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Abstract This paper reports a classroom-based study involving investigation activities in a
university numerical analysis course. The study aims to analyse students' mathematical
processes and to understand how these activities provide opportunities for problem posing.
The investigations were intended to stimulate students in asking questions, to trigger their
thinking processes, to promote their ability to investigate and to support them in learning
numerical analysis' concepts and procedures. The results show that the investigations
provided opportunities for students to experience mathematical processes, including posing
questions, formulating and testing conjectures and, to some extent, proving results. They
also provide some understanding about the role of problem posing in these processes. Posing
questions occurred mainly in an implicit way, in the interpretation of tasks and in identifying
regularities, analysing graphs and testing cases. The conjectures were often based on pattern
identification or data manipulation, and the students tended to accept them without testing or
proving. The students also proposed alternative formulations for the initial questions and
posed new problems from their explorations and attempts to refine previous conjectures.

Keywords Problem posing . Investigation activities . Mathematical processes . Reasoning

1 Introduction

Mathematics may be regarded as a body of knowledge or as a human activity
(Freudenthal, 1973; Pólya, 1945). Whereas the notion of body of knowledge leads
to the notion of mathematics teaching as a transmission process, the notion of
mathematical activity suggests that students may be actively involved in doing
mathematics (National Council of Teachers of Mathematics [NCTM], 1989). Pólya
(2002) underlines the importance of such activity when he says: “To understand
mathematics means to be able to do mathematics” (p. 7). At the heart of doing
mathematics is posing problems and solving them (Brown & Walter, 1990).
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Problem posing may be regarded as emphasising the formulation of a key problem that
hopefully will trigger an extended and productive mathematical activity, leading to its
solution. But problem posing may also be regarded as the constant process of posing
questions, which permeates any authentic mathematical activity and generates both key
and subsidiary questions. One must note that sometimes subsidiary questions become central
and sometimes key questions become dead ends. Adopting this second view, we see
mathematical investigations as providing particularly rich opportunities for problem posing
(Ponte & Matos, 1992). The close relation to problem posing and the increasing visibility of
such activities in curriculum documents (such as NCTM, 2000) and in teachers' practices
(Ruthven, Hofmann, & Mercer, 2011) make them an interesting and potentially fruitful field
of study.

In this paper, we seek to identify the mathematical processes used by university students
exploring investigations in the classroom, paying special attention to students' problem
posing processes during this activity, from the interpretation of the situations to the justifi-
cation of results.

2 Problem posing and investigation activities

In teaching and learning contexts, students may work in a way that is similar to professional
mathematicians. Such is the view of Hadamard (1945):

Between the work of the student who tries to solve a problem in geometry or algebra
and a work of invention, one can say that there is only a difference of degree, a
difference of level, both works being of a similar nature. (p. 104)

Working on mathematical investigations provides students with the opportunity to experi-
ence important mathematical processes. Ernest (1991) points out problem posing as a first
distinctive feature of mathematical investigations, as their statement often is not fully explicit
and precise, requiring students to pose their own questions and to establish their own objectives.
After exploring the situation, it is necessary to pose questions about the data, frequently based
on the identification of patterns, and to formulate and test conjectures (Ponte, Ferreira,
Brunheira, Oliveira, & Varandas, 1998). This may show the need to collect more data, to drop
the initial conjectures and to formulate new ones. The analysis of the situation may lead to the
modification of the initial questions (Silver, 1994) or to a change in some of the conditions to
raise new problems. Then, one must establish plausible arguments and formal proofs to reject or
validate this guesswork. The conjectures that resist the tests gain credibility, stimulating proofs
that, once achieved, yield mathematical validity. Ernest (1991) emphasises that investigations
provide stimulus to the students to justify and prove their conjectures and to explain mathe-
matical arguments to their colleagues and to the teacher. Also, the processes of generalization
and specialization may be sources not only of solutions but of new problems as well (Pólya,
1981). After obtaining a solution for a particular problem, the student can also “look back” to
see how the solution may be affected by changes in the problem (Pólya, 1945). Thus, working
on investigations, the students are led to formulate questions and conjectures, conduct tests and
refutations and also present results, and discuss and argue with their colleagues and the teacher
(Ponte, Brocardo & Oliveira, 2003). An additional feature of this process is that new questions
arise along the way.

Carrying out mathematical investigations may significantly contribute to the understand-
ing and consolidation of concepts and to the development of students' mathematical thinking
(Henriques & Ponte, 2008; Ponte, 2007). Ponte et al. (1998) also argue that mathematical
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investigations provide students with a more complete view of mathematics, thus opposing
the narrow view of this subject as just carrying out procedures and algorithms. Moreover,
investigations give students many opportunities to pose new problems (English, 2003;
Kilpatrick, 1987). Those may arise prior to problem solving when students generate prob-
lems from a particular situation or after solving a problem when the goals or conditions of a
solved problem are modified or applied to new situations. In addition, problem posing could
occur during problem solving when the individuals intentionally change their goals while in
the process of solving the problem (Silver, 1994).

Previous studies examined the conceptual benefits of problem posing. Silver (1994)
argues that problem posing promotes students' mathematics thinking. English (1997)
also points out that problem posing, reinforcing and enriching students' basic mathe-
matics concepts, generates a more diverse and flexible thinking and improves their
ability to solve problems. Moreover, Silver (1994) and English (1997) indicate that
students who work on problem posing develop a more positive attitude towards
mathematics, becoming more responsible and motivated for their learning. From a
teaching perspective, problem posing can also become a useful assessment tool
enabling teachers to develop a better understanding of students' cognitive processes,
to find possible misconceptions early in time and to obtain information on levels of
students' learning to adjust their teaching processes (English, 1997). In spite of this,
few studies have examined the cognitive processes involved when students generate
their own problems in the course of their problem solving activity or about instruc-
tional strategies that can effectively promote productive problem posing. Cai and
Cifarelli (2005) explained several characteristics of the students' mathematical explo-
rations in open-ended problem situations with particular emphasis on how students
formulated and solved new problems that arose during their problem solving activity.
The results obtained (also extended in Cifarelli & Cai, 2005) suggest a preliminary
model of mathematical exploration processes that, as the authors consider, needs
further refinement. In this paper, we seek to develop a more elaborated view
concerning the mathematical processes used by students in working on investigations
and address in a particular way how such tasks contribute to university students'
problem posing processes.

3 Methodology

The methodological framework of this study is based on the interpretative research
paradigm (Bogdan & Biklen, 1994). Examples in this paper come from a classroom-
based study conducted in the first semester of 2008/2009 in a numerical analysis
course taught by the second author, in order to promote students' experience of doing
mathematics while learning numerical analysis concepts and procedures. The partic-
ipants were all of the 36 second-year university students of Escola Naval, who had no
prior experience in such activities.

The study offered a different (unusual) approach to a numerical analysis course.
Classroom work included the realization of four investigation tasks along the course, which
took over a significant part of the class time. The realization of each task was organized in
three main moments: (1) presenting tasks, (2) exploring and (3) presenting and discussing
students' conclusions (Ponte et al., 1998). Each task focused on a different numerical
analysis topic (interval arithmetic, non-linear equations, curve fitting and numerical integra-
tion). Students were proposed situations for which they had neither theory nor routine
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processes to handle, and therefore, they were challenged to pose their own questions and to
develop and defend their own strategies.

Each task was presented to the students through a written statement. They worked in self-
selected pairs or small groups, constituted at the beginning of the semester. Students could use
graphic calculators, if they wanted. Upon finishing the exploration of the task, the students
presented their work orally to the class. These discussions were important learning opportuni-
ties. The students presented their conclusions and explained their ideas and strategies, and,
prompted by their colleagues and the teacher's strong questioning, they sought for justifications
and discussed aspects to which they had only given little thought. Thesemoments also provided
the opportunity to introduce new topics progressively and to respond to students' questions,
probing the understanding of the procedures of their colleagues and asking them to explain their
reasoning. Between stages 2 and 3, outside the classroom, the students wrote a group report,
explaining their strategies and presenting and justifying their conclusions. The work on this
report encouraged students' reflection, since they had to articulate ideas, to explain procedures,
and to review the processes used and the results obtained.

The investigation tasks were alternated with lectures to address theoretical aspects of
numerical analysis arising during the tasks or to present other topics (numbers and errors,
interpolation and differential equations). The classroom work also included moments for
solving problems and doing practical exercises for consolidation of concepts and algorithms
(see Fig. 1).

Due to the complexity of the complete study (Henriques, 2010), the results reported here
focus on three students (Carlos, Gonçalo and Luís) working on two tasks, conveniently
chosen in order to illustrate a variety of interesting aspects of problem posing processes.

Since the teacher was also a researcher, several difficulties and conflicts could arise from
that dual role. Following the educational research ethical principles, the teacher–researcher
informed all the students of the research goals and intended activities, asked their agreement
to participate, keeping their identities confidential, and assured students that the research
would not bring harm to any student in the classroom.

Data collection methods included observation of students exploring tasks, collection of
their written reports (labelled WR#) and audio recording interviews after the exploration of
each task (E#). The interviews were based on issues that emerged from the analysis of
written reports in order to understand students' thinking processes and to provide data to
clarify ambiguous issues.

For each task, we describe the students' work and document it via a set of their comments
indicating both the students' goals and their subsequent actions oriented towards the
solution. The basis for categorizing the mathematical processes used by the students during
the task exploration were the mathematics processes discussed in Ponte et al. (2003), such as
the formulation of questions, the formulation of particular/specific conjectures and their
generalization to more general cases, the test of conjectures and their posterior justification.
We also analysed students' actions to identify other instances that could be considered
problem posing processes, such as posing questions about data, generating partial
problems from a larger one or modifying the initial goals or conditions of an already solved
problem.

4 Students' mathematical processes

Task 1 was a starting point for the development and formalization of numerical methods for
solving non-linear equations. In particular, we intended to create an opportunity to discuss
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the bisection method, designing procedures (algorithms) for solving non-linear equations
and understanding their rationale.

The three students started exploring the task by observing the sequence of consec-
utive intervals and looking for regularities. Gonçalo explains it in his report: “We
tried to find a pattern and understand what was really happening from one interval to
another” (WR1). However, the students faced some difficulties since they did not use
all of the available information (such as the root of f): “Initially, we were a little
unmotivated because we could not find a relationship that might look valid to us”
(Gonçalo, WR1). To solve the original problem, Gonçalo formulated two more
accessible subproblems: (1) Is there any decreasing pattern in the width of the
intervals of the sequence? (2) What is the rule to find the interval bounds? The
observation of the sequence of intervals led them to a first conjecture based on the
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Fig. 1 The classroom-based study
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correct identification of a decreasing pattern of interval widths: “We realized immediately that
the intervals were getting smaller and smaller, i.e., the width of the next interval is always half of
the previous one and that happens for all the intervals” (Gonçalo, E1).

Carlos and Luís also began to pose a simpler question, trying to identify a pattern for
interval widths, but they did not seek to identify a pattern for interval bounds. They
calculated the range of each interval and correctly identified a decreasing pattern, formulat-
ing a first conjecture: “By looking at the sequence we found that the interval width decreases
by half regarding the previous one” (Luís, WR1).

The formulation of a criterion for deciding on which interval endpoints should be reduced
raised some questions to the students because they did not recognize any regularity by
observation. Carlos indicated that he and his colleagues made several attempts: “Several
ideas came up till we got one that seemed correct” (E1). During this process, the students
posed several questions that led them to formulate conjectures about the pattern of interval
bounds, most of which were based on counting the number of times each endpoint changed
or remained constant:

In these three that kept the upper endpoint of the interval, the lower bound was always
decreasing. Three times. Then, it changed and it was the upper endpoint, twice. Thus,
for the general case [a, b], the minimum (a) varies in three intervals while the
maximum (b) had the same value in two consecutive intervals, and then, in the next
interval, had another value. (Luís, E1)

However, these strategies were based on simple observations and counting, and did not
allow the students to formulate a correct identification of a rule for the sequence of intervals
since they did not use the necessary information about the root of f. Carlos and Luís did not
test their conjectures and did not realize that these were incorrect. Only when the students
were induced to a closer reading of the task statement could they verify, through experi-
mentation, that the intervals that they constructed did not verify all the given conditions:
“Only from this reasoning we found that the root of f(x) was not included in all intervals”
(Luís, E1). This test of their conjecture prompted a reformulation:

It's the element of the interval (maximum or minimum) that was farthest from the root
value that varies, while the other remains constant. Following this reasoning, the next
interval (…) is: 1.313−1.28100.032, so in the following interval will be half of that
width, i.e. 0.016. The farthest element from the root value, i.e. 1.281, will be added to
0.016 resulting in 1.297 and this being translated into [1.297, 1.313]. (Carlos, WR1)

The students now proceeded to verify this conjecture but only to the sequence of intervals
presented in the task. However, they did not feel any need to justify it.

Gonçalo also formulated his conjecture based on a counting scheme, considering the
conditions given in the task:

In the interval 2, [a half range] had to be added, in the intervals 3 and 4 it had to be
subtracted, in the intervals 5, 6 and 7 it had to be added again, so, I thought we have
the following sequence (…)
1 2 3 4 5 6 7 8 9 10 11
− + − − + + + − − − − (Gonçalo, E1)

Unlike his colleagues, Gonçalo tested his conjecture and realized that it was incorrect. He
used his knowledge on functions to identify the regularity: “As we know that the zero of the
function is within the interval, from one interval to the next, we drop the half that does not
contain our zero” (E1). Thus, this test allowed him to formulate a new conjecture.
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Once the exploration of this task had been completed for the particular case of the given
function, the next natural step would be to pose similar questions for any function. In the
given function, from one interval to the next, a transformation occurs according to a rule
consistent with some conditions. For Carlos and Luís, the generalization of this rule
reflected, in part, the previous exploratory work. They considered this process a mere
formalization and described their conjecture in symbolic notation:

From what I said earlier, we can define the following rule: If x−max>(f(x)00), then
the next interval is [min, x−max] or [x+min, max] if and only if x−max<(f(x)00).
(Luís, WR1)

The students did not realize that their conjecture depends on an unknown root (of this
specific function). They felt no need to justify that rule, and therefore, they did not realize
that their rule applies only to their particular case but not to the general case.

Gonçalo, in turn, realized that he must return to the previous questions for any function in
general. Then he presented a rule for constructing intervals in an algorithmic form, with the
elements of the sequence defined by recurrence, which would apply to any continuous
function on a range with unknown roots:

As a rule and taking into account how we get the next intervals, given the
interval [a, b] we perform the following steps:

1st Find the midpoint, vmed0(a+b)/2
2nd Find f(vmed)

If f(vmed)>0, then we get the next interval [a, vmed]
If f(vmed)<0, then we get the next interval [vmed, b]. (Gonçalo, RT1)

Gonçalo seemed to understand that a generalization of this conjecture must be applicable
to any function. He justified his algorithm when he described the rule for constructing
intervals of the sequence based on known mathematical properties and theorems, including
the Bolzano theorem and its corollaries:

As the function is continuous and f(a)<0 and f(b)>0, we only had to maintain the
[images of the] bounds of the intervals with opposite signs so that the next interval also
contains the zero. As vmed is always an extreme it is enough to confirm the sign of
f(vmed). (E1)

Thus, intuitively, he built the bisection method for solving non-linear equations.
In summary, the mathematical processes used by the students in exploring this task

included looking for regularities, formulating and testing conjectures, generalizing these
conjectures and justifying them. All students formulated initial questions on given intervals,
formulating conjectures involving patterns from data observation or manipulation. The
students had difficulties in identifying patterns, as they did not take into account all
information available. Only Gonçalo formulated a more general conjecture concerning all
possible functions, and he was also the only one to produce justifications. Students' work on
this task included the formulation of questions in an implicit way, identified by their
conjectures. The questions arose when students formulated conjectures from examples and
generated subproblems from a major problem. In the case of Gonçalo, questions also arose
when he tried to generalize his conjecture to obtain a general solution.

In task 2, multiple sets of data, provided in tables, represent different behaviours to be
modelled by different functions. Students were required to analyse and identify patterns and
then to define criteria in order to complete some missing values in the tables, using known
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mathematical models (e.g., linear, quadratic or exponential), together with what they just
learned about interpolation.

Carlos and Luís began by asking themselves about the behaviour of the data. They
calculated the differences between the values of the first table to identify a pattern:
“Looking at the table station 1(…) we can realize that [the growth of bacteria population,
p] is a linear function. The slope is constant 140�90

3�2 ¼ 240�140
5�3 ¼ 390�140

8�3 ” (Luís, E2). Based
on these calculations, the students conjectured that these values were from a linear function.
So, they posed another question: Assuming this linear behaviour for data, how do we find
the missing values? For that, they have chosen to “use the rule of three” (Carlos, WR2). The
students justified the conjecture by just referring to the slope.

Luís, working with his colleagues on station 1, believed that he could also use his recent
knowledge about interpolation to find the missing values: “We think that one could also find
the missing values by a polynomial interpolation method” (WR2). The student posed a
question about whether Lagrange's method of (linear) polynomial interpolation would yield
the same results. He compared the results of both methods: “We solved a problem with
Lagrange's interpolation. We also used the rule of three to check whether there were differ-
ences but no, it gave the same” (E2). The analysis of his group work shows that the students
also considered other possible explorations: “We can use any of the learned methods for
polynomial interpolation. One can use either Newton's method with divided differences or
the Lagrange's method” (WR2).

Gonçalo started exploring the task assuming that the data were in any position, and
therefore, the missing values could be found by polynomial interpolation. He tried to find the
missing values in station 1 by constructing a fourth-degree Newton's polynomial function
based both on known properties of polynomials and on the idea (not always correct) that the
greater the degree of the polynomial, the better the approximation to the data: “We used the
four points because it's all we had. Moreover, the idea I had is that the more points we use
more…” (E2). The choice of Newton's polynomial interpolation method with divided
differences also drew on his recently acquired knowledge: “The nodes were not all at the
same distance” (E2). The student explored the other tables in the same way and assumed that
the constructed polynomials were suitable to represent data and to calculate the missing
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values but did not make any test, possibly because he believed that he created a suitable
option. Thus, he did not realize that some of the values obtained were hardly justifiable
given the general behaviour of the data.

For the other two tables (stations 2 and 3), Carlos and Luís wondered again about the
behaviour of data, but calculating the differences between each of two values, they verified
that there is not a linear relationship:

For the tables station 2 and 3 we tried to apply the same as for table station 1. But:

85� 40

2� 1
6¼ 220� 40

4� 1
6¼ 210� 85

5� 2
and

600� 250

7� 5
6¼ 380� 140

6� 3
6¼ 140� 85

3� 2
:

So, they are not linear functions (…). (Luís, WR2)

Carlos and Luís chose to use the polynomial interpolation in order to find the missing
values and, from this point on, reasoned very much like Gonçalo. However, before finishing
the exploration of this task, Carlos proposed to his group a new problem assuming other
conditions—to construct an algebraic expression for a second-degree polynomial. He took
into account the data behaviour to pose this question and formulate a conjecture related to
the degree of the polynomial. Then, he interpolated the function at 3 in station 2: “We
obtained the algebraic expression of the polynomial: p2(x)022,5x+7,5x

2+10” (WR2). He
also considered “improving” their conjecture using different polynomials to describe the
data trend, instead of the single expression previously found. His decisions on the degree of
the polynomials to be used were based on identifying patterns in the data behaviour, the
number and the monotony of the available values:

Looking at the data, I found 3 values growing up, a decreasing trend at 5 and then at
8 the values grow up again. Obviously the values could still be falling at 6, but we do
not know… In this case, I thought I would get a function defined by three branches at
the intervals, [1, 4[, [4, 5[, [5, 8[. (Carlos,E2)

When Carlos felt the need to justify their results, he tried to check whether such results
agree with the expected ones and with the reasoning developed. He used a sophisticated
graphical representation and properties of functions (monotony and derivative):

It was a kind of checking, if these polynomials were good for that range of values. (…)
I even did a sketch here… It was through the observation of the table (…). It was
growing from here to there (…). Therefore the polynomials had to be increasing or
decreasing and their derivatives had to be positive or negative (…). (Carlos, E2)

An interesting extension of this question was raised by Luís when he questioned if, after
obtaining an interpolated value, he could add these new data to the table and thus get a
higher-degree polynomial to find the remaining missing values: “To discover the value of t0
6 [in station 2] we could now include the value of p(3) that we have just found and so the
error was smaller” (E2). Here, we see an attempt to pose new questions.

Within this task, the students formulated conjectures about the most appropriate compu-
tation methods based on different assumptions about the data. They did not feel the need to
test their results. However, raising questions on the global behaviour of data may lead to
using different methods with quite different results. Students' problem posing is visible at
several stages of their exploration. Initially, Carlos and Luís questioned themselves about the
behaviour of data, and based on the identified pattern, they formulated conjectures. They
also posed questions when selecting the appropriate methods to find the missing values,

Problem posing based on investigations by university students 153



taking into account the data, and when they sought to compare different methods. Before
they finished, students were still posed new problems by considering the results or by
modifying the initial conditions to refine the previous formulations. In contrast, Gonçalo
did not pose explicit questions about the data behaviour since he assumed that polynomial
interpolation was the appropriate approach. However, even if only implicitly, he also posed
questions about the appropriate polynomial to represent the data (degree and method).

5 Conclusion

During the study, the students were challenged to carry out investigation activities
very different from the usual university mathematical tasks. This led them to experi-
ence mathematical processes such as looking for regularities, posing questions, for-
mulating and testing conjectures, generalizing and providing justifications. These
results extend to the classroom setting previous research by Cifarelli and Cai
(2005). Furthermore, they show that, besides formulating conjectures and generalizing,
students also engage in other mathematical processes.

Looking for regularities was based, mainly, on the observation of examples in visual and
numerical diagrams or through counting or computation. As in former research by Silver
(1994), the students' sketches were very important to help them in formulating conjectures.
Difficulties in this process arose when they did not take into account all the available (and
necessary) information.

All students in our study posed questions as they formulated initial questions about the
data provided and sought to identify patterns that yielded conjectures. Sometimes, they also
posed questions to simplify the original problem. However, in many cases, the posed
questions were just implicit being identifiable from the conjectures.

The students mostly formulated conjectures based on identifying patterns from data
observation or manipulation. However, they also drew on mathematical properties. Their
conception of solving a task as a process of getting a result led them to formulate conjectures
as statements, confirming the findings of Ponte and Matos (1992), and to accept them as
conclusions, feeling no need for testing or proving. This result, also observed by Ponte et al.
(1998), seemed to be more related to students' inexperience in conducting this type of task
and the challenge of understanding the nature of the investigation process than to mathe-
matical difficulties in testing their hypotheses/conjectures.

The work on the proposed tasks led the students to understand the importance of testing
their conjectures, and from a certain point, this became a constant concern. Most of the time,
testing conjectures was done through experimentation (often with the examples available in
the statement). However, sometimes the testing was based on graphic representations and on
mathematical concepts and properties. In these cases, testing conjectures coincided with the
process of justifying them. When the students explained their reasoning, they unintentionally
gave justifications based on mathematical properties or deductive reasoning. When, through
testing, the students refuted a conjecture, they tried to reformulate it. In that way, the process
of testing conjectures allowed not only its verification but also problem posing, reinforcing
the perspective of Cifarelli and Cai (2005) of mathematical activity as a recursive process
wherein students' reflection on the results can provide them with opportunities to formulate
new problems to explore and solve.

An important step in the exploration of some tasks was the generalization of the initial
conjectures, i.e., the formulation of a more general conjecture, which led to posing new
questions. Carlos and Luís seemed to be unaware that their conjectures might be valid for
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particular cases but not for the general case and tended to consider the generalization a
simple process of formalization. Rather, Gonçalo returned to questions previously raised and
broadened the scope of his conjectures to obtain a general solution. The process of
generalization carried out by this student resulted also in the construction of the bisection
method. In a different way, Carlos and Luís also suggested possible extensions of the
proposed questions. After obtaining a first solution, they posed new questions and formu-
lated new conjectures or refined existing ones by changing the initial conditions (as
suggested by Ponte et al., 1998, and Silver, 1994).

The results of this study highlight the potential of investigation tasks to promote problem
posing and suggest that such tasks might be successful in university mathematics courses.
Students do engage in problem posing when carrying out such tasks. This process occurs
when they pose questions concerning the given data, look for patterns and formulate
conjectures from a series of examples, generate more accessible subproblems from a larger
problem, test their conjectures and reformulate them, try to generalize and/or refine their
conjectures to obtain a general solution and propose alternative questions, expanding their
explorations by changing the initial conditions. Thus, students' problem posing processes
appear to permeate the problem solving activity, as suggested by Brown and Walter (1990)
and Cifarelli and Cai (2005). As a key feature of authentic mathematical activity, our study
shows that problem posing processes seem to be stimulated when students get involved in
investigation activities.
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