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Abstract 1 discuss a teaching experiment that sought to characterize precalculus
students’ angle measure understandings. The study’s findings indicate that the students
initially conceived angle measures in terms of geometric objects. As the study
progressed, the students formed more robust understandings of degree and radian
measures by constructing an arc length image of angle measures; the students’
quantification of angle measure entailed measuring arcs and conceiving multiplicative
relationships between a subtended arc, a circle’s circumference, and a circle’s radius.
The students leveraged these quantitative relationships to transition between units with
a fixed magnitude (e.g., an arc length’s measure in feet) and various angle measure
units, while maintaining invariant meanings for angle measures in different units.
These results suggest that quantifying angle measure, regardless of unit, through
processes that involve measuring arc lengths can support coherent angle measure
understandings.

Keywords Angle measure - Teaching experiment - Quantitative reasoning - Student
thinking - Trigonometry - Multiplicative reasoning

1 Introduction

Angle measure and trigonometric functions have been high school and undergraduate
mathematics topics for well over a century. In addition to their deep-rooted place in
mathematics, both topics are frequently used in physics, engineering, and applied mathe-
matics. The results of several research studies have indicated, however, that students and
teachers have difficulty understanding and reasoning about trigonometric functions (Brown,
2005; Fi, 2003; Thompson, Carlson, & Silverman, 2007; Weber, 2005). Other studies have
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reported that teachers’ and students’ fragmented understandings of angle measure lead to
disconnected understandings of trigonometric functions (Akkoc, 2008; Topgu, Kertil, Akkoc,
Kamil, & Osman, 2006). Complicating the issue, few research studies have addressed how
students come to understand angle measure in the particular ways in which they do.

The present study examines two undergraduate precalculus students’ evolving angle
measure understandings] as they participated in a teaching experiment (Steffe &
Thompson, 2000). Thompson’s (1990) theory of quantitative reasoning, research on
the teaching and learning of trigonometry and angle measure, and the historical roots
of angle measure inform the study. In the present work, I develop hypotheses of the
students’ angle measure understandings with a focus on the students’ quantification of
angle measure. I also discuss the students’ angle measure understandings in terms of
several ideas of quantitative reasoning.

2 Research literature on angle measure

Previous research on students’ angle measure understandings has mainly focused on elementary
students’ angle conceptions (Clements & Burns, 2000; Kieran, 1986; Mitchelmore & White,
2000). These studies have identified the important role of physical experience in students’
construction of angle (Mitchelmore & White, 2000), including their ability to coordinate turn
as a physical action and turn as a number (Clements & Burns, 2000; Kieran, 1986). Such findings
offer valuable insights into elementary students’ development of angle conceptions, but leave
much to uncover about students’ angle measure concept past the elementary level.

Research literature on trigonometric functions (Akkoc, 2008; Brown, 2005; Fi, 2003;
Thompson et al., 2007; Topcu et al., 2006; Weber, 2005) also generates a need to better
understand students’ angle measure conceptions. Two studies (Akkoc, 2008; Topgu et al.,
2006) characterized preservice and in-service mathematics teachers in Turkey as holding
understandings of radian angle measures dominated by degree measure; when given radian
measures, the teachers converted these measures into a number of degrees in order to
attribute a meaning to the measures.” Not one of the four teachers interviewed by Topgu
and colleagues defined radian measures as a ratio of lengths. As Akkoc (2008) reported and
compatible with previous findings (Fi, 2003), preservice teachers also claimed that radian
measures are only given in terms of 7, leading teachers to interpret 30 as a number of
degrees in expressions such as sin(30). In light of his findings, Akkoc suggested that
impoverished radian angle measure understandings likely contribute to teacher and student
difficulties in trigonometry.

Collectively, the aforementioned research has revealed that students and teachers con-
struct shallow and fragmented angle measure understandings that inhibit their ability to
construct flexible trigonometric function understandings. Of particular relevance to the
present study, the research suggests that teachers’ and students’ angle measure understand-
ing often lacks meaningful connections to arcs. These observations illustrate a need to gain
better insight into students” ways of thinking about angle measure that support connected”
angle measure understandings.

' use the term understanding to refer to a student's system of schemes and conceptual operations.

2 These studies did not investigate the teachers’ degree measure understandings.

3 For the purpose of this study, I define connected angle measure understandings as meanings that can be used
to interpret angle measures in consistent ways regardless of the angle measure unit. Connected understandings
of angle measure also enable students to flexibly convert between units of angle measure while maintaining
these common meanings.
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3 An arc approach to angle measure

USA and international textbooks provide many different characterizations of angle measure.
In a survey of 30 elementary and secondary textbooks, I found angle measures defined as an
amount of a rotation, a number obtained by using a protractor, and a measurement of an arc
length, to name a few. The roots of each definition can be linked to various points in the
historical development of angle measure. Matos (1990) and Bressoud (2010) have provided
summaries of the history of angle and the history of trigonometry, respectively, while
highlighting critical angle measure developments.

Of relevance to the present article, Matos’s (1990) and Bressoud’s (2010) historical
accounts illustrate that the majority of angle measure developments occurred in the context
of measuring arcs. For instance, the Babylonians measured the circular movement of
celestial bodies using 360 whole parts for the sky (Matos, 1990). Despite the rich historical
focus on measuring arcs, an educator can be, depending on her or his country, hard pressed
to find curricula that relate degree measure to the length of an arc. A textbook might use an
arc to label an angle and its measure, but it is not necessarily the case that degree angle
measure is presented as a process of partitioning an arc using a specified unit length.

Consider an approach to angle measure that defines degrees as the standard unit of angle
measure and asks students to use a protractor to assign degree measures to angles. The
approach then defines right angles, supplementary angles, obtuse angles, etc., and students
execute calculations using angle measures and these definitions. Such an approach, which is
customary in the USA, might facilitate relating angle measures through calculations, but it
fails to address the quantitative structure behind the process of determining an angle’s
measure. In contrast to such an approach, radian angle measures are typically introduced
in terms of measuring an intersected or subtended arc using a circle’s radius as a unit; the
measure is defined in terms of a quantitative relationship with an explicit connection to a
subtended arc. Such a definition for radian measures fundamentally differs from more
common approaches to degree angle measure.

One approach that avoids a divide in angle measure meanings is to develop angle
measures, regardless of unit, as representative of the same quantitative relationship. This
can be accomplished by conceiving angle measure as the process of determining the
fractional amount of a circle’s circumference subtended by an angle, provided that the circle
is centered at the vertex of the angle (Thompson, 2008). An angle that measures 1° subtends
1/360 of the circumference of any circle centered at the vertex of the angle and an angle that
measures 1 rad subtends 1/27 of the circumference of any circle centered at the vertex of the
angle; radians and degrees measure the same quantity and are thus scaled versions of one
another (Thompson, 2008).

With angle measure understandings that foreground relationships between quantities,
students should interpret an arc used to denote an angle measure as more than a label; they
should understand the arc as denoting an equivalence class involving arc lengths (including
the given arc length) and circles. For instance, an angle measure of 2 rad conveys that the
angle subtends two radii on all circles centered at the vertex and that same angle subtends 2/
27 of each circle’s circumference (Fig. 1). A benefit of radian angle measures is that, once a
circle is specified, the unit magnitude is more explicit than the magnitude associated with 1°.
Also, by understanding radian measures as equivalence classes grounded in measuring in
radii, a foundation is in place for students to understand the values associated with the unit
circle in terms of equivalence classes. If students are to connect the unit circle—an arbitrary
circle of radius 1—to all circles and radian angle measures, it is important that they connect
the unit circle to measuring in radii (Moore, LaForest, & Kim, 2012).
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Fig. 1 An arc length image of angle measure that involves equivalence of arcs

4 Theoretical perspective

Principles of quantitative reasoning (Smith & Thompson, 2008; Thompson, 1990), which call
attention to the importance of students constructing quantities and relationships between quantities
when learning mathematics, provide a foundation for the present investigation into student
thinking. Quantitative reasoning involves an individual’s mental actions when conceiving of a
situation, constructing measurable attributes of the situation (which are called quantities) and
constructing about relationships between conceived quantities. These mental actions create a
(quantitative) structure that forms a foundation for constructing mathematical understandings.

A quantity is defined as a conceived attribute of something that admits a measurement
process (Thompson, 1990). Relative to the focus of this research, two intersecting rays in
relation to each other form an object (the something) that has a measurable attribute of
openness. Quantifying the openness of an angle entails conceiving a quantitative relation-
ship—specifically, a multiplicative relationship—between a subtended arc and a unit length
(e.g., the radius). Also, as described previously, quantifying angle measure involves coming
to understand a unit in terms of a multiplicative relationship between a class of subtended
arcs and the corresponding circles’ circumferences.

T'adopt Thompson’s (1990) definition of value to refer to a number that reflects the result of a
measurement process. | use number to refer to a number that does not reflect the result of a
measurement process.* As an example of the difference between a number and a value, consider
a student solving a problem in which they use a ratio between an arc length that subtends an
angle and the circumference of the corresponding circle. When calculating the ratio, the student
might conceive the ratio only as a call to execute a calculation (e.g., ratio as a number) or the
student might interpret the ratio as representing a measure of the fractional amount of the
circle’s circumference that is subtended by the angle (e.g., ratio as a value). In the case of ratio as
a value, the student’s subsequent actions might stem from reasoning about the ratio as a value
(e.g., I multiply the ratio by the total number of angle measure units in a circle to determine the
angle measure that is the equivalent fractional amount of the total angle measure units).

It is important to note that a quantity is a cognitive object. Quantities can and will differ from
individual to individual; an individual’s quantification of an angle’s openness may or may not
include a subtended arc as inherent to the measurement process. As Thompson described,
quantifying a quantity “is a process of settling what it means to measure a quantity, what one
measures to do so, and what a measure means after getting one” (Thompson, 2011, p. 38).

4 Values and numbers can be specified or unspecified. For instance, an individual can anticipate making or
determining a measure and consider the meaning of this anticipated result independent of a specified value.
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5 Methodology of the study

One purpose of education research is building models of students” mathematics that provide
a viable explanation of the schemes and operations driving the students’ behaviors (Steffe &
Thompson, 2000). I conducted the present study in order to develop such models in the
context of the students’ quantification of angle measure over the course of a teaching
experiment (Steffe & Thompson, 2000).

5.1 Subjects and setting

Three full-time students from an undergraduate precalculus course at a large public univer-
sity in the Southwest USA participated in the teaching experiment. The three students were
chosen out of necessity, as they were the only volunteers from the class who had schedules
that aligned with my schedule. Two students (Judy and Zac) are the focus of the present
study.” Judy was a female in her mid-twenties and a biochemistry student. Zac was a male in
his early twenties and an ethnomusicology/audio technology major. Judy received an “A”
for her final course grade, and Zac received a “B” for his final course grade. The students
were monetarily compensated for their time. I chose precalculus students because precalcu-
lus is typically the course that introduces trigonometric functions and radian angle measure.

The aforementioned precalculus classroom was part of a design research study informed
by literature on covariational reasoning (Carlson, Jacobs, Coe, Larsen, & Hsu, 2002) and
quantitative reasoning. An observer to the teaching experiment and I served as teaching
assistants in the course. Course topics included quantity, rate of change, linear functions,
function, exponential functions, and rational functions. Angle measure and trigonometric
functions formed the last module of the course. The participants did not attend the angle
measure and trigonometry class sessions, instead participating in the teaching experiment.

Students who take precalculus at the students’ university (and peer institutions) represent a
wide range of majors, and a majority of these students are not mathematics majors. Research with
undergraduate students in precalculus suggests that they encounter difficulties similar to those of
their secondary level counterparts when reasoning about quantities and relationships between
quantities (Moore & Carlson, 2012). Also, undergraduate precalculus students’ performance on a
research-based precalculus assessment (Carlson, Oehrtman, & Engelke, 2010) is comparable to
that of their secondary school counterparts. Thus, although the participants in the present study
represent a convenience sample, undergraduate and secondary precalculus populations are not
dissimilar and the students were not atypical relative to their peers.

5.2 Data collection and analysis methods

The angle measure portion of the teaching experiment involved two 75-min teaching sessions
occurring within a span of 4 days. Each teaching session included Judy, Zac, an observer, a third
student, and myself. In an attempt to gain insights into the students’ angle measure conceptions
upon entering the study, I conducted preinterviews with each student that followed the design of
a clinical interview (Clement, 2000) and Goldin’s (2000) principles of structured, task-based
interviews. The preinterviews occurred 1 week prior to the first teaching session.

Following two teaching sessions on trigonometric functions,® the teaching experi-
ment included a 2-h researcher—student teaching session with each student. The one-

5 Judy and Zac are pseudonyms.
© The results of these teaching sessions are part of a manuscript in preparation.
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Fig. 2 The progression of the teaching experiment, with solid frame boxes indicating the focus of the present
work

on-one sessions occurred 2 weeks after the second teaching session (Fig. 2) and
followed the teaching experiment principles. 1 use teaching sessions and interview
sessions to distinguish between the sessions that included more than one student and
the sessions that included only one student, respectively.

Teaching experiments (Steffe & Thompson, 2000) adhere to the stance that students
are in a constant mode of construction, a stance that is in line with the principles of
quantitative reasoning. During a teaching experiment, a researcher aims to build viable
models of students’ mathematical understandings and document shifts in these under-
standings. These models may become more precise over time, but the models are
never to be interpreted as one-to-one representations of the students’ thinking. The
researcher’s mathematical understandings, the perspective that the researcher uses
during the study (e.g., quantitative reasoning), and the researcher’s learning goals
for the students shape his models (Steffe & Thompson, 2000). Relative to the present
study, I was involved (both in teaching and design) in the aforementioned precalculus
design research study. Hence, I was aware the materials addressed research-established
student difficulties and needs for calculus. My previous teaching experiences and
understanding of the project goals thus influenced the design of the study and my
models. For instance, I was aware that students often face difficulty conceiving
calculations in terms of quantitative relationships, and many of my decisions during
the study revolved around determining students’ meanings for calculations.

All sessions during the teaching experiment were videotaped and I digitized all
student work. The sessions included two cameras, one for the students’ table and one
for work produced on a whiteboard, and a computer feed capture. Following the
teaching experiment methodology (Steffe & Thompson, 2000), data analysis included
both ongoing and retrospective elements that included documenting decisions during
the teaching experiment and revisiting these decisions during a retrospective analysis
of the data. Upon completion of data collection, a retrospective analysis of the data
occurred. After transcribing all sessions, I conducted an open coding (Strauss &
Corbin, 1998) of the data that involved identifying episodes that offered insights into
the students’ thinking. Consistent with Thompson’s (2008) description of a conceptual
analysis, I analyzed the identified instances in an attempt to create hypotheses of the
students’ schemes and operations of thought. I tested these tentative models by
searching and analyzing the data for evidence that either contradicted or supported
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the generated models. Such analyses led to modifications of these hypothesized
models of each student’s mathematics, as well as documenting shifts in the students’
thinking. Additionally, the students’ ways of thinking were compared and contrasted.

6 Results

I first provide an overview of the preinterview findings. I then characterize the students’
quantification of angle measure during the teaching sessions. To further illustrate the out-
comes of the students’ quantification of angle measure, I summarize their activity during the
post-teaching interview sessions.

6.1 Preinterviews

Initially, I asked the students to describe their meanings for various angle measures
(e.g., 1°, 34° and 90°). The students predominantly described angle measures as
properties of familiar geometric objects (e.g., a line has 180°, two perpendicular
segments have 90°, and a circle has 360°) and had difficulty describing angle
measures that did not correspond to such geometric objects (e.g., an angle measure
of 1°). The students often drew a circle or an arc when measures did not relate to a
familiar geometric object, but the students treated arcs as labels and not as measurable
attributes (e.g., a subtended arc and a circumference). To illustrate, when tasked with
describing 1°, Judy claimed, “Wow...I really don’t know what an angle is outside of
formulas,” and explained that the angle is supplementary to an angle of measure 179°.
When asked to provide another meaning for 1°, she stated that she could only think
about it in terms of a line having a measure of 180°.

I also asked the students to measure an angle using a compass, waxed string, and
a ruler (Fig. 3). Both students constructed a circle centered at the vertex of the
angle, but neither student completed the task. After drawing a circle, Zac stated,
“they have...a [protractor] that’s already designed out, shows you where all the
angles are.” Yet, he did not relate the protractor to the circle. Judy determined the
circumference of the circle, the arc length subtended by the angle, and divided the
arc length by the circumference (obtaining 0.087). Yet, she was unable to provide a
meaning for her calculation or solve the problem. To Judy, 0.087 was a number; the
calculation did not reflect a multiplicative comparison between the arc length and
circumference.

To conclude the interview, I tasked the students with the traversed arc problem
(Fig. 4), which provided specified values for an arc length and radius. Despite their
difficulties during the previous problems, both students obtained a correct solution by

Fig. 3 Measuring an angle with Measure the openness of the following angle. You may use a compass, a

tools waxed string, a ruler, and a calculator.

—
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Fig. 4 The traversed arc problem An individual is riding a Ferris wheel that has a radius of 51 feet. On part of a
trip around the Ferris wheel, the individual covers an arc-length of 32 feet. How

many degrees did the individual rotate?

using an equation with two ratios (e.g., (32/(1027)) = (x/360) or (90/80.1) =
(x/32) ).

The students justified their solutions by comparing the units of each value and using the
calculational” strategy of cross-multiplication. As an example, after Zac determined the arc
length (80.1 ft) that corresponded to 90°, he described that the equation (90/80.1) = (x/32)
is appropriate for solving a problem in which there are three known numbers and an
unknown number (Excerpt 1).

Excerpt 1

Zac: Well it’s just, if you’re given three variables and you just need one more. Well, you, uh, ‘cause you’re
given degrees and feet and degrees and feet...And it just, it gives you three of the four you need. It’s a
very easy equation to find a fourth...

Int: OK, and so, and how do you know how, which way to set up the proportion?

Zac: Well you could do it either way. I could do eighty point one over ninety is thirty two, as long as the top’s
are both the same unit, they're both degrees, and these are both feet (writing units by the measurements).

I asked Zac to provide a meaning of the ratio 90/80.1 independent of the calculations he
used to solve the problem, but he only focused on the calculations he performed. Zac
conceived 90/80.1 as a number. As an alternative conception, 90/80.1 can be thought of as
representing the number of degrees per foot of arc length for that circle.

I took the students’ actions during the preinterview to imply that they had not
quantified angle measure in a way that entailed quantitative relationships. Instead,
they predominantly conceived angle measures as intrinsic properties of geometric
objects or in terms of calculations with corresponding angle measures (e.g., supple-
mentary angles).® The students did draw arcs, but their arcs were not a component of
a measurement scheme. I also noted that neither student mentioned the radian (or
radius) as a unit of angle measure during the preinterview. This observation aligns
with research (Akkoc, 2008; Brown, 2005; Fi, 2003; Topcu et al., 2006) that has
identified degree angle measure as dominating individuals’ angle measure conceptions.

6.2 Connecting angle measure and arc length
I designed the first teaching session to challenge the students to determine a process

to create a protractor (the protractor problem; Fig. 5), with each student using a
different-sized blank protractor. I expected that the students’ angle measure

7 My use of the term calculational is consistent with the notion of a calculational orientation (Thompson,
Philipp, Thompson, & Boyd, 1994), which describes an orientation towards identifying procedures, executing
calculations, and working with numbers/expressions devoid of contextual reference.

8 I note that Zac did refer to a vague area or space between two rays during the interview, but this only
occurred once.
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Task 1: Using the supplies of a waxed string, a ruler, a blank protractor and a
calculator, create a protractor that measures an angle in a number of gips, where
8 gips rotate a circle”.

Task 2: Using the supplies of a waxed string, a ruler, a blank protractor, and a
calculator, create a protractor that measures an angle in a number of quips,

where 15 quips rotate a circle.

Fig. 5 The protractor problem. (*I chose the word circle to be intentionally vague. I did not wish to point the
students directly to a measurable attribute of the circle (e.g., area or circumference) in the hopes of
determining which imagery was more natural for the students.)

understandings, as inferred from the preinterview, would not support solving the
problem. Thus, I hoped that the students would face a perturbation that caused them
to consider what one quantifies when measuring an angle.

When working on task 1, Judy first used the waxed string to measure the circumference
of the protractor.” The students quickly discarded the measure and relied on folding the
protractor to create the equal areas (Excerpt 2).

Excerpt 2

Zac: Well, I already figured out what two gips is by just dividing it in half.

Int:  So dividing what in half?

Zac: The protractor. I just drew a line down the middle (waving hand over the protractor) and that gives me
two gips. And then I just need to figure out how to find...(pause)

Int:  So how’d you know how to draw the line?

Zac: Uh, I figure out that the diameter is four inches, and just found out where two inches is, marked it

(referring to the midpoint of the diameter), and found my best two inches this way (waving pen tip from
the bottom to the top of the protractor) and drew it up.

Despite Judy’s initial act of determining the circumference, Zac did not attempt to
measure or discuss the circumference. Instead, Zac reasoned about dividing the entire
protractor into equal pieces (e.g., areas). After creating the two-gip mark, both students
divided the protractor into four equal areas by folding the protractor. Believing the students
were reasoning about areas, I modified task 1 so that a folding method does not produce
integer measures (task 2). The students immediately claimed they needed to determine 7.5
equal areas and started folding the protractor. They then realized that folding the protractor
into successive halves did not yield 7.5 equal areas and explained that they could only
approximate the partitioning of equal areas.

To support a shift in the students’ thinking, I asked them for a second method to
decide, as precisely as possible, the placement of the quip marks with the stipulation
that they could not fold the protractor. Zac grabbed the waxed string and claimed,
“Measure out the whole thing...measure out the perimeter.” Zac and Judy used the
waxed string to measure the circumferences of their protractors, and then divided their

® To improve readability, I refer to the perimeter of the curved part of a protractor—a half circle—as the
circumference of the protractor.
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circumferences by the total number of quips (e.g., 7.5 for the half-circle or 15 for the
entire circle). They explained that the value represented the arc length corresponding
to one quip on their circle (approximately 1.885 cm/quip and 1.6336 cm/quip); their
calculations emerged from reasoning about partitioning the circumference of the
protractor into equal arc lengths (e.g., ratio as a value). This moment marked the
first instance of the students generating and relating measurable arc lengths to angle
measures, which appeared to be fostered by facing a situation in which their area
image of angle measure did not support solving the task.

To continue exploring relationships between angle measure and arc lengths, I drew
the students’ attention to a diagram (Fig. 6) of their two protractors. Just prior to
drawing the diagram, the students observed that the arc length per unit of angle
measure varied between their protractors, yet there was something “the same” about
the arc lengths. In an attempt to build on their observation, I posed ratios comparing
the unit arc lengths to the total circumference of the corresponding circle (1.885/
28.2744 and 1.6336/24.5044), as well as the ratio of 1/15.

After the students calculated each ratio (approximately 0.067), I emphasized that I
wanted a meaning for the ratios in terms of the quantities of the situation and not just
the numerical value. Zac claimed, “It’s just taking the full circumference and then a
fifteenth of a full circumference...It’s the exact same. You’re taking one-fifteenth of
the full circumference and dividing it by the full circumference.” Zac conceived each
ratio as a value representing an arc length’s fraction of a circle’s circumference, which
supported him in identifying that the angle cut off an equivalent fraction of each
circle’s circumference. The students then generalized this relationship to conclude that
quip measures convey a fractional amount of a circle’s circumference cut off by the
angle that holds for all circles centered at the vertex of the angle.

6.3 Extending to degree measure

The protractor problem occurred over 45 min, a period during which the students
conceived of an arc length as a measurable attribute related to angle measure in two
ways. First, they reasoned about an arc length per unit of angle measure that can be

Fig. 6 Two protractors of differ-
ent size (figure not to scale)

3.9 inches
4.5 inches
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iterated along the circumference of a circle. Second, they conceived angle measures in
quips (and gips) in terms of the fractional amount of any circle’s circumference cut
off by the corresponding angle.

I hypothesized that their meanings for degree angle measure shifted accordingly, and thus
asked the students to respond to a question from the preinterview: “What does it mean for an
angle to have an openness of one degree?” Zac claimed, “[The angle cuts off] one three-
hundred and sixtieth of a circle’s circumference.” Judy further described that an angle of 10°
subtends 10/360 of a circle’s circumference and she used a calculator to determine that the
subtended arc is approximately 2.7 % of the circumference for any circle centered at the
vertex of the angle.

1 took the students’ actions to imply that they had quantified angle measure such that they
had an invariant meaning for different units. Specifically, they interpreted angle measures,
regardless of unit, as a multiplicative comparison between an arc length and a circle’s
circumference that is not dependent on the size of the circle used to make this comparison.
I hypothesized that a method for converting between angle measures might emerge as a
consequence of giving an invariant meaning to angle measures of different units. In an
attempt to test this conjecture, I asked them to determine the angle measure in quips that is
equivalent to 10°.

Judy suggested using the equation (10/360) = (x/15) to solve for the number of quips
that are equivalent to 10°, and the students claimed that each ratio represented an equivalent
percentage (2.7 %) of the total number of angle measure units. Recall that Judy and Zac used
a similar equation and calculations to determine an angle measure during the preinterview,
but their explanations conveyed that their solution stemmed from a calculational strategy
(Excerpt 1); the ratios did not represent the measure of a quantity formed by making a
multiplicative comparison between two other quantities. In the present case, their ratios
represented an equivalent percentage (e.g., a multiplicative relationship) of the total number
of angle measure units (e.g., ratio as value).

To conclude the first teaching session, I implemented the protractor applet (Fig. 7). I
designed the applet so that the user can increase/decrease the radius of the circle or the
angle’s openness, with the displayed measures varying correspondingly. I used the applet to

Fig. 7 The protractor applet

Length AB = 2.24 in.

2-(Length AC] = 16.76 in.
mZBDA = 48.06°

A
mZBDA
360°
Length AB

2-(Length XE)

=0.13

=0.13
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formalize the prior outcomes and continue promoting a focus on expressions and calcula-
tions as representative of quantities’ values.

As 1 posed either a varying radius or a varying openness of the angle, both students
correctly predicted how the measures change or stay constant. For instance, Zac predicted
that, for a decreasing radius, “The arc length of 4 B and the circumference will get
smaller, but the angle [measure] and percent will stay the same.” It is important to
note that the students’ ability to correctly predict how the measures change reveal a
capacity to reason about indeterminate values. That is, they were able to imagine the
measures of the various quantities varying and justify these variations using their
angle measure understandings without reasoning about specified values and
performing calculations to determine these comparisons. The students also spoke
with extreme precision when describing the values on the applet. As opposed to
referencing “the circle” or using ambiguous referents (e.g., it), the students explicitly
mentioned “the circumference” and “the arc length” and discussed the beginning and
ending points for all identified lengths. Although using such specific terms might
seem of little consequence, previous research (Moore & Carlson, 2012) has revealed
that precalculus students frequently reason about lengths in ambiguous ways and
thus do not construct precise quantitative structures of problem situations that
support products (e.g., calculations, formulas, and graphs) correctly relating quanti-
ties’ values.

6.4 Creating circles and measuring in radii

During the second teaching session, I transitioned the instruction to radian angle
measure. The circumference problem (Fig. 8) prompted the students to create a circle
with a radius having the length of a piece of waxed string and then measure various
string (radii) lengths along the circle’s circumference. During the task and in line with
their actions during the protractor problem, I intended that the students develop a
scheme for radian angle measure involving partitioning an arc length into a number of
unit lengths (e.g., radii).

I intended that the circumference problem support the students in leveraging
several facets of their reasoning from the first teaching session. First, I hoped to
engage the students in measuring along a circle’s circumference to partition the
circumference into equal lengths. Second, a major outcome of the first teaching
session was that an angle measure conveys a fractional amount of a circle’s circum-
ference cut off by the angle that is not dependent on the size of the circle. Building
off of this outcome, Judy’s and Zac’s strings were of different lengths with the hope

Create a circle that has a radius the length of your waxed string. Then,
approximate how many string lengths mark off the circumference of your
circle. Create an angle that cuts off an arc of approximately one string length

and 1.5 string lengths. Compare your results with those of your classmates.

Fig. 8 The circumference problem
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that the students realize that the size of the circle used to create an angle subtending a
particular number of radii is inconsequential.

At the outset of the circumference problem, Zac recalled the formula relating the
circumference and radius of a circle (C=27r), yet neither student was able to clarify
how the task relates to this formula. After creating circles and using the waxed strings
to determine that approximately the same number of string lengths (27) marked off
the circles’ circumferences, they conjectured that, if an individual measures an equiv-
alent number of string lengths along her circumference, then the resulting arc lengths
correspond to angles with an equivalent amount of openness. Following their obser-
vation, I asked the students to discuss using a unit of angle measure based on a
circle’s radius (Excerpt 3).

Excerpt 3

Zac: s it a useful unit of measure, well yes or no, what do you think? We could use quips, but is it useful?
Judy: I don’t know.

Zac: It simplifies the circle, you know, the circumference of the circle is equal to two pi 7. The radius is the
unit, not inches or centimeters or anything like that.

Judy: Oh, you mean, oh! OK. So you mean, OK. I think I’m thinking in terms of the length of the radius.
Zac:  We’re using it as an actual unit... One radius, and then six point two eight radius, or radians.

While Zac appeared to conceive the radius as a unit that “simplified a circle” to a radius of
“one radius” and a circumference of “six point two eight radius,” Judy’s response to Zac
suggests that she was initially considering measuring the length of the radius and not
considering the length of the radius as a unit to measure other lengths. As the discussion
continued, Judy claimed, “OK, yeah, in that sense, you don’t have to bother with length
numbers,” using “length numbers” to refer to measures of the radius in a unit other than
radii.

I returned the discussion to the number of 6.28. The students’ responses suggest
that both were considering the radius as a unit of measure that could be used for any
circle (Excerpt 4).

Excerpt 4

Int:  So what measurement does that represent, six point two eight?
Zac: That’s always the circumference on every circle.

Int.:  That’s always the circumference measured in what units?
Judy: Radiuses.

At this point in the lesson, we defined the term radian'® as a measure that stems
from the process of measuring in radii and subsequently asked the students to

1% The students used the terms radians and radii (or radiuses) interchangeably when referencing any measure
that involved measuring relative to a circle’s radius, even in the arbitrary case.
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describe the meaning of various radian angle measures, including 1.5, 3.5, and =
radians. In each case, the students described the measures in terms of an angle
subtending an arc of that number of radii. Zac explained that an angle with a measure
of 1.5 rad subtends “one and a half radiuses,” regardless of the circle used to measure
the angle. As another example, Judy stated that multiplying 7 radians by the length of
a circle’s radius determines the arc length subtended by an angle that measures m
radians, “Because 7 is just an amount of, um, radiuses along the circumference. So
you would just need to multiply by the radius length.”

6.5 Post-interviews

By the completion of the second teaching session, the students had exhibited
multiple ways of thinking about angle measure that stemmed from measuring (e.g.,
an act of partitioning) along arc lengths in various units (e.g., radii, degrees, and
conventional length units) and coordinating these measures. Of particular importance,
the students reasoned about (a) multiplicative comparisons between arc lengths and
circles’ circumferences and (b) multiplicative comparisons between arc lengths and
circles’ radii. The teaching sessions did not fully explore connections between these
ways of thinking and I questioned if the students would continue to use such
reasoning after the teaching sessions. I conducted an interview session with each
student 2 weeks after the second teaching session to gain deeper insights into their
thinking.

I first tasked Zac with the arc length problem (Fig. 9). Zac explained his solution previous
to executing calculations (Excerpt 5).

Given that the following angle measurement 6 is 35 degrees, determine the length of each arc cut off by the
angle. Consider the circles to have radius lengths of 2 inches, 2.4 inches, and 2.9 inches (figure not to scale).

Fig. 9 The arc length problem
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Excerpt 5

Zac: So what I plan on doing for this one is converting thirty-five degrees into radians. And a very easy way of
doing that is putting thirty-five over three sixty is equal to x over two pi (writing corresponding equation). ..
And then with that all I have do is just multiply the answer (pointing to x) by two inches, two point four
inches, and two point nine inches (pointing to each value in the problem statement) to get the different arc
lengths (identifying each arc length with his pen tip) right there, because radians is just a percentage of a
radius.

Stemming from understanding radian measures as a multiplicative relationship between a
set of arcs and corresponding radius lengths, Zac anticipated using the radian measure to
determine each arc length. That is, his understanding of radian angle measures was such that
he was able to give meaning to calculations involving these measures without executing the
calculations. Likewise, Zac anticipated converting the angle measure by conceiving angle
measures as a fractional amount of a circle’s circumference. Zac explained, “Well what
you’re doing is just technically finding a percentage. Like thirty-five over three sixty is
(using calculator), is nine point seven percent of the full circumference.”

Differing from Zac, Judy did not first convert the angle measures to a number of radians.
Instead, Judy used the equation (35/360) = (x/(2zr)) for each radius. Judy claimed, “if
you have your first circle and you increase the radius then even though the percentage of the
entire circle is the same, you have to compensate with a larger arc length in inches.”
Compatible with Zac’s conversion method, Judy’s solution came as a consequence of
understanding angle measures as conveying a fractional amount of a circle’s circumference.

At various points in the interviews, I also asked the students to describe radian
angle measures. When explaining the meaning of an angle measure of 0.61 rad, Zac
fluently transitioned between reasoning about a radian angle measure as a multipli-
cative relationship between a subtended arc and a radius of a circle and as a
multiplicative relationship between a subtended arc and the circumference of a
circle. Moreover, understanding angle measures as a fraction of a circle’s circumfer-
ence subtended by the angle enabled Zac to give an invariant meaning to degree and
radian angle measures (Excerpt 6).

Excerpt 6

Zac: That means that this arc length right here (tracing the arc length on the smallest circle) is point six one,
or sixty one percent of the radius.

Int:  OK. Now (pause), and then so why times...with the point six one (pointing to 0.61(x), the calculation
Zac used to solve the problem).

Zac: Well because I couldn’t just leave it as radians, so I have to get it in inches, or you know, an actual
distance measure. So knowing that it’s sixty one percent, or it’s equal to sixty one percent of the radius,
all I have to do is just multiply it by the radius and I know what it is.

Int:  OK, so one last question. So we have all these different lengthed arcs right (tracing the three arcs)...but
yet that angle measurement doesn’t change?

Zac: Well, because it’s always the same percent of the circle it’s cutting out for each different circle...
Int: OK...so what’s the same percent there you said?

Zac: The, well, the degrees or radians is showing a chunk of the circle being cut out, and that’s a certain
percent of the circle being cut out. It’s always the same no matter what, as long as you’re using that
same degree or radian length, then you’re always going to have that same amount, or same percent of
the circle, or circumference being cutout no matter what size the radius is, or the circumference of the
circle is (making circular motion with hand).
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Like Zac, Judy also reasoned about measures in radians as conveying a multiplicative
relationship between a subtended arc and the radius. Specifically, she described that she
thought of radian measures as a “function,” meaning that the measures described a relation-
ship between two quantities that holds for all circles. In Excerpt 7, she describes measures of
5.27 and 1.27 radians in the context of a circle with a radius of 3.5 in. (Fig. 10).

Excerpt 7

Judy: It means that if you travel from your starting point here, and you travel counterclockwise (tracing arc
length), you travel five point two seven times your radius length along the circumference (moving her
pen tip in the shape of a circle).

Int:  OK, what about the one point two pi radians? What’s that mean...

Judy: Um, I guess one point two pi times the radius length, which is, (using calculator) um, about three point
seven seven radius lengths.

Int:  OK, so what role does pi play in that?

Judy: Just a number. Oh, and then the arc length is, um, I just multiplied the radians times the radius length
(3.5 inches) to get the arc length, which is eighteen point four four five.

Int:  So why does that operation work, why does that give you the arc length?

Judy: Um, because, uh, I kind of look at the radians like a function almost, so I always look at it as five point
two seven times whatever the radius length is, is the linear arc length ‘cause um, that’s how it translates
to any other circle you use. So if it was a larger one where the radius was five, then I'd multiply it by
five instead.

I note that Judy’s description suggests that she imagined traveling along an arc. Zac also
exhibited behaviors throughout his interview suggestive of this imagery. I conjecture that
their image of traveling along an arc stemmed from repeatedly measuring along a subtended
arc length during previous tasks.

As the study progressed, there was a noticeable shift in the students’ thinking from reasoning
about numbers and calculations to reasoning about quantitative relationships independent of
specified values. During the teaching sessions, we had not focused on developing formulas, but I
expected that their thinking about quantitative relationships involving indeterminate values
would support the use of formulas to represent relationships. To test this conjecture, I gave each
student the arc problem (Fig. 11). Both students’ formulas emerged as representative of a
multiplicative relationship between a subtended arc and corresponding radius (Excerpts 8 and 9).

Fig. 10 Judy’s diagram for angle
measures
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Fig. 11 The arc problem Using the following diagram, determine a formula between the measurements r,

0, and s. r

)

N

Excerpt 8

Judy: Oh, um, then, theta is equal to s over r...because radians is, it calculates the number of radius lengths
that have passed along the circumference.

Excerpt 9

Zac: We’ll say theta equals radians (writing 0=rad), very very simple then. r theta is equal to s (writing ré=
s). ‘Cause theta is in radians, that means a percentage of the radius. Which would then be equal to this
length (tracing arc length). So you multiply the percentage of the radius by the radius, you’ll get the arc
length.

7 Discussion

Returning to Thompson’s characterization of quantification, quantifying a quantity involves
“a process of settling what it means to measure a quantity, what one measures to do so, and
what a measure means after getting one” (Thompson, 2011, p. 38). In other words, one’s
understanding of a quantity inherently involves her quantifying of that quantity. I discuss the
students’ quantification of angle measure in two parts. First, I discuss critical operations
involved in the students’ quantification of angle measure. I then highlight other central
aspects of quantitative reasoning that emerged as critical for their quantification process,
such as their capacity to reason about indeterminate values.

7.1 The students’ quantification of angle measure

Upon entering the study, Judy and Zac’s thinking about angle measure was con-
strained to situations in which they were given angle measures or numbers with which
to execute calculational strategies to obtain angle measures. Angle measures, to Judy
and Zac, were intrinsic properties of geometric objects and relatable to other angle
measures through calculations (e.g., supplementary or complementary angles). They
appeared to have no discernible scheme of what one measures when measuring an
angle, nor did their angle measure understandings include a quantitative meaning for
the units used to measure the openness of an angle. Without a robust understanding of
the process of measuring an angle and how the structure of the unit relates to this
process, it made little sense for them to discuss the meaning of angle measures
independent of other angle measures and geometric objects.

As the study progressed, the students conceived situations in ways that supported their
constructing specific quantitative meanings for angle measure. More pointedly, by encoun-
tering situations in which they engaged in the partitioning of subtended arc lengths and

@ Springer



242 K.C. Moore

reflecting on these actions, the students conceived degree and radian angle measures (as well
as other informal units like quips) as one in the same: both units convey the fractional
amount of a circle’s circumference that is subtended by an angle with that measure. To
quantify angle measure as such required that the students conceive a subtended arc length as
a property of an angle’s openness to be partitioned into unit lengths, where each unit length
is a fractional amount of a circle’s circumference. Encountering multiple situations in which
these actions were purposeful likely supported such quantification acts, leading to their
abstracting angle measure as representative of quantitative relationships. For instance, their
connecting angle measure to the subtended fractional amount of any circle’s circumference
stemmed from identifying and comparing arc lengths per unit of angle measure on multiple
circles. Similarly, the students came to understand radian angle measures as a multiplicative
relationship that holds for any circle by comparing radii measures on multiple circles.
Judy and Zac’s capacity to reason about multiplicative relationships, which included
interpreting expressions as representing multiplicative relationships, played a critical role in
their quantification of angle measure. During the preinterview, the students used ratios
during their solutions, but these ratios did not represent multiplicative relationships. A
critical transition in their thinking occurred when they conceived several ratios between
arc lengths and circumferences as representing the same multiplicative relationships. As the
students reflected on different arc lengths on different circles corresponding to the same
angle measure, the students reasoned that the ratio a/b conveys that a is a/b times as large as
b. In turn, they concluded that an angle measure conveys the fractional amount of any
circle’s circumference that is subtended by the angle. Likewise, Judy and Zac concluded that
a measure in radians conveys that the subtended arc is so many times as large as the
corresponding circle’s radius. Without such multiplicative reasoning schemes available,
the students likely would have quantified angle measures in an entirely different manner.

7.2 Quantitative reasoning and indeterminate values

The students came to understand angle measure as the process of (a) constructing a circle
centered at the vertex of the angle, (b) measuring the circle’s circumference and subtended
arc length, (c) determining the fractional amount of the circumference subtended by the
angle, and (d) determining the number of angle measure units that correspond to that
fractional amount.'! It is important to note that the end product of the students’ quantifica-
tion of angle measure was such that they were not constrained to carrying out these actions.
That is, they reasoned about such actions and relationships without having to physically
carry them out, execute calculations, or determine specified values.

In principle, quantitative reasoning is based on constructing relationships between quan-
tities such that specified values are inconsequential to the conceived relationships (Smith &
Thompson, 2008). Specified values come into play when attempting to determine particular
quantities’ values, but they are not required to reason about quantities and relationships
between these quantities. Thus, quantitative reasoning rests on the capacity to reason about
indeterminate values. As evidence of reasoning based on quantitative relationships, during
the latter parts of the study, the students anticipated calculations during their solutions by
reasoning about indeterminate values. The students also produced formulas and equations
that stemmed from quantitative relationships between indeterminate values. The students’
tendency to reason about indeterminate values and quantitative relationships, as opposed to

1" As an alternative to (c) and (d), the students also reasoned about multiplicatively comparing the arc length
with the radius to determine the arc length in radii.
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numbers and calculations, was most apparent during the post-interview sessions (Excerpts
5-9). For instance, both students determined the standard formulas of s=rf and 6=s/r by
reasoning about unspecified radian angle measures as measures of arcs in radii. The fluency
by which they produced these formulas and the reasoning that supported this fluency stand
in stark contrast with previous research on students’ and teachers’ understandings of radian
angle measure (Akkoc, 2008; Topgu et al., 2006).

In their description of quantitative reasoning, Smith and Thompson (2008) argued, “If
students are eventually to use algebraic notation and techniques to express their ideas and
reasoning productively, then their ideas and reasoning must become sufficiently sophisticat-
ed to warrant such tools” (p. 98). In the present study, the students’ reasoning indicates that
paying particular attention to students’ quantification of a quantity can support the produc-
tive use of algebraic notation and techniques. By developing understandings rooted in
quantities and relationships between these quantities, the students’ understandings afforded
the use of formulas, equations, and calculations to represent relationships between quantities
and indeterminate values.

8 Concluding remarks

The results of this study contribute to the growing body of research (e.g., Castillo-Garsow,
2010; Ellis, 2007; Johnson, 2012; Thompson, 1994) that reveals the critical role of quanti-
tative reasoning in learning mathematics. Specifically, the students’ progress was contingent
on ideas of measurement, multiplicative reasoning, and reasoning about indeterminate
values, all central strands of quantitative reasoning. How students who lack critical mea-
surement and multiplicative reasoning schemes would progress during a similar instructional
sequence remains a question open for investigation. Studies that pursue students’ progress
under these circumstances have the potential to contribute to the body of knowledge on
students’ angle measure understandings, including how various reasoning abilities, or the
lack thereof, influence their angle measure understandings.

In addition to being of interest to teachers and researchers of undergraduate precalculus
students, the findings are also pertinent to those involved in the teaching and learning of
secondary students. Research has identified that quantitative reasoning can support middle
and secondary school students' learning of precalculus ideas, including exponential
(Castillo-Garsow, 2010) and quadratic (Ellis, 2007) functions. The students of the present
study also showed performance in their precalculus course comparable to that of secondary
precalculus students. Thus, secondary students might also benefit from an approach to angle
measure that is based on principles of quantitative reasoning. Future studies that investigate
secondary students’ quantification of angle measure are needed, the results of which will
likely produce additional insights into the role of quantitative reasoning in secondary
students’ learning.

While the study’s findings suggest that an arc approach to angle measure can foster
coherent experiences for students, I caution the reader to conclude that all arc approaches to
angle measure will produce such experiences. Instead, the students’ actions emphasize that
an arc approach to angle measure is beneficial when the approach foregrounds quantitative
reasoning, and namely, the quantification of angle measure. Quantification is not a passive
activity; it is a cognitive process. As Thompson (2011) described, the quantification process
is a critical and complex part of conceiving a quantity and this process takes time (sometimes
years). If we, as educators, expect students to understand angle measure (and other quanti-
ties), then we must take seriously their quantification of angle measure, which includes
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creating a need and giving time for students’ quantification acts. Introducing angle measures
(and using arcs) without taking seriously the quantification of angle measure likely sends
students the message: use these numbers to perform calculations and find other numbers, but
do not worry about what the numbers, arcs, and calculations mean. Likewise, giving
students a protractor without addressing how to measure an angle in the absence of a
protractor likely sends the message: use this protractor to measure an angle, but do not
worry about the structure behind the protractor. In contrast, placing quantification at the
forefront of the teaching of angle measure positions students to conceive quantities and
relationships between quantities as inherent to the process of measuring an angle.
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