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Abstract “Success stories,” i.e., cases in which mathematical problems posed in a con-
trolled setting are perceived by the problem posers or other individuals as interesting,
cognitively demanding, or surprising, are essential for understanding the nature of problem
posing. This paper analyzes two success stories that occurred with individuals of different
mathematical backgrounds and experience in the context of a problem-posing task known
from past research as the Billiard Task. The analysis focuses on understanding the ways the
participants develop their initial ideas into problems they evaluate as interesting ones. Three
common traits were inferred from the participants' problem-posing actions, despite individ-
ual differences. First, the participants relied on particular sets of prototypical problems, but
strived to make new problems not too similar to the prototypes. Second, exploration and
problem solving were involved in posing the most interesting problems. Third, the partic-
ipants' problem posing involved similar stages: warming-up, searching for an interesting
mathematical phenomenon, hiding the problem-posing process in the problem's formulation,
and reviewing. The paper concludes with remarks about possible implications of the findings
for research and practice.
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1 Introduction

One of the most robust observations from the professional literature on mathematical problem
posing is that diagnostic and learning opportunities associated with this activity are, as a rule,
much more impressive than mathematical problems produced as a direct result of the effort.
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Indeed, problem posing is broadly recognized as a powerful research tool for revealing
components of teachers' mathematical knowledge (De Corte & Verschaffel, 1996; Ma, 1999)
as well as a means for developing mathematical thinking and creativity (Silver, 1994; 1997;
Silver, Kilpatrick, & Schlesinger, 1990; Toluk-Uçar, 2009). At the same time, many studies
have reported that a sizable portion of problems generated by students and teachers are ill-
formulated or cognitively undemanding (Crespo & Sinclair, 2008; Harel, Koichu, & Manaster,
2006; Ma, 1999; Silver & Cai, 1996; Silver, Mamona-Downs, Leung, & Kenney, 1996).

This observation has its consequences for ongoing research efforts to reveal the nature of
mathematical problem posing and its potential in mathematics teacher education and prac-
tice. Namely, the existing body of data is suggestive about processes involved in posing not
necessarily interesting problems (e.g., Crespo & Sinclair, 2008; Silver et al., 1996) as well as
about the sources of teachers' difficulties with problem-posing tasks (Harel, et al., 2006; Ma,
1999). The accumulated data, however, include a relatively small number of “success
stories,” i.e., cases in which problems posed in a particular research setting are perceived,
by the problem posers or their peers, as interesting, meaningful, cognitively demanding, or
surprising. Consequently, the data are less suggestive about the processes involved in posing
such problems.

This paper is drawn from our experience of collecting success stories in a
problem-posing situation known as the Billiard Task (see Fig. 1). Silver et al.
(1996) have argued that the Billiard Task is rich enough in order to stimulate
generation of interesting problems and conjectures and, simultaneously, it is accessi-
ble enough as it requires only knowledge of rather basic mathematical concepts. In
addition, Cifarelli and Cai (2005) utilized the Billiard Task in a study on exploration
strategies of mathematics teachers.

During the last 2 years, we offered the Billiard Task to more than 20 prospective and in-
service mathematics teachers and documented how they worked. In this paper, we analyze
two success stories from our collection. The stories are chosen to be presented here as
particularly transparent and insightful regarding the problem-posing processes the posers
went through. The analysis is driven by the following question: What are some of the traits
of problem-posing processes that lead the posers, two prospective mathematics teachers, to
formulate interesting problems in the chosen problem-posing context?

Imagine billiard ball tables like the ones shown below. Suppose a ball is shot at a 45 angle from the 

lower left corner (A) of the table. When the ball hits a side of the table, it bounces off at a 45 angle. 

In Table 1, the ball travels on a 4 6 table and ends up in pocket B, after 3 hits on the sides. In Table 

2, the ball travels on a 2 4 table and ends up in pocket B, after 1 hit on the side. In each of the 

figures shown below, the ball hits the sides several times and then eventually lands in a corner pocket.

Based on the given situation, pose as many interesting mathematical problems as you can.

Table 2
A

D C

B

C

DA

B

Table 1

Fig. 1 The Billiard Task (adapted from Silver et al., 1996)
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2 Theoretical framework

Following Stoyanova and Ellerton (1996), we refer to mathematical problem posing as “the
process by which, on the basis of mathematical experience, students construct personal
interpretations of concrete situations and formulate them as meaningful mathematical prob-
lems” (p. 518). This student-centered and process-oriented definition is adopted in our paper for
analyzing the cases of interest. Two subsections below present our interpretation of the key
components of the definition: the notion of mathematically meaningful problem and a set of
attributes that we consider for characterizing the processes of formulating such problems.

2.1 What counts for a mathematically meaningful problem?

Various sources (e.g., Kilpatrick, 1982; 1985; NCTM, 2000) refer to amathematical problem as a
task involving mathematical concepts and principles, for which the solution method is not known
in advance by the person(s) engaged in it. Such a conceptualization presumes that a particular task
can or cannot be seen as a mathematical problem depending on mathematical background and
attitude of its solvers, as well as on conditions under which the task is dealt with (Kilpatrick, 1985).

The descriptor “meaningful,” utilized by Stoyanova and Ellerton (1996) in their definition,
amplifies the extent of ambiguity embedded in many attempts to operationally determine
whether a particular product of one's problem posing is worthwhile. In addition, one can argue,
in line with Crespo and Sinclair (2008), that the descriptor meaningful belongs to the rarefied
discourse of mathematicians rather than that of learners. Crespo and Sinclair (2008) suggested
that the learners' normative understanding of what qualified as a worthwhile problem may
develop around the notion of “mathematically interesting” or “tasty” which, in turn, is not
extraneous to the notion of “a beautiful problem.” Consequently, we treat in this paper the
descriptor meaningful in the manner that has been developed in past research for treating such
problems' descriptors as “interesting” or “beautiful.”

Namely, the professional literature acknowledges that an agreement about what constitutes a
mathematically interesting or beautiful problem is elusive (e.g., Wells, 1990), but offers quite
stable lists of general characteristics of such problems and their solutions. They include:
simplicity, brevity, clarity, elegance, fruitfulness, mathematical deepness and complexity, clever-
ness, cognitive demand, novelty, and surprise (compiled from Brinkmann, 2009; Crespo &
Sinclair, 2008; Dreyfus & Eisenberg, 1986; Koichu, Katz, & Berman, 2007; Wells, 1990).

Following Goldin (2002) and Koichu and Berman (2005), we argue that such general
characteristics can be seen as instantiations of one's internal multiply encoded cognitive/
affective configurations, to which the holder attributes some kind of truth value. In accordance
with this view (cf. also Crespo & Sinclair, 2008, for a compatible view), we operationally
consider a posed problem mathematically meaningful (or interesting or beautiful) if it is
evaluated as such by the poser of the problem, its readers or solvers, and if one's argumentation
underlying the evaluation involves some of the aforementioned general characterizations.

2.2 Attributes of problem posing1

The set of cognitive and affective attributes for characterizing problem posing is adapted
from a five-facet framework developed in our earlier research (Kontorovich & Koichu,
2009; Kontorovich et al., 2012). Three attributes are particularly relevant to the forthcoming

1 This section is an abridged and modified version of a section in Kontorovich, Koichu, Leikin, and Berman
(2012).
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analysis: mathematical knowledge base, problem-posing strategies, and individual consid-
erations of aptness.

2.2.1 Mathematical knowledge base

Problem posing is a natural companion of problem solving (Kilpatrick, 1987; Silver et al., 1996);
therefore, mathematical knowledge bases needed for these activities may intersect. In line with
Schoenfeld's (1985) model of problem solving, it can be assumed that mathematical knowledge
base needed for posing problems includes the knowledge of mathematical definitions, facts,
routine problem-solving procedures, and relevant competencies of mathematical discourse and
writing. In addition, problem posing relies on one's knowledge of mathematical problems that
can serve as prototypes (cf. Kilpatrick, 1987, for the role of association and analogy in problem
posing). Recalling and using a system of prototypical problems rely, in turn, on three components
of the problem-solving ability of the posers, which were pointed out by English (1998): the
ability to recognize the underlying structure of a problem and to detect corresponding structures
in related problems, the ability to perceive mathematical situations in different ways, and the
ability to favor some problems over others in routine and non-routine situations.

2.2.2 Problem-posing strategies

We refer to problem-posing strategies as systematic approaches to analyzing and trans-
forming conditions of a given problem-posing task and to question generating. This defini-
tion embraces cognitive processes identified by Silver et al. (1996) and Cifarelli and Cai
(2005) in the context of the Billiard Task.

Silver et al. (1996) introduced, individually or in pairs, 71 mathematics teachers to the
Billiard Task and asked the subjects to write down as many questions appropriate to the task as
they could for 10 min. Following this, the teachers were asked to solve some of their own
problems for 30min and then to generate additional ones for 15min. The analysis of the written
responses enabled the researchers to conjecture that several cognitive processes were likely to
be involved in the teachers' problem posing in the chosen context. They included:

– Constraint manipulation, i.e., posing new problems by systematic manipulations with
the task conditions or implicit assumptions (The famous what-if-not strategy introduced
by Brown and Walter (1983) is a particular case of this strategy.)

– Goal manipulation, i.e., posing new problems by manipulations with the goal of a given or
previously posed problemwhere the assumptions of the problem are accepted with no change

– Symmetry, i.e., posing a new problem by symmetric exchange between the existing
problem's goal and conditions

– Chaining, i.e., expanding an existing problem in a way that a solution to a new one
would require to solve an existing one first

Cifarelli and Cai (2005) explored how two prospective mathematics teachers formulated
and solved their own mathematical problems based on two given situations, one of which
was the Billiard Task. The students worked with software designed to draw different paths of
the ball depending on the chosen table dimensions. In addition, the software presented “the
number of bounces, the length of the path, and the corner in which the ball finished” (p.
306). The teachers were given as much time as they wished to complete the task and actually
worked on it about 70 min. The analysis by Cifarelli and Cai (2005) was focused on the
ways by which the teachers made sense and explored the relationships between the
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aforementioned parameters of the ball's paths. Two reasoning patterns, which are particularly
relevant to the concerns of our paper, were identified:

– Data-driven reasoning, i.e., relying on the need to generate many concrete examples
and attempting to determine new relationships based on them

– Hypothesis-driven reasoning, i.e., formulating hypotheses and projecting ideas into new
situations, even if the poser could not be sure of where the results would lead

2.2.3 Considerations of aptness

The word “aptness” means fitness, suitableness, appropriateness, and also connotes one's
propensity to capture particular features of a situation as important. In the chosen context,
considerations of aptness are the poser's comprehensions of explicit and implicit require-
ments of a situation within which a problem is to be composed; they also reflect her or his
assumptions about the relative importance of these requirements (Kontorovich & Koichu,
2009; Kontorovich et al., 2012). Types of considerations of aptness relevant to the concerns
of this paper are:

– Aptness to herself or himself, i.e., extent to which a poser attempts to pose a problem
that would satisfy her or his personal criteria, as a problem solver, of an interesting or
meaningful problem

– Aptness to the potential evaluators, i.e., extent to which one's problem posing is driven by
the wish to get a positive evaluation by a person who assigned the problem-posing task

– Aptness to the potential solvers of a posed problem, i.e., extent to which the poser's
performance is driven by her or his wish to create a problem that would be suitable for
the potential solvers

3 Two success stories

The cases below are abridged reconstructions of events that occurred with two prospective
mathematics teachers, Ian and Alla (pseudonyms), when working on the Billiard Task. Every
case is a “success story” in its own sense. Ian was a second year undergraduate mathematics
education student who had no prior experience in problem posing. Alla was in transition from her
B.Sc. toM.Sc. degree inmathematics education andmet problem-posing tasks in her past studies.

Ian and Alla took part in the course “Advanced workshop in teaching mathematics”
jointly taught by the authors of this paper in 2010. Problem posing was one of the major
themes of the course. The course included various problem-solving and problem-posing
activities, systematic discussion of research papers on problem posing and three guest
lectures by highly reputed problem-posing experts. The data presented in this paper are
based on a homework assignment given for 2 weeks in the middle of the course. The
assignment included, in addition to the task presented in Fig. 1, a request to solve some of
the posed problems and to answer the following questions in writing:

How did you start? How did the idea of the problem emerge? Which ideas did you
abandon during the posing and why? How did you decide that the problem is complete?

Ian and Alla granted us permission to use their submitted homework and draft materials
in our study after the end of the course. Face-to-face conversations with the students about
the details of their written works served as a complementary data source. In addition, a draft
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of the following two subsections was sent to the students, and they acknowledged that our
interpretations of their thinking had been accurate. In Ian's words, “You really captured what
I did.” In Alla's words, “You understood me perfectly. The description [of my work] reflects
very well what was happening in my mind.”

3.1 Success of Ian: the posed problem incorporates several “challenges” for middle school
students

Ian read the task and quickly wrote down two problems:

1. Calculate the area of the quadrilateral part of the billiard ball's path in Table 1 [see
Fig. 1], given that AB04, and AD06.

2. Calculate the length of the billiard ball's path in Table 1.

The problems' structures and questions (“calculate the area” and “calculate the length”)
are in line with many geometry problems in Israeli textbooks. Consequently, it can be
assumed that Ian considered geometry textbook problems as prototypes.

Ian proved that the quadrilateral path of the ball (see Table 1 on Fig. 1) was a square and

calculated its side by the Pythagorean theorem. The side was
ffiffiffi

8
p

and the answer to the

problem was a “nice” number 8. He then used the calculated side
ffiffiffi

8
p

in his solution to the

second problem and found that its answer was not a nice number 2
ffiffiffiffiffi

32
p þ 2

ffiffiffi

8
p

. (Noticeably,
Ian did not consider solving the problem in a simpler way or even simplifying the answer.)
The problems were not especially interesting to Ian, and he decided to formulate the next
problem so that it would be more mathematically complex, but still have a nice numerical
answer. This decision indicated the presence of considerations of aptness to himself in Ian's
problem-posing reasoning. His third problem was as follows:

3. In the table shown below [Fig. 2a], a billiard ball is shot from corner A to point G at a
60° angle to BC. The length of the ball's path from A to B is 42 cm. Calculate the length
of border AB.

Ian explained that he was thinking “from the end to the beginning” when formulating the
problem. Namely, he chose the angle of incidence and the length of the path so that a nice
number would be the answer.

I understood that if I make the angle of incidence 60°, there appear many isosceles and
regular triangles on the table [Fig. 2b]. I paid attention to the phenomenon that all
segments inside the rectangle are equal, and that there are 6 segments. As a result, I
chose as the length of the path 42 so that it would be divisible by 6.

Fig. 2 a, b Drawings intended by Ian for his third problem
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Ian's choices imply that he used a modification of the chaining strategy. Indeed, his third
problem took into account not only a type of the problem's question, which he adapted from
his second problem, but also what he had not achieved so far (i.e., making a problem with a
nice number). The adherence to nice answers strengthens the suggestion that Ian's reasoning
was shaped by recalling some geometry textbook problems as prototypes.

Ian liked his third problem more than the previous ones because of the informed choices
of the parameters he had made when formulating it. However, he was not fully pleased by
the solution to the problem as it was, he believed, too simple. His last problem was as
follows:

4. A ball is shot from corner A, hits border BC at point G, and then, it hits borders CD and
DA and enters pocket B, as in the drawing below [see Fig. 3]. The borders of the table
are made of a special material so that the angle of reflection is 20 % less than the angle
of incidence. Find the angle of incidence AGN, given that angle ABE is 40°.

He explained:

I wanted this problem to be of a higher level than the previous ones, which led
me to the idea to look at the angle of incidence as a variable, and the last angle
as a given. In addition to the challenge of reversing the problem, I decided to
incorporate in it an additional challenge. I considered a billiard table made from
an unusual material that changed the angles. I chose the condition about 20%
randomly, and started to solve the problem for a ABE ¼ a½ � , from the end to the
beginning. When I found a general expression for the angle, I substituted α with
40° and found the answer that the solvers of the problem are supposed to find,
50°, which was a nice answer.

By “reversing the problem,” Ian meant that one of the conditions of the given task became a
goal of a new problem, i.e., he had utilized a symmetry problem-posing strategy. The process of
finding the general expression for α is presented in his draft (see Fig. 4).

Ian was pleased that the calculations involving α were quite complex. It seems that he
was not aware of the fact that his problem had a much simpler solution for the chosen—

Fig. 3 A drawing intended by Ian for his fourth problem
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apparently, for the sake of a nice answer—angle 40°. He noted that middle school students
“can learn something” from going through the same processes as he did when developing
the expression for angle AGN. The last assertion implies that consideration of aptness to
potential solvers were also present in Ian's reasoning.

Ian told us that he had offered the problem to his friend, a mathematics education student,
to solve, even though it was not a part of the homework. The friend solved the problem very
quickly and evaluated it as “very transparent, almost obvious.” Ian explained us that this is
because the problem formulation does not necessarily require developing a general formula
for α, as he meant it for the solvers. The friend's opinion lowered Ian's own opinion about
the problem, but he still felt that the problem was quite interesting. We, the authors of this
paper, also liked this problem, in particular, because it did not immediately occur to us that
the condition “the angle of reflection is 20 % less than the angle of incidence” preserves the
angle of incidence in a sequence of hits for the chosen ending angle. Thus, the problem
somewhat surprised us.

In sum, the case of Ian is a success story in the following meaning: Ian succeeded to pose
a problem which, by his considerations of aptness to himself and to the potential solvers, was
mathematically and pedagogically interesting.

3.2 Success of Alla: the posed problem is based on an exploration
of “what is going on in the game”

Alla had begun from making up a list of questions, which eventually did not appear in the
submitted homework. In her words:

When I looked at the drawings [included in the formulation of the Billiard Task;
see Fig. 1], I thought about the principle of reflection in geometry. This is
because of the problem I remembered from the course ‘Selected problems in
mathematics’ [taught by one of the authors of this paper]. When I read the task
carefully, I was surprised that there was much more in there, and quite easily
wrote down 20 questions. Most of the questions were based on one of two

Fig. 4 A draft for Ian's fourth problem
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ideas: changing the conditions of the task and searching for generalization or a
rule related to some characteristics of the game… Naturally, not all the ques-
tions were of the same level of difficulty and interest to me.

The questions on the list concerned the relationships among the dimensions of the
tables, the ball's path, and the final pocket the ball enters. Many questions were
remarkably close to those posed by the participants in the study of Silver et al.
(1996). Namely, there were questions in which the given angle of incidence was
changed from 45° to other angles, a series of questions calling to explore what happens
when the angle of incidence would be not equal to the angle of reflection (cf. the story
of Ian), and questions about possible meetings of two balls shot under different
conditions. For this reason, and because of the above explanation of Alla, we suggest
that she generated the list by using chaining, constraint manipulation, goal manipula-
tion, and generalization strategies, as the participants in the study of Silver et al. (1996)
did. Alla generated the list in about 15 min and then decided to stop and choose one of
the questions to pursue.

I looked over the list of questions, and decided to focus on what really interested me:
to understand what is going on in this game. I mean that I did not change the angle of
incidence or reflection, and not the places of the pockets on the table etc., but only the
table sizes.

Specifically, she chose to explore the final pockets the ball enters on the tables of all
integer sizes. To us, her choice was quite remarkable. Alla decided to make up an interesting
problem from an exploration of one the most natural questions embedded in the Billiard
Task (Silver et al., 1996), the solution to which was unknown to her. To recall, Ian made up
an interesting problem by incorporating more or less unusual conditions, but he never
experienced uncertainty about how to solve the problems he had posed. Thus, it can be
assumed that considerations of aptness to herself were the most important ones for Alla at
this stage.

She started the exploration from looking at the 8×2, 8×4, 8×6, and 8×10 tables and then
at the 10×2, 10×4, 10×6, 10×8, and 10×12 tables. She evidently tried to be systematic and
drew only the tables with even–even dimensions, in which one side was kept constant
(Fig. 5). Note that, mathematically speaking, this decision was unfortunate. Indeed, if Alla
had started from exploring the tables of odd–odd or odd–even dimensions, she would have
seen the pattern more easily (cf. Cifarelli & Cai, 2005, for the case of Sarah). When having
nine tables with even–even dimensions in front of her, Alla stopped drawing and started to
look for regularities. This course of exploration of the Billiard Task was called by Cifarelli
and Cai (2005) data-driven reasoning.

Alla hypothesized that there was a connection between the differences between the
table dimensions and the final pocket, but could not see any pattern. Then she acted
as follows:

In every table that I've explored I drew the path of the ball. For this reason, it was
‘easy’ for me to see that the paths on [bigger] tables are some sequences of reflections
or translations of the paths at some [smaller] tables. So I tried to divide the [bigger]
tables into symmetric parts [see Fig. 5] that would be the same at the different tables.
This division of the tables created mini-tables with odd dimensions, so I drew the
following tables: 5×3, 5×7, 5×9 and 5×11. I was trying to think about all the tables in
front of me [i.e., even-even and odd-odd], and simultaneously about odd-even tables,
though I did not draw them.
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This course of exploration is closer to what Cifarelli and Cai (2005) called
hypothesis-driven reasoning. Still, Alla could not see any regularity and came back
to browsing her list of questions. At this point, the correct hypothesis came to Alla as
an insight. In her words:

I don't know how to exactly explain what happened in my mind in the next several
moments, but I'll try. I think that several ideas came along: one of the questions in my
list, which was about multiplication of the sides of the table by some integer factor +
the tables that I drew and divided into mini-tables 0 the idea to reduce all the
dimensions by a constant, instead of multiplying… From here I was just thinking
about splitting all the tables into equivalence classes, where the representatives of each
class were ordered pairs of relative primes. I am sure, almost for 100%, that I I've seen
this idea at my first year group theory course, but at that time I could not see any
relation of the equivalence classes to situations like a billiard… I just checked what
happens on the odd-odd, odd-even and even-even tables with relative primes, and saw
the pattern.

Eventually, Alla formulated the following problem:

1. In continuation of the given situation, try to formulate a rule that would match an
ordered [horizontal side/vertical side] pair of table's dimensions to the final pocket the
ball enters.

Fig. 5 A draft for the Alla's problem (the in-printed words “supposed to be” is a translation from Hebrew)
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In addition, Alla wrote, as a solution, how the tables of all sizes should be divided into
three equivalence classes, and indicated which final pocket the ball entered for every class
(with reference to Table 1 on Fig. 1, the answer is pocket C for odd–odd tables, pocket D for
even–odd tables, and pocket B for odd–even tables). Note that Alla formulated her problem
so that it did not require from the solver proving the discovered relationship. Alla knew that
she had not found a general proof and explained:

I did not feel the necessity to prove the rule I had found, because I was quite sure that it
would be analogous, if not the same, to the proof that I've seen at the group theory
course.

This explanation is instrumental for understanding why Alla was quite delighted by the
problem she posed: she assigned herself a challenging goal and succeeded in pursuing it.
Simultaneously, she asserted that she was not interested in the “technical” verification of the
problem, which already fitted her considerations of aptness to herself. It is interesting to note
that Alla's submitted homework included three additional problems and their solutions. Alla
generated them after discovering the above rule and formulated so that she could quickly and
fully solve them; the problems were somewhat similar to the third and fourth problems by Ian as
they all included “unusual” conditions. Alla explained that the problems were not particularly
interesting to her, but she included them in her work in order to be sure that it would satisfy the
expectations of the evaluators. Thus, some tension between considerations of aptness to the
evaluators and considerations of aptness to herself can be observed. In sum, the case of Alla is a
success story in the following meaning: she succeeded in posing a problem which, by her
considerations of aptness to herself, was challenging and surprising and, thus, interesting.

4 Discussion

The presented success stories occurred with individuals of different mathematical knowl-
edge bases and experience in problem solving and problem posing. Consequently, it is not
surprising that their self-attributed criteria of success and the resulting problems appeared to
be so different. It is probably more surprising that, despite the differences, certain common
traits can be identified in the presented stories. In this section, we attempt to pinpoint the
participants' success and draw some implications.

4.1 The role of uninteresting problems in posing the interesting ones

Let us begin from considering Ian and Alla's work in terms of the following problem-posing
stages: (a) warming-up, (b) searching for an interesting mathematical phenomenon, (c)
hiding the problem-posing process in the problem formulation, and (d) reviewing. These
stages have to be considered as interlacing ones rather than as a linear progression from a
problem-posing stimulus to a resulting problem, in line with what is done in some contempo-
rary problem-solving frameworks (e.g., Carlson & Bloom, 2005) and problem-posing models
(Ramirez, 2006; Pelczer & Gamboa, 2009).

At the warming-up stage, the problem posers spontaneously associated the given task
with particular types of prototypical problems. In both cases, the recalled or quickly
formulated initial problems served only as departure points. Indeed, two initial geometry
problems posed by Ian and most of the questions on Alla's list were considered and
discarded by them. Moreover, Alla chose not to present the entire list of questions in her
submitted homework.
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This observation may have a methodological implication. Namely, in many studies on
problem posing, the overall number of problems posed by an individual or a group in response
to a given problem-posing stimulus is frequently reported as an informative datum (e.g.,
Cifarelli & Cai, 2005; Harel et al. 2006; Silver et al., 1996; Toluk-Uçar, 2009). This datum,
may, however, be of minor importance in situations where posing interesting problems is put
forward (see also Kontorovich, Koichu, Leikin, & Berman, 2011).

At the searching for an interesting mathematical phenomenon stage, Ian and Alla
restricted their attention to selected aspects of the given task and looked for the mathematical
foundation of the forthcoming, interesting, problem. At this stage, the initial (prototypical)
problems served for the students as a material to be critically considered and modified.

Ian's search seems to be driven by a modification of chaining strategy. To recall, Silver et al.
(1996) defined chaining as expanding an existing problem in a way that a solution to a new one
would require to solve an existing one first. In contrast, Ian's aspiration was not to
(straightforwardly) use the solutions of his early problems, but rather to achieve in the next
problems what he had not achieved so far.

Alla's search was essentially shaped by the decision to explore the most interesting to her
question without being sure that she would succeed. It is worthwhile noting that such a
course of action required from the poser both self-confidence and intellectual courage.
According to Movshovitz-Hadar and Kleiner (2009), such intellectual courage is an impor-
tant component of mathematical creativity.

At the hiding the problem-posing process in the problem formulation stage, Ian and Alla
wrote down the problem formulations so that the processes they went through when posing/
solving the problems became not transparent to the potential solvers. Indeed, the formulation
of Ian's last problem did not reflect the fact that he had developed the general formula for α
in order to choose an initial angle so that the final angle would be nice. The formulation of
Alla's problem contained a hint about the importance of the order in which dimensions of the
tables are given, but it was not transparent about ways of looking for the pattern she went
through. To our knowledge, the phenomenon of hiding the process of problem posing in a
problem formulation has not been pointed out in past research on problem posing by
students or teachers.

At the reviewing stage, Ian and Alla shaped their opinions of the posed problems. Ian
lowered his opinion about the problem after testing it with a peer. Still, he considered the
problem instructive for middle school students. Alla liked her problem very much, but
assumed that the evaluators may not be pleased by her problem. As a result, she compen-
sated for the absence of the general proof to the most interesting (to her) problem by
formulating and fully solving three less interesting to her problems. In other words,
Ian and Alla's courses of actions imply that different types of considerations of aptness
do not always come alone (e.g., aptness to the potential solvers and aptness to potential
evaluators).

4.2 Interesting problems—in response to an interesting task given in an appropriate context

A rationale for using problem-posing activities in mathematics teachers' education relies, in
part, on the following chain of considerations: (a) problem posing is a powerful means of
learning and teaching mathematics, as it is an authentic mathematical activity (e.g.,
Kilpatrick, 1987) related to enhancing mathematical creativity (Silver, 1994), developing
problem-solving skills, mathematical aptitude, and learning autonomy (Silver & Cai, 1996);
(b) successful use of authentic mathematical activities in teaching requires that the teachers
would gain experience with such activities for themselves as learners of mathematics (e.g.,
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Crespo & Sinclair, 2008; Putnam & Borko, 2000; Wilson & Berne, 1999). Consequently, in-
service and prospective mathematics teachers should be offered opportunities to pose their
own problems.

This logical chain, as compelling as it is, cannot be a warrant against poor problem-
posing classroom practices if and when the intended tasks fail to pass the criteria of an
authentic mathematical activity. This happens, for instance, when the teachers are engaged in
problem-posing situations, which are devoid of connection to what mathematics practi-
tioners actually do when posing problems (cf. Brown, Collins, & Duguid, 1989) or when the
situations do not evoke in the teachers establishing any personal relationship with the posed
problems (Crespo & Sinclair, 2008; Putnam & Borko, 2000).

From this perspective, the success of Ian and Alla is stipulated by the fact that students
succeeded in establishing personal relationships with the task and to make their work progress
beyond what was needed in order to formally fulfill it. In terms of the proposed theoretical
framework, Ian and Alla's problem-posing reasoning involved considerations of aptness to
themselves and to the potential solvers and not only to the evaluators. This phenomenon—
posing problems that would be interesting to solve also to the poser—was rarely observed in the
past studies. (The study of Perrin, 2007, in which the students posed problems for follow-up
teacher-guided investigation, is an exception.) For instance, Crespo and Sinclair (2008) reported
that mathematics teachers in their study posed many tasty problems, but only in one case were
the problem posers were curious about how to solve their own problem.

We also deem important that the task was not isolated from the context, in which it was
proposed. To recall, it was offered in the framework of a course, in which problem posing
was one of the central themes. We deem particularly important that the participants got
familiar with experience of three problem-posing experts and had a chance to learn that for
the experts the aspiration to pose interesting problems for real use (in contrast to posing
many problems for no further use) was an established norm.

5 Concluding remarks

Our first remark concerns the adequacy of the chosen conceptual framework and the second
one is on a possible pedagogical implication of our findings.

5.1 A methodological remark

As has been hopefully evident from the above exposition, narrative in terms of the problem
posers' knowledge bases and considerations of aptness was instrumental for (partially) captur-
ing the complexity of the processes involved in posing interesting mathematical problems. At
the same time, we found that the analysis in terms of problem-posing strategies was unequally
applicable to the cases under consideration. Problem-posing strategies, as considered in this
paper, were apparent in the entire work of Ian and only at the beginning of the work of Alla. A
similar observation can be made regarding the distinction between data-driven exploration and
hypothesis-driven exploration made by Cifarelli and Cai (2005), when applied to the presented
data. Namely, these two categories were applicable only to the case of Alla and only partially
captured the processes preceding her insight.

These observations are reminiscent of those of many scholars (e.g., Cifarelli & Cai, 2005;
Mamona-Downs & Downs, 2005; Singer et al., 2009) pointed out that further work should
be done towards the development of a system of categories that would be sensitive to the
subtlety of the problem-posing processes and simultaneously applicable to a broad range of

Dissecting success stories on problem posing 83



problem-posing situations and tasks. For instance, problem-posing strategies identified in
past research in the situations where the subjects were asked to generate many questions
under strict time constraints, as in the study by Silver et al. (1996), may be unequally
applicable in the situations requiring from the subjects to pose a small number of interesting
problems under less strict time constraints, as in our study.

5.2 A pedagogical remark

The undertaken dissection of two success stories may have some pedagogical impli-
cations. We observed that posing interesting, first of all to the posers, problems
involved searching for an interesting mathematical phenomenon and hiding the
problem-posing process in the problem formulation stages. It is reasonable to assume
that problem-posing tasks formulated so that students or teachers would be given a
chance to experience these stages may result in posing better problems. To this end,
our findings support Crespo and Sinclair's (2008) and Perrin's (2007) suggestion that
problem-posing tasks should not be separated from mathematical explorations. We
also suggest that the request to pose a small number of problems that would be
interesting to solve either for the problem poser or his or her peers should be
reinforced in future problem-posing tasks. More generally speaking, our small-scope study
suggests, in line with some past studies, that attention to the authenticity of situations and
contexts, in which problem-posing tasks are offered, may encourage learners to become better
problem posers.

Acknowledgments The research of the first-named author was supported by the Loewengart Research Fund.
The research of the second-named author was supported by the Technion graduate school. The authors are
grateful to the participants in our study for their time, creativity, and readiness to collaborate.

References

Brinkmann, A. (2009). Mathematical beauty and its characteristics. A study of the students' points of view.
The Montana Mathematics Enthusiast, 6(3), 365–380.

Brown, J. S., Collins, A., & Duguid, P. (1989). Situated cognition and the culture of learning. Educational
Researcher, 18(1), 32–42.

Brown, S. I., & Walter, M. I. (1983). The art of problem posing. Philadelphia, PA: Franklin Institute Press.
Carlson, M., & Bloom, I. (2005). The cyclic nature of problem solving: An emergent multidimensional

problem-solving framework. Educational Studies in Mathematics, 58, 45–75.
Cifarelli, V., & Cai, J. (2005). The evolution of mathematical explorations in open ended problem solving

situations. The Journal of Mathematical Behavior, 24, 302–324.
Crespo, S., & Sinclair, N. (2008). What makes a problem mathematically interesting? Inviting

prospective teachers to pose better problems. Journal of Mathematics Teacher Education, 11(5),
395–415.

De Corte, E., & Verschaffel, L. (1996). An empirical test of the impact of primitive intuitive models of
operations on solving word problems with a multiplicative structure. Learning and Instruction, 6, 219–
243.

Dreyfus, T., & Eisenberg, T. (1986). On the aesthetics of mathematical thoughts. For the Learning of
Mathematics, 6(1), 2–10.

English, L. D. (1998). Children's problem posing within formal and informal contexts. Journal for Research
in Mathematics Education, 29(1), 83–106.

Goldin, G. A. (2002). Affect, meta-affect, and mathematical belief structures. In G. C. Leder, E.
Penkonen, & G. Torner (Eds.), Beliefs: A hidden variable in mathematics education? (pp. 59–72).
Dordrecht: Kluwer.

84 B. Koichu, I. Kontorovich



Harel, G., Koichu, B., & Manaster, A. (2006). Algebra teachers' ways of thinking characterizing the mental act
of problem posing. In I. J. Novotna, H. Moraova, M. Kratka, & N. Stehlikova (Eds.), Proceedings of the
30th Conference of the International Group for the Psychology of Mathematics Education (vol. 3, pp.
241–248). Prague, Czech Republic: Charles University.

Kilpatrick, J. (1982). What is a problem? Problem Solving, 4(2), 1–2. 4-5.
Kilpatrick, J. (1985). A retrospective account of the past 25 years of research on teaching mathematical

problem solving. In E. A. Silver (Ed.), Teaching and learning mathematical problem solving: Multiple
research perspectives. Hillsdale, NJ: Lawrence Erlbaum Associates.

Kilpatrick, J. (1987). Problem formulating: Where do good problems come from? In A. H. Schoenfeld (Ed.),
Cognitive science and mathematics education (pp. 123–147). Hillsdale, NJ: Lawrence Erlbaum
Associates.

Koichu, B., & Berman, A. (2005). When do gifted high school students use geometry to solve geometry
problems? Journal of Secondary Gifted Education, 16(4), 168–179.

Koichu, B., Katz, E., & Berman, A. (2007). What is a beautiful problem? An undergraduate students'
perspective. In J.-H. Woo, H.-C. Lew, K.-S. Park, & D.-Y. Seo (Eds.), Proceedings of the 31th
Conference of the International Group for the Psychology of Mathematics Education (vol. 3, pp. 113–
120). Seoul, Korea.

Kontorovich, I., & Koichu, B. (2009). Towards a comprehensive framework of mathematical problem posing.
In M. Tzekaki, M. Kaldrimidou, & C. Sakonidis (Eds.), Proceedings of the 33rd Conference of the
International Group for the Psychology of Mathematics Education (vol. 3, pp. 401–408). Thessaloniki,
Greece: PME.

Kontorovich, I., Koichu, B., Leikin, R., & Berman, A. (2011). Indicators of creativity in mathematical
problem posing: How indicative are they? In M. Avotina, D. Bonka, H. Meissnera, L. Ramana, L.
Sheffield, & E. Velikova (Eds.). Proceedings of the 6th International Conference on Creativity in
Mathematics Education and the Education of the Gifted Students (pp. 120–125), University of Latvia,
Riga, Latvia.

Kontorovich, I., Koichu, B., Leikin, R., & Berman, A. (2012). A framework for handling the complexity of
students' mathematical problem posing in small groups. The Journal of Mathematical Behavior, 31(1),
149–161.

Ma, L. (1999). Knowing and teaching elementary mathematics. Mahwah, NJ: Lawrence Erlbaum.
Mamona-Downs, J., & Downs, M. (2005). The identity of problem solving. The Journal of Mathematical

Behavior, 24, 385–401.
Movshovitz-Hadar, N., & Kleiner, I. (2009). Intellectual courage and mathematical creativity. In R. Leikin, A.

Berman, & B. Koichu (Eds.), Creativity in mathematics and education of gifted students (pp. 31–50).
Rotterdam, The Netherlands: Sense Publishers.

NCTM (National Council of Teachers of Mathematics) (2000). Principles and standards for teaching
mathematics. Reston: Author.

Pelczer, I., & Gamboa, F. (2009). Problem posing: Comparison between experts and novices. In M. Tzekaki,
M. Kaldrimidou, & C. Sakonidis (Eds.), Proceedings of the 33th Conference of the International Group
for the Psychology of Mathematics Education (vol. 4, pp. 353–360). Thessaloniki, Greece: PME.

Perrin, J. (2007). Problem posing at all levels in the calculus classroom. School Science and Mathematics, 107
(5), 182–192.

Putnam, R., & Borko, H. (2000). What do new views of knowledge and thinking have to say about research
on teacher learning? Educational Researcher, 29(1), 4–15.

Ramirez, M. C. (2006). A mathematical problem-formulating strategy. International Journal for Mathematics
Teaching and Learning, 79-90. Retrieved from http://www.cimt.plymouth.ac.uk/journal/ramirez.pdf

Schoenfeld, A. H. (1985). Mathematical problem solving. New York: Academic.
Silver, E. A. (1994). On mathematical problem posing. For the Learning of Mathematics, 14(1), 19–28.
Silver, E. A. (1997). Fostering creativity through instruction rich in mathematical problem solving and

problem posing. ZDM, 29(3), 75–80.
Silver, E. A., & Cai, J. (1996). An analysis of arithmetic problem posing by middle school students. Journal

for Research in Mathematics Education, 27(5), 521–539.
Silver, E. A., Kilpatrick, J., & Schlesinger, B. (1990). Thinking through mathematics: Fostering inquiry and

communication in mathematics classrooms. New York: The College Board.
Silver, E. A., Mamona-Downs, J., Leung, S., & Kenney, P. A. (1996). Posing mathematical problems: An

exploratory study. Journal for Research in Mathematics Education, 27(3), 293–309.
Singer, M., Ellerton, N., Silver, E. A., Cai, J., Pelczer, I., Imaoka, M., & Voica, C. (2009). Problem posing in

mathematics learning: establishing a theoretical base for research. In M. Tzekaki, M. Kaldrimidou, & C.
Sakonidis (Eds.), Proceedings of the 33th Conference of the International Group for the Psychology of
Mathematics Education (vol. 1, p. 229). Thessaloniki, Greece: PME.

Dissecting success stories on problem posing 85

http://www.cimt.plymouth.ac.uk/journal/ramirez.pdf


Stoyanova, E., & Ellerton, N. F. (1996). A framework for research into students' problem posing in school
mathematics. In P. Clarkson (Ed.), Technology in Mathematics Education (pp. 518–525). Melbourne:
Mathematics Education Research Group of Australasia.

Toluk-Uçar, Z. (2009). Developing pre-service teachers understanding of fractions through problem posing.
Teaching and Teacher Education, 25(1), 166–175.

Wells, D. (1990). Are these the most beautiful? The Mathematical Intelligencer, 12(3), 37–41.
Wilson, S. M., & Berne, J. (1999). Teacher learning and the acquisition of professional knowledge: An

examination of research on contemporary professional development. In A. Iran-Nejad & P. D. Pearson
(Eds.), Review of Research in Education (vol. 24, pp. 173–209).

86 B. Koichu, I. Kontorovich


	Dissecting success stories on mathematical problem posing: a case of the Billiard Task
	Abstract
	Introduction
	Theoretical framework
	What counts for a mathematically meaningful problem?
	Attributes of problem posing
	Mathematical knowledge base
	Problem-posing strategies
	Considerations of aptness


	Two success stories
	Success of Ian: the posed problem incorporates several “challenges” for middle school students
	Success of Alla: the posed problem is based on an exploration of “what is going on in the game”

	Discussion
	The role of uninteresting problems in posing the interesting ones
	Interesting problems—in response to an interesting task given in an appropriate context

	Concluding remarks
	A methodological remark
	A pedagogical remark

	References


