abductive steps in the argumentation can be useful for the construction of proof
because they can favour continuity between argumentation and proof in the referential system
(Pedemonte, 2008).

Some other studies in geometry (Pedemonte, 2007) analyzed the relationship between
inductive argumentation and mathematical induction. The results of this study showed that
the construction of the mathematical induction strongly depended on the kind of generalisation
used in the inductive argumentation. Students constructed mathematical induction only when
they were able to generalize the process leading to the solution of the problem in inductive
argumentation.

Given that this research program calls for attention to both structure and referential
system, it is essential to study the case in which the argumentation is inductive in
arithmetic and the proof is deductive in algebra in order to have an exhaustive empirical
examination of this relationship. In particular, we would like to investigate if it is possible
to extend research results obtained comparing inductive argumentation and mathematical
induction when the comparison is made between inductive argumentation and deductive
proof. Even if we already know there is a structural distance between inductive argumen-
tation and deductive proof (that can probably be considered as a difficulty for the
construction of the proof), we want to analyze if the cognitive distance between them
depends on the kind of generalisation used. We need to do this study because some
unexpected results could be found; we have seen that research results obtained in geometry
do not necessary correspond to research results obtained in algebra. In fact, because
deductive structure in algebra is strong, it could be that structural distance between
argumentation and proof is not a challenge for students. In the next section, we describe
the tool of our analysis–Toulmin’s model–and how we can accomplish this analysis from
the referential system and the structural points of view.

2.1 Toulmin’s model

Toulmin’s (1958/1993) model has been used by several researchers in mathematics education
(e.g., Hollebrands, Conner, & Smith, 2010; Inglis, Mejia-Ramos, & Simpson, 2007; Knipping,
2008; Lavy, 2006; Stephan & Rasmussen, 2002) to examine students’ mathematical argu-
ments. In this report, Toulmin’s model is used to analyze argumentation and proof from a
cognitive point of view.

The comparison between argumentation supporting a conjecture and its proof is based on
the hypothesis that proof can be considered as a specific kind of argumentation in mathematics
(Pedemonte, 2005, 2007). For this reason, we use Toulmin’s (1958/1993) model to identify
and analyze the argumentation process that supports the production of conjectures and proofs.
In this model, both argumentation and proof can be represented and compared from the
structural point of view and from the referential point of view.

In Toulmin’s (1958/1993) model, an argument is represented by an assertion referred to as
the claim (C) and data (D) supporting the claim and by a warrant (W) that provides the
justification for using the data conceived as a support for the data–claim relationships. The
warrant, which can be expressed by a principle, or a rule, acts as a bridge between the data and
the claim.
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Three other elements may be necessary to describe an argument: qualifier, rebuttal, and
backing (Toulmin, 1958/1993). The qualifier (Q) represents the strength, the soundness of an
argument. The force of the warrant would be weakened if there were exceptions to the rule; in
that case, conditions of exceptions or rebuttal (Re) should be inserted. A backing (B) is
required if the authority of the warrant is not accepted straight away. Thus, Toulmin’s model of
argumentation may contain six related elements (Fig. 1).

In this report, Toulmin’s (1958/1993) model is used to map out students’ arguments as part
of their argumentation and proof. In addition, both their corresponding referential system and
structure will be compared. This is done for each of three consecutive problems. In doing so,
we hope to identify difficulties students may have in the construction of the proof as well as
ways in which these difficulties were overcome.

As reported elsewhere (Pedemonte, 2005, 2007, 2008), Toulmin’s (1958/1993) model can
be used to analyze and to compare argumentation and proof from two points of view: the
referential system and the structure. In what follows, we present how we can accomplish this
analysis.

2.2 Comparing argumentation and proof taking into account the referential system

To compare the referential system of both argumentation and proof, the corresponding
warrants and backings need to be taken into account as part of the analysis. The warrant in
an argument within the proof may be an axiom, definition, or theorem. The backing is the
theoretical system which justifies the warrant. Thus, in solving Calendar Algebra problems, we
probably observe that the backing in the proof is algebra while the backing in argumentation is
arithmetic, similarly in the case of warrants.

We are interested in analysing whether the cognitive distance in the referential system
between argumentation and proof runs as an obstacle in the construction of the proof.
Moreover, we try to detect “elements” that seem to be meaningful to shorten the cognitive
distance in the referential system, when students are able to construct a proof.

2.3 Comparing argumentation and proof taking into account the structure

As mentioned earlier, in this report we focus on inductive argumentation and deductive
algebraic proof. In creating an algebraic proof, students would generate a chain of equivalent
expressions. Each expression is generated using properties that hold in the set of the Real
Numbers such as the distributive property, inverse element, and so forth. Because of the way in
which equivalent expressions are generated, the resulting chain is a chain of deductions. In a
similar way, we can consider a chain of deductions given by equivalent propositions (i.e.,

C : ClaimD : Data

W: Warrant

Re : Rebuttal

B: Backing

Q : Qualifier

Fig. 1 Toulmin’s comprehensive model
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equations). This is the case when a proposition is generated from another proposition through
the use of a specific rule (i.e., equation solving rules).

In Toulmin’s (1958/1993) model, each step appears as a deductive step: data (e.g., an
expression or proposition) and warrants (e.g., Real Numbers properties) lead to the claim (e.g.,
an equivalent expression or proposition). Nevertheless, Pedemonte (2007) has shown how
other argumentative structures can be represented using this model. In this paper, the focus is
on induction, which is an inference that allows the construction of a claim generalising from
particular cases (Fann, 1970; Polya, 1954, 1958). Harel (2001) distinguishes two inductive
generalisation processes: result pattern generalisation and process pattern generalisation.

Result pattern generalisation focuses on the regularity of the results, and it can be visualized
as: E1, E2, E3… where E is a property generalized on cases 1, 2, 3 and so on. Process pattern
generalisation focuses on the regularity of the process, and it can be visualized as E1→E2,
E2→E3,… The resulting generalisation is given by the inference connecting one case to the
next one (Figs. 2 and 3).

We are interested in analysing whether the structural distance between inductive argumen-
tation and deductive proof may function as an obstacle for the construction of an algebraic
proof in solving Calendar Algebra problems. In addition, we analyze the role that the type of
generalisation (following Harel’s distinction, i.e., result pattern and process pattern) that
students produced may play in overcoming this discontinuity.

3 Methodology

3.1 Teaching experiment

In this paper, we describe and analyze the work of three ninth/tenth grade students (i.e., Abbie,
Desiree, and Grace) who participated in the Calendar Algebra teaching experiment, led by one
of the authors of this paper (i.e., Martinez), in which a total of nine ninth/tenth graders took
part, at a public school in the Boston area, Massachusetts, in the USA.

3.1.1 Lessons

Fifteen 1-h lessons were held once a week. These lessons were part of the regular school
schedule but not part of the students’ regular mathematics classes. All students were
interviewed individually (mid-way through and at the end of the teaching experiment).
During these lessons, 17 problems were proposed. In this paper, we report on data collected
during the first four lessons. During lessons 1 and 2, the three students Abbie, Desiree, and
Grace worked on problem 1 (Fig. 4). During lesson 3, students worked on problem 2 (Fig. 5)
while during lesson 4 they worked on problem 3 (Fig. 6). We chose to analyze this group and

where E1, E2 …En are the claims of the previous steps 

D: E1,  E2   … C: claim

W: result pattern generalisation 

Fig. 2 Representation of result pattern generalisation (induction) using Toulmin’s model
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these particular lessons because of the contrasting nature of their work. As mentioned earlier,
students faced many obstacles when solving problem 1, while when solving problems 2 and 3,
students’ problem solving process went smoothly. The three problems considered in the
analysis are in Figs. 4, 5 and 6.

Students were provided with calendars corresponding to years 2005–2008 accompanying
problem 1—part 1 (see Fig. 4). As a result of students’ work on part 1, they implicitly had to
analyze the nature of the outcome of the described calculation (subtraction of the cross
product). It was expected that students would anticipate some kinds of variation in the outcome
in relation to the set of days where the operator is applied. It was also expected that students
would find out, through exploration, that the same outcome is always obtained (i.e., −7), no
matter where (square location within a month, across months, and across years) they apply the

Fig. 3 Representation of process pattern generalisation (induction) using Toulmin’s model

Fig. 4 Problem 1 from the Calendar Algebra teaching experiment
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operator. The ultimate educational goal of part 1 of problem 1 was to get students to produce
conjectures about the behaviour of the outcome (of the subtraction of the cross product) as it
relates to the square’s location in the calendar. After each group of students produced their
conjectures, as part of part 1 of problem 1, students had to gather evidence to show that their
conjecture is true. The challenge for the students was to find out why this happens and whether
this is “always” going to be the case. At this stage in the problem, from a mathematical point of
view, algebra becomes a tool to solve the problem. Thus, one of the challenges in problem 1 is
to show the limitations of using a non-exhaustive finite set of examples to prove that
proposition is true and to encourage students to use algebra as a tool that allows them to
express all cases using a unique expression. Data collected during lessons 1 and 2 on three
students (Abbie, Desiree, and Grace) solving problem 1 are analyzed in problem 1. Problems 2

Part 1: 

Consider a 3x3-calendar-square within a certain month. 

For example, a 3x3-calendar-square can be 9 10 11
16 17 18

23 24 25

Calculate:

(1) The sum between the number in the upper left corner and the number in the 
lower right corner

(2) The sum between the number in the upper right corner and the number in the 
lower left corner

(3) From the number obtained in (1) subtract the number obtained in (2). This  result 
is your outcome

Find the 3x3 calendar square that yields the smallest outcome. 
You may use any month of any year that you want.

Part 2: 

Is there any other 3x3 calendar square that could give a smaller number? Explain

Is there any other 3x3 calendar square that could give a bigger number? Explain

Problem 2

Fig. 5 Problem 2 from the Calendar Algebra teaching experiment

Problem 3

Analyze what happen in the case of a 4x4-calendar-square in the following two cases:

(1) Using the operations used in Problem 1

(2) Using the operations used in Problem 2

Fig. 6 Problem 3 from the Calendar Algebra teaching experiment
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and 3 (Figs. 5 and 6) were purposely designed as variations of problem 1 in order to provide
students multiple opportunities to encounter similar situations and consolidate their under-
standing. For a detailed description about task design, framework, and results, see
Martinez, Brizuela, & Superfine (2011); Martinez & Superfine (2012).

3.2 The cognitive distance between argumentation and proof in solving Calendar Algebra
problems

In solving Calendar Algebra problems, students need to shift from an inductive argumentation
constructed in arithmetic to a deductive proof constructed in algebra. So they need to shift from
one kind of structure in the argumentation (i.e., inductive) to another (i.e., deductive) in the
proof. Previous research (Pedemonte, 2007) has shown that in geometry, the construction of
mathematical induction strongly depends on the kind of generalisation used in the inductive
argumentation: only when generalisation is based on the process (Harel, 2001) were students
able to construct a mathematical induction. The structural distance between inductive argu-
mentation and deductive proof is apparently greater than the distance between inductive
argumentation and mathematical induction. Thus, we need to investigate if generalisation on
the process can also function as a bridge in the relationship between inductive argumentation
and deductive proof. Some studies (Ellis, 2007; Lannin, 2005) have shown that there is a close
connection between generalisation and deductive proof; thus, our hypothesis is that the
generalisation on the process probably affects the construction of a deductive proof, at least
in the case of Calendar Algebra problems.

In addition, in solving these problems, students need to prove in algebra a conjecture
grounded in arithmetic. The distance between these two domains (i.e., arithmetic and algebra)
might function as an obstacle in the construction of the proof. Many studies have devoted their
attention to the relationship between arithmetic and algebra. In particular, some highlight the
“cognitive gap” between the two fields (Herscovics & Linchevski, 1994; Linchevsky &
Livneh, 1999). To grasp meanings in algebra, students use numerical examples to make
sense of letters. They use the language of arithmetic to understand the algebraic language.
Although procedural aspects reflect those of arithmetic, in algebra they have a completely
different meaning. Students are often unable to apply basic algebraic concepts and skills
and to understand the underlying structure (Linchevski & Herscovics, 1996). However,
many other researchers have shown how students connect arithmetic and algebra, drawing
meaning from their work with numbers (e.g., Barallobres, 2004; Bell, 1995; Mason,
1996). Following these research results, we make the hypothesis that to decrease the
cognitive gap between arithmetic argumentation and algebraic proof, the warrant in the
argumentation should be transformed into a warrant in the proof. In other words, the
warrant should “live” both in arithmetic and in algebra. Only in this way is it likely that
the continuity in the referential system between argumentation and proof can be
maintained.

3.2.1 Data analysis

To perform the analysis, we have to present the “indicators” that allow us to determine the kind
of argumentation students construct. In particular, we have to recognize if the argumentation is
in arithmetic or in algebra and which kind of generalisation is used in inductive argumentation.
In the table that follows (Table 1), we describe how warrants and backing were coded
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correspondingly, taking into account the referential system and the way the generalisation was
produced.

4 Results

4.1 Problem 1

These students consider examples as part of their first exploration of the problem. The
argument is constructed inductively in arithmetic. Indeed, they first observe the regularities
among elements in the square (i.e., difference of six and eight) and through a process pattern
generalisation in arithmetic they arrive at C2 (i.e., “…there’s always going to be a difference of

Table 1 Coding scheme

Code name Code explanation Example

Arithmetic Backing within the argument is coded as
arithmetic when the referential system used
by students is arithmetic (e.g., using
specific numeric examples).

Problem 1—argument 1. “There’s always
going to be a difference of 8 between this
one and this one, 1, 2, 3, 4, 5, 6, and a
difference of 6 between this one and this
one”.

Algebra Backing within the argument is coded as
algebraic when the referential system used
by students is algebra (e.g., using
variables).

Problem 1—argument 8.

Students are working with the expression that
they themselves have set up (x−1)(x−7)=
−7+x(x−8).

Arithmetic and
algebra

Backing within the argument is coded as
arithmetic and algebra when students
include elements from both fields

Problem 1—argument 5. “We’re subtracting
the product of these two, times, wait, we’re
subtracting the product of these two from
the product of these two. And the product
of these two is this number times 8 less
than this number. So ‘x’ times ‘x’ minus 8,
minus ‘y’ times ‘y’ minus 6”.

Students using process pattern generalisation
bring together elements from arithmetic
given that they are looking at multiple
cases in order to create the resulting
generalisation. The generalisation is
expressed using algebraic notation.

Process pattern
generalisation

A warrant is coded as process pattern
generalisation whenever the resulting
generalisation stems from the regularity of
the process. The resulting generalisation is
given by the inference connecting 1 case to
the next one.

Problem 1—argument 5. “We’re subtracting
the product of these two, times, wait, we’re
subtracting the product of these two from
the product of these two. And the product
of these two is this number times 8 less
than this number. So ‘x’ times ‘x’ minus 8,
minus ‘y’ times ‘y’ minus 6”.

Result pattern
generalisation

A warrant is coded as result pattern
generalisation whenever the resulting
generalisation stems from the regularity of
the result of the calculation.

Problem 1—argument 4. “They are always
going to be the same (i.e., −7)”.
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eight between the diagonal from the top left, bottom right and a difference of six from the top
right to the bottom left”).

A: There’s always going to be a difference of 8 between
this one and this one, 1, 2, 3, 4, 5, 6, and a difference
of 6 between this one and this one

Students calculate the outcome considering several
numerical examples. In doing so, they observe
certain regularities.

D: In every single one of them or just that square? C1: There is always 

going to be a difference 

of 8 and a difference of 

6 between this one and 

this one

W: Calculations

Arithmetic

D1: Specific 

example
A: In every single one because it’s the difference of 1

more than a week here and 1 less than a week here....

[…]

A: We know that there’s always going to be a difference
of 8 between the diagonal from the top left, bottom
right and a difference of 6 from the top right to the
bottom left, so

Using more examples, students arrive at a claim like
the previous argument (i.e., D1->C1) through a
process pattern generalisation (right below).

C2: There is always going to be 

a difference of 8 between the 

diagonal from the top left, 

bottom right and a difference

of 6 from the top right to the 

bottom left
W: Process pattern generalisation 

Arithmetic

D2: D1 1 

........ 

So far, students have observed and generalized the relationships among relevant elements
within the square. They continue to observe the invariance of the outcome (i.e., −7) across
several numerical examples. Students do so generalising the result inductively (i.e., result
pattern generalisation) and arriving at the fourth claim (i.e., C4).

Students calculate the outcome
considering some squares.

C3: the outcome is

negative 7 

W: Calculations

Arithmetic

D3: Specific

example
D: It’s still negative 7, I think it’s always

going to be negative 7

A: So like on May

D: Cause July it’s on well first it’s on a
Saturday, so the number combinations
are different, but it still turns out to be
negative 7

A: Yeah and on May the first day of the
month is on Monday which is the same
as the one that’s on our problem sheet
and they end up to be the same, negative 7

Students inductively generalize the result they obtained
across cases producing the fourth claim.
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D: Yeah I started to do that one out and then I
realized, wait a minute that’s the example C4: They are always going 

to be the same (-7)

W: Result pattern generalisation

Arithmetic

D4: C3, ...

A: They’re always going to be the same

In what follows, students are aware that a finite set of numerical examples is not enough to
prove their claim; consequently, students shift from arithmetic to algebra. At this point, they
are focused on expressing in a general way the relationships among variables and the
subtraction of the cross product. The first expression they produce (i.e., C5) only takes into
account the relationship between the elements of the diagonal, as opposed to considering also
the relationships among elements in the same row. Thus, the expression contains two “inde-
pendent” variables. However, soon after, students become aware of the dependence between
elements in neighbouring rows. As a consequence, they rewrite the expression in terms of just
one independent variable (C6).

This is a crucial step in bridging argumentation and proof from the point of view of the
referential system. Indeed, the shift from arithmetic to algebra is necessary to construct a proof.
Note that in the backing of the following two arguments, arithmetic and algebra co-exist, as
this is the modelling stage. In modelling the situation, there is interplay between the algebraic
and the arithmetic domains.

A: All right so this is what I have ‘x’ times ‘x’ minus 8,
minus ‘y’ times ‘y’ minus 6 that’s basically what
we’re doing. Yes?

C5: x(x-8)-y(y-6)

W: Process pattern generalisation

Arithmetic and Algebra

D5: D1 1

G: Say that again

D: Could you walk us through it?

A: We’re subtracting the product of these two, times,
wait, we’re subtracting the product of these two
from the product of these two. And the product
of these two is this number times 8 less than this
number. So ‘x’ times ‘x’ minus 8, minus ‘y’
times ‘y’ minus 6.

....

..... Considering a specific square students observe that
there is a relationship between x and y, and proceed
to modify the previous expression.

A: 12 times 12 minus 8 minus, oh wait but ‘y’ and
‘x’ also are related because ‘x’ is one less than
‘y’ ok so we can go ‘x’ minus 1 times ‘x’ minus
1 minus 6

D: Ok, what?

A: So ‘y’ and ‘x’ aren’t like random numbers cause
like this wouldn’t be 17 and that wouldn’t be 2,
that’s always going to be 1 less than that, so we
can say everything in terms of this number right
here

.....
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C6: x(x-8)-(x-1)(x-1-6)

W: Process pattern generalisation

Arithmetic and Algebra

D6: D1 1

and a specific 

example

D: Ok you’ve just made this a lot harder to write, but
it’d be a different formula if we wrote it differently
so

....

A: So ‘x’ times ‘x minus 8’ minus ‘x minus 1’ times ‘x
minus 7’

In what follows, students generate an equation linking the subtraction of the cross product
with −7. As shown in arguments 3 and 4, the outcome (i.e., −7) is inductively obtained by
generalising the result across cases (i.e., result pattern generalisation) in arithmetic. In contrast,
the algebraic expression representing the subtraction of the cross product is obtained via
induction based on a process pattern generalisation in an interplay between arithmetic and
algebra. When students equate x(x−8)−(x−1)(x−7) with −7, they are linking two objects of
different natures in regards to the field in which the generalisation is carried out (i.e., arithmetic
versus arithmetic/algebra) and the type of inductive generalisation (i.e., result versus process).
The cognitive distance between argumentation and proof in the referential system and in the
structure functions as an obstacle in the construction of proof.

A: So ‘x’ times ‘x minus 8‘minus ‘x minus 1’
times ‘x minus 7’

D7: C4 and C6 C7:x(x-8)-(x-1)(x-7)=-7

Algebra and Arithmetic 

W: Link between the process in the
algebraic field and the outcome
constructed in the arithmetic field 

A: Equals negative 7

…

A: What we still have to prove is that it does in
fact it does always equal negative 7

In the backing two different fields (arithmetic and algebra) are
present because for students −7 is grounded in arithmetic
while the expression in algebra.

Note that the qualifier Q7 is in arithmetic where students know
that the expression is equal to −7.

Once students have the expression x(x−8)−(x−1)(x−7)=−7, the notion of equation is
triggered and they proceed to apply traditional equation solving procedures (i.e., moving terms
from one side of the equal sign to the other one). Therefore, students’ initial proving strategy is
that of equation solving. It is at this moment that the connection with the argumentation is lost.
The continuity in the referential system is broken.
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A: Ok, so I don’t know how to prove things like this D8: C7 C8: (x-1)(x-7)=-7 +x(x-8)

Algebra

W: Equation solving rules

....

A: All right, let’s just try moving things around

…

A: ‘x’minus 1 times ‘x minus 7’ equals negative 7 plus
‘x’, I mean

D: Oh Abbie Students apply equation-solving rules in their first
attempt to transform the expression.

A: Times ‘x minus 8’, ok Here the qualifier Q8 is still not true. Students are
reasoning in algebra now where they have to prove
that the formula is true, as described by Abbie.

…

A: Well it’s always sort of, this is backwards for me
because usually I’m like doing something and
working towards making a formula now I like have a
formula and I have to like prove that it’s true

A: Well I just don’t really like understand I mean we’re
trying to prove that, that equals negative 7 but like I
don’t know, I don’t know howwe’re going to go about
doing that, like… I understand what we did here but
I don’t know how that works towards negative 7…
Like it just feels like we sort of re-arranged it

The discontinuity in the referential system between argumentation and proof is
evident because the rules used in the argumentation (i.e., calculations) are essentially
different (i.e., properties of the real numbers such as distributive property) than the
rules of equation solving used at the beginning of their attempt to prove. Students
transform the first expression into the equation (x−1)(x−7)=−7+x(x−8), but as
highlighted by Abbie’s comment, it seems as if they lose sight of the connection to
the meaning constructed in the argumentation process.

There is also structural distance between argumentation and proof. Argumentation is
inductively developed by students using process pattern generalisation (while constructing
the expression) and result pattern generalisation (while constructing the outcome). Students
need to shift from an inductive argumentation to a deductive proof: this offers resistance in the
construction of a proof.

At this moment, students stumbled upon an obstacle and were not able to continue constructing
a proof by themselves. Abbie was not sure how to get from the initial equality to what they wanted
to prove (i.e., outcome equals −7). The intervention of the teacher was necessary to help students
move forward; she suggested rearranging the elements on one side of the equation to see whether
they could cancel something. After trying the teacher’s suggestion and re-arranging what they had,
students were able to cancel things out until finally obtaining −7=−7. This was students’ first
experience in proving deductively using algebra.
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4.2 Problem 2

Students start working on the problem by trying examples, as was the case in problem
1. The argumentation process is predominantly inductive based on both result pattern
and process pattern generalisations. As a result, not only do students conclude that the
outcome will be zero but also they are certain of the invariance of the relationships
among numbers in the square. This double conclusion enables reducing the distance
between the argumentation and the proving processes, in terms of the referential
system (i.e., algebra and arithmetic).

D: Did you try it on another square?

A: But it's just sort of logical that it'll be the 

same

A: Because that's the same amount away from 

this as that one

D: Yeah.

G: You might try doing that again and simplify

the equation

A: Like, what do you mean?

G: Pick a square to be x and then write out the 

relationships

G: Simplify it and prove that we're right

A: Why don't we choose this one to be x again?

G: So, 25 upper right corner

D: Do another example  to show that it always 

comes out to zero, right?

A: So we also think the outcome is going to be 

zero

Students arrived at their first claim after
considering some specific examples and
calculating the corresponding outcome.  

Students use one other example and
conjecture that the value of the outcome will
be zero for all cases by using result pattern
generalisation process.   

Note that so far, students generalized the
result. However, in parallel, students  

C2: The outcome is always 0

W: Result pattern generalisation

Arithmetic

D2: D1, ....

C1: the outcome is 0

W: Calculations

Arithmetic

D1: Specific 

example
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A: Because it's addition   this … The time

relationship between the upper left corner 

number and lower right corner number is always

going to be the same… As the relationship 

between the upper right corner  number and the

lower left corner  number… So they're going to

cancel each other to zero

brought up the idea to represent the
numbers in the calendar square using x as
the independent      variable and the
corresponding relationships for the three
dependent variables. In this way, students
generalize the process involved in the
problem.      

Based on their observations of the
relationships among numbers in the
calendar square, students are able to claim
that they are invariant. This brings together
arithmetic and algebra in the conjecturing
process.      

C4:The relationship between 

the upper left  corner number 

and the   lower right corner

number, and the relationship 

between the upper right corner 

number    and the lower left 

corner  number is always going 

to be the same
W: Process pattern generalisation

Arithmetic. Algebra and Problem 1

D4: D1

….

C3: the relationship 

among elements in the 

corners of the square

expressed by letters.

W: Process pattern generalisation

Algebra and Problem 1

D3: the relationship

among numbers in 

the corners of a  

square in arithmetic

C1
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In what follows, students continue to model the problem using algebra in order ultimately to
prove their conjecture. Abbie first proposes a not so efficient model of the situation. Abbie uses
four variables and even though she is aware of the relationships among variables, she does not
express three variables as a function of the same independent variable.

A: I made this little thing where I called this
one x, this one y, and this one N, and this
one Q… So x minus 16=y because it's 2
weeks and 2 days away, that’s 16 days…N
minus 12 is Q, because it’s 2 less than 2
weeks… And then x minus 2 is N, because
it’s 2 days less than 2 weeks

C5: 

W: Process pattern generalisation

Arithmetic and Algebra

D5: 

Abbie represents the relationships among numbers in the square
using algebraic notation and through a process pattern
generalisation. In doing so, Abbie engages in an interplay
between arithmetic and algebra.

Even though the proposed model is not instrumental in helping her to prove the
conjecture, the interplay between algebra and arithmetic is a crucial step forward in
reducing the distance between argumentation and proof. The co-existence of both
fields at this stage is conducive to the production of a proof. It is in this respect
that there is cognitive continuity in the referential system between argumentation and
proof.

Arguments 3 and 5 are crucial to reduce the cognitive distance between argumentation
and proof, both from the referential point of view and the structural point of view. As a
result of arguments 3 and 5, students produced an algebraic model of the problem. Let us
consider in particular argument 5. Here Abbie replaces the numbers in the calendar with
algebraic symbols. This seems important to reconstruct the continuity in the referential
system because the student uses the problem description simultaneously to represent a
physical calendar and algebra. The insertion of the letter in the calendar runs as a “pivot”
element to reduce the distance between argumentation and proof in the referential
system. Having a single representation for arithmetic and algebra allows students to
have a bridge between them. The qualifier of these arguments lives in arithmetic where
students have constructed the conjecture, but also in algebra because the expression is
constituted by letters that are for students a generalisation of numbers.

Furthermore, the inductive structure based on a process pattern generalisation,
which expresses the relationship between the corners of each square runs as a
connection between argumentation and proof. The argument 6, which expresses the
solution of the problem as an algebraic expression, is directly constructed by argu-
ments 3 and 5.
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Below, Desiree suggests to Abbie she should re-consider her model by using only one
independent variable (i.e., x) and expressing the others as a function of it.

D: Aren’t they kind of hard to simplify
because we have different variables?

The intervention of Desiree works as a restriction in Abbie’s
argument. Following Desiree’s idea, the resulting modelisation
is completely different.A: Ok what are your variables?

D: x

A: Just x?

A: Well I have for the same one, I just added
other ones too

The previous argument allows students to construct the equality
to be proved:

G: The other ones are just gonna be x minus
the other ones

A: Yeah ok

A: It’s basically the same thing, it’s just x
minus 16

A: Alright so I’m just going to write it the
same way you guys are writing it C6: x+x-16=x-2+x-14

W: Process pattern generalisation

Arithmetic and algebraic fields

D6: 

D: Ok, do we wanna try it out?

A: Ok basically we need to prove that
x+x−16=x−2+x−14

Abbie writes the equality generalising the third argument. Its
backing is grounded in the arithmetic field as well as the
algebraic field. The algebraic domain allows students to
model the outcome in a general way. The arithmetic field is the
domain of validity of the equality since students are certain of
its plausibility on the basis of numerical examples.

Still, students are aware that proving the assertion remains to be
done. Abbies states ‘we need to prove that x+x−16=x−2+
x–14’ even if she is aware that the equality is true.

This last step in students’ mathematical process, as just illustrated above, is crucial
in linking argumentation and proof. The assertion to be proved is resulting knowledge
produced by students as part of the argumentation process. In this way, this statement
is one of the shared elements between the argumentation and proof. It is in this way
that the distance between them is overcome. This is one more example of an element
that works towards the continuity in the referential system between argumentation and
proof.
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Abbie and Desiree are in agreement in terms of what needs to be proved (i.e., x+x−16=x−
2+x−14). However, this is not the case for Grace. She thinks that they need to prove a
different statement, as illustrated below.

Abbie transforms the equation to an equivalent
equation in which the two expressions are equal C8: x+x-16=x+x-16

W: calculation rules

Algebraic field

D8: x+x-16=x-2+x-14

She writes

x+x−16=x−2+x−14
x+x−16=x+x−16
Grace is not convinced it is correct

G: This isn’t what we’re doing… we need to prove that
what we’re doing is always going to be zero

Grace thinks that they have not proved the problem
because they should obtain zero.

A: This is what we’re doing..

G: No, we’re doing x+x−16 MINUS x−2+x−14 C9: x+x-16 (x+x-16)=0

W: A=B A-B=0

Theorem in action

D9: C8

A: Wait, it’s always going to equal zero, if this plus that
equals this plus that

G: Yeah, but I just think that it’s confusing if we…

D: Well it makes sense to prove those two equalling
each other first… And then prove that those two
minus each other equals zero, is that what you’re
trying to say?

A: Yeah, if they’re the same then we know they’re
going to be zero

Attending to Grace’s concern, students end up re-
writing the expression in order explicitly to show that
the outcome always comes to zero.G: Okay, that makes more sense

Then Abbie writes The backing in argument 9 can be considered as a
theorem in action (Vergnaud, 1991): ‘If two
quantities are equal, then their difference is equal to
zero’. The theorems in actions are implicit
mathematical theorems which act as invariants and
lead the action.

x+(x−16) can be rearranged as x+x−16
x−2+x−14 can be rearranged as x+x−16 also

x+x−16−(x+x−16)=0

If the expressions are equivalent, then their difference
will always be 0

Abbie uses this theorem explicitly but she probably is
not aware this is a theorem. This theorem is used by
Abbie to transform the equation to an equivalent
version, in which it is probably easier to explain that
the result is 0.

Grace brings back to the proving phase an element from the argumentation to show
that the outcome will always be zero. In this way, these students give closure to the
proving process.
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4.3 Problem 3

In this case, students again start by trying with numerical examples (C1); after that, they
conjecture that the outcome is −63 always (C2).

D: Wait; so which one did we do first again? Let me
see, the upper left times the bottom right, minus the
bottom right times the upper left

C1: The outcome is -63

W: Calculations

Arithmetic

D1: Specific 

example

A: That one, times that one minus that one times that
one I think

D: Yes, that’s what I said… okay

A: So, yes… okay

G: That one, times that one, times that one…

A: Or is it the other way around? Students generalize the previous argument and
construct the resulting conjecture. It is grounded in
both domains: algebraic and arithmetic. Abbie
appeals to the notion of variable as a generalized
number by stating that the conclusion holds for ‘any
number’.

G: If I did the upper left times lower right, then the
other two… it comes out

C2: The outcome 

will always be 

negative 63 for 

any number

W: Result pattern generalisation

Arithmetic and Algebra

D2: D1 1

D: So these times these, right?

G: I did those two, and those two, and it came out to
negative 63

D: Yeah

D: Negative 63

A: I got negative 63 too

D: It’s always going to turn out as negative 63

A: Yes the outcome will always be negative 63 for any
number

In this exchange, Abbie generalizes the invariance of the outcome across cases. As
evidenced in claim C2, Abbie explicitly connects the numerical value of the outcome with
“any number”. The fact that she uses the expression “any number” indicates a conceptualiza-
tion of the variable as generalized number. As can be observed, the backing for the second
arguments rests upon arithmetic and algebra simultaneously. Again, this is a bridging element
between argumentation and proof in terms of the referential system. Moreover, the qualifier of
this argument, Q2, lives only in arithmetic and algebra because students already know that the
result −63 will be found by manipulating the expression they are constructing in algebra, as
can be observed in the first statement of the following extract.
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In what follows, Abbie proceeds to express three of the variables as a function
of x (i.e., number in the lower right corner) as well as the relationships among
them using algebraic notation (C3). We can observe that in solving this problem,
Abbie does not struggle with using multiple independent variables as she did in
problem 2.

We can observe that Abbie replaces numbers with letters in the calendar. There is a
difference with respect to the previous example: Here there are no numbers in Abbie’s
square; she used algebraic notation right away to represent the variables involved in
the problem. The same can be said for Grace and Desiree. This might be related to
their work on previous problems; it seems as if their recent experience works as
implicit backing in their arguments.

 

 

 

  

 

 

 

 
 

A: All right… all right so now we just have to
do this whole proof thing again.  

Abbies draw a calendar inserting in it the
variable x. She writes the other elements  with
respect to this variable. 

The drawing is 

A: Okay, so X –24…  times X minus X minus 3
times X minus 21 equals negative 63. Okay. 

Abbie and the other students write:

(x-24)x-(x-3)(x-21) = -63

Through a process pattern generalisation,
Abbie generalizes  the relationships  among
the variables in the square  and represents
them using algebraic notation. After that she
writes the equation to be proved 

C3:

W: Process pattern generalisation

Algebra

D3: relationships 

among numbers
in the corners of
the square   

C4: (x-24)x-(x-3)(x-21) = -63

W: Process pattern generalisation

Algebra

D4: C3 and

C1D1
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Starting in the third argument, everything is in the algebraic domain. Students are able to
construct the proof transforming the expression (x−24)x−(x−3)(x−21) into −63 using several
properties as shown in the table below.

A: Well I’m just kind of fooling around with
this, trying to see if I can get it to go negative
63… minus 3… squared  

D: So basically we are doing what we did every
other time, simplifying it 

A, G: Yes

A: All right, what’s negative 3 times negative
21… 63 Ha… so… 

D: So Abbie… 

A: Yes 

...

D: For the first one, like the first half of it on the
minus one, X minus 24 times X is the same as
saying X squared minus 24 right?  

A: Yup

…

W: Calculation

Algebra

D5: C4 C5: (x2-24x)-(x2-3x-21x+63) = -63

The students are transforming the expression (x-
24) x-(x-3)(x-21) to    -63 using algebraic
properties. 

D: Okay, so basically we are trying to simplify it
again, and make it equal 63 

C7: -63 = -63

W: Calculation

Algebra

D7: C6

C6: (x2-24x)  -  (x2-24x+63) = -63

W: Calculation

Algebra

D6: C5
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In contrast to the first example, the students focus on the transformation of the expression
on the left-hand side of the equal sign, purposely moving to the background the numerical
value of the outcome. In other words, they do not engage the numerical value of the outcome
in any kind of transformation.

From the point of view of the referential system, we can observe that there is only
one argument in which the backing is arithmetic (i.e., first argument). The rest are
either an interplay of arithmetic and algebra or solely algebra. As a consequence, the
distance between argumentation and proof is considerably diminished in comparison
to the first case. As shown in the table, the students are able to construct a deductive
proof even though the structure of the argument is inductive. The students seem to
have learned to manage the two kinds of complexity that characterize this kind of
problem: the cognitive distance in the referential system (i.e., algebra and arithmetic)
and the cognitive distance in the structure between argumentation and proof (i.e.,
inductive and deductive). With respect to the first of these last two cases (problem 2
and problem 3), the students insert letters in the calendar: in the first case, Abbie
replaces numbers in the calendar with algebraic symbols; in the second case, she does
not use any number. The insertion of the algebraic symbol in the calendar seems to
construct a bridge between arithmetic and algebra: in both cases, the continuity in the
referential system is reconstructed.

4.4 Discussion of results

The Calendar Algebra problems provided the opportunity for students to produce a
conjecture by inductive argumentation using specific numeric examples and to con-
struct an algebraic deductive proof. Thus, a distance both in the referential system and
in the structure between argumentation and proof has been observed in the students’
resolution process.

Even though for the analysis we presented data corresponding to three students in
the same group, we have analyzed the work by a total of nine students. All of them
produced a correct conjecture through an inductive argumentation in the arithmetic
field for the three problems. For problem 1, all students were unable to produce a
proof without the teacher’s careful scaffolding. For problems 2 and 3, we have
observed an “evolution” in terms of the solution of the problems. All students learned
to overcome the cognitive distance between argumentation and proof for these specific
problems. Therefore, the group presented in this report is representative of students’
strategies.

By looking across all three problems, we can observe that all three argumentations
are inductively constructed with a strong presence of the arithmetic field. In other
words, the conjecture is constructed in arithmetic using numerical examples. In all
three cases, the qualifier of the argument strengthens the argument: students know that
the conjecture is true because they have verified the results through different numer-
ical examples. All three proofs are deductively constructed, grounded on algebra.
Given that argumentation and proof from a cognitive perspective are different (i.e.,
inductive vs. deductive and arithmetic vs. algebra), we wonder what makes it possible
for students to overcome these distances. In problem 1, the teacher’s intervention (i.e.,
re-arranging) was a crucial stepping stone in transitioning from the argumentation
process to the proving process. However, there is more. Results show that: (1) In all
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three problems, students start the argument purely in arithmetic, going through steps
that integrate both arithmetic and algebra, bridging to the last steps when they use
only algebra; (2) arguments became shorter in subsequent problems (i.e., argument in
problem 3 has seven steps while argument in problem 1 has ten steps); (3) algebra
becomes a central part of the argument earlier in subsequent problems (i.e., step 3 in
problem 3 in contrast to step 8 in problem 1); (4) numbers in the calendar are
replaced with letters to connect the real numbers to algebra; and (5) the construction
of the deductive proof is performed only when inductive argumentation is based on a
process pattern generalisation (problems 2 and 3).

Thus, the bridging element between inductive argumentation in arithmetic and
deductive proof in algebra is the co-existence of arithmetic and algebra in the backing
of the arguments within the argumentation. Indeed, this co-existence allows modelling
the problem (Table 2 in Appendix). This is particularly important since it is through
modelling that both referential systems (i.e., arithmetic and algebra, respectively)
corresponding to argumentation and proof become inter-connected. This inter-
connection is realized only when students place the algebraic symbols over the
numerical symbols on the calendar (episode 2) or when they directly insert letters
in the calendar (episode 3). In the first episode, students do not place letters in the
calendar. The continuity in the referential system is not reconstructed in the first case
while we can observe it in the other two cases. However, the co-existence of
arithmetic and algebra is not sufficient to guarantee the construction of a proof. It
is also important to note that the inductive argumentation is grounded in a process
pattern generalisation. In problem 1, we have observed a structural distance between
argumentation and the attempted proof. Argumentation was constituted by two kinds
of induction: one based on a process pattern generalisation (i.e., constructing the
expression) and one based on a result pattern generalisation (i.e., constructing the
outcome). Students were not able to transition into a deduction previous to the
teacher’s intervention. In fact, the different structures in argumentation (i.e., inductive)
and in the proof (i.e., deductive) offer resistance in the construction of the proof. As
shown in problem 1, when students constructed the proof, they lost sight of the link
with argumentation. Thus, the connection and permanence in meaning between alge-
braic letters and arithmetic numbers is important to enable the algebraic manipulation
as needed in the algebraic proof. Only when students produce inductive argumentation
grounded in process pattern generalisation they are able to construct a deductive
proof, as shown in problems 2 and 3.

As a consequence, in solving Calendar Algebra, the process pattern generalisation
in inductive argumentation functions as a bridge between argumentation and deductive
proof like in the geometrical case where mathematical induction was constructed only
if generalisation in inductive argumentation was grounded in the process (Pedemonte,
2007). In addition, it is important that this generalisation could be made both in
arithmetic and in algebra in order to decrease the cognitive distance in the referential
system between argumentation and proof. The co-existence of arithmetic and algebra
in the backing of the arguments allows the warrant to live in both fields. This co-
existence is strongly supported by the fact that the numbers in the calendar are
replaced with letters that cover the numbers in the calendar without eliminating them.
It is this fact that supports the continuity in the referential system between arithmetic
argumentation and algebraic proof.
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