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Abstract Taylor series convergence is a complicated mathematical structure which incor-
porates multiple concepts. Therefore, it can be very difficult for students to initially
comprehend. How might students make sense of this structure? How might experts make
sense of this structure? To answer these questions, an exploratory study was conducted using
experts and students who responded to a variety of interview tasks related to Taylor series
convergence. An initial analysis revealed that many patterns of their reasoning were based
upon certain elements and actions performed on elements from the underlying mathematical
structure of Taylor series. A corresponding framework was created to better identify these
elements and how they were being used. Some of the elements included using particular
values for the independent variable, working with terms, partial sums, sequences, and
remainders. Experts and students both focused on particular elements of Taylor series, but
the experts demonstrated the efficiency and effectiveness of their reasoning by evoking more
conceptual images and more readily moving between images of different elements to best
respond to the current task. Instead of moving between images as dictated by tasks, students
might fixate on “surface level” features of Taylor series and fail to focus on more relevant
features that would allow them to more appropriately engage the task. Furthermore, how
experts used their images, supports the idea that they were guided by formal theory, whereas
students were still attempting to construct their understanding.

Keywords Taylor series . Calculus . Advanced mathematical thinking . Grounded
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In contrast to the extensive amount of education literature on the limit of functions and
sequences (e.g., Alcock & Simpson, 2004, 2005; Mamona-Downs, 2001; Monaghan, 1991;
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Williams, 1991), there is a dearth of research specific to students’ understanding of power
series convergence. In most cases, a study addressing power series convergence does so
while considering a broader topic, such as limit or function approximation techniques
(Alcock & Simpson, 2004, 2005; Kidron, 2004; Oehrtman, 2009). Of the power series
convergence studies, attention focuses on students’ understanding of various convergence
tests (Kung & Speer, 2010), the influence of dynamic graphical images on learning (Kidron
& Zehavi, 2002; Kidron, 2002, 2004), and the effects of metaphorical reasoning (Martin &
Oehrtman, 2010).

As a special case of power series, Taylor series brings together the concepts of function,
limit, derivative, sequences, and series, and typical tasks force students to juggle topics such
as error, upper bounds, interval of convergence, radius of convergence, and center. Taylor
series are frequently used in physics and engineering to simplify complicated equations
using approximations and they play a foundational role in the theory of complex analysis.
Calculus students are typically introduced to function approximation techniques using
Taylor series, and a single approximation task may require students to coordinate changes
to an independent variable, the center, and index, while interpreting the role of the unspec-
ified variable if using Lagrange’s remainder formula. Therefore, for a calculus student first
encountering Taylor series, it can be especially challenging to make sense of this compli-
cated structure due to the interaction of all these concepts. Indeed, after observing students’
struggles with power series convergence, Kung and Speer (2010) titled their paper, “Do they
really get it?” Therefore, the study described herein explores the question, “What do students
get?” and, “How does this compare to what experts get?” More specifically, when students
are from traditional calculus classes (as opposed to Kidron’s class), what are students’
patterns of reasoning concerning Taylor series convergence when they are not guided to
reason visually or forced to recall complicated series convergence tests? Finally, how do
students’ patterns of reasoning compare to experts’ patterns?

1 Background

1.1 Operational verses structural understandings

The importance of the duality between conceiving of mathematical concepts as objects and
as processes performed on and with objects has been well documented (Breidenbach et al.,
1992; Gray & Tall, 1994; Sfard, 1991, 1992). Sfard described structural conceptions as
conceiving mathematical notions “as if they referred to object-like entities” and operational
conceptions as conceiving mathematical notions as computational processes acting on
previously established objects (1992, p. 60). For Sfard, the transition from operational to
structural conceptions occurs through reification when a process becomes viewed as an
object, and hence, processes can be performed on the newly structured object, which can
eventually be detached from the process that produced it. The notion of limit conceived as
process is embodied in dynamic language and can be associated with ideas of unreachable-
ness, such as 0:9 cannot equal 1 because the process of concatenating 9’s to get 0.9, 0.99,
0.999, etc. can never really end (Davis & Vinner, 1986; Williams, 1991). Fortunately, the
process of taking a limit can be reified into an object, and the limit of a sequence, like {0.9,
0.99,0.999,…}, can be obtained.

Sfard (1992) also observed that students’ conceptions can be neither clearly operational
nor clearly structural but both partial in operation and incomplete in structure, calling such
conceptions pseudostructural. When knowledge is detached from a “previously developed
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system of concepts,” student reasoning using such knowledge is pseudostructural (Sfard &
Linchevski, 1994, p. 117). Symptoms of pseudostructural reasoning include regarding
formulas and symbols as things that do not stand for anything else, making little to no
connection between graphs and algebraic formula, and being inflexible in utilizing the appro-
priate structural interpretation at the proper time (Sfard, 1991, 1992; Sfard& Linchevski, 1994).
Zandieh (2000) claimed that “a pseudostructural conceptionmay be thought of as an object with
no internal structure” (p. 107). Zandieh went on to purport that the thinking of a person
reasoning using a pseudostructural conception should not be viewed as negative because a
more complete conception may be available even though it was not currently evoked. Further-
more, not referring to the full structure may help an individual to reason more efficiently by not
having to attend to so much detail (Martin & Oehrtman, 2010).

1.2 Power series

Studies suggest that depending on the problem situation, students will attend to and operate
with different elements of the underlying mathematical structure of Taylor series conver-
gence, such as terms, polynomials, the center, and errors. Kidron (2002, 2004) and Kidron
and Zehavi (2002) describe a teaching experiment explicitly designed to support students in
making connections between algebraic representations and dynamic visual images of Taylor
polynomials created using a CAS (Computer Algebra System). Students noticed things such
as “the higher degree of the approximating polynomial, the bigger is the interval in which
f(x) and the polynomial coincided” (Kidron, 2004, p. 318), and that “the error decreases” as
approximations get “better” (Kidron & Zehavi, 2002, p. 220). Moreover, Kidron’s approach
was designed to help students reify the limit process in this context instead of concentrating
on the “divergent process of adding terms” (Kidron, 2002, p. 210). Taylor polynomials were
operated in a process that for some students reified into an infinite series as they coordinated
both algebraic and dynamic graphical representations of convergence. Similar attempts to
support reification of the limit of remainder were made as well. Although other process/
objects conceptions can be seen in excerpts, process/object conceptions related to other
components of Taylor series convergence were not well explored.

Kung and Speer (2010) indicated that students can have great difficulty when reasoning
about Taylor series to the extent that they can reach a state of “cognitive overload” on fairly
standard tasks:

Throughout the interviews, students took a very mechanical view of testing series, at
times working through the steps of a particular test without being able to clearly
articulate the underlying ideas, what they were testing for, or at times, even what the
conclusion of the test was. (p. 9)

On the few occasions where Alcock and Simpson (2004, 2005) specifically referenced student
responses to their Taylor series task, students struggled. Alcock confirmed that they “reported
very little about students’ responses to this question, in part because many students were simply
confused about what the question was asking” (as cited in Kung & Speer, 2010, p. 3).

Students may try to reduce cognitive strain by using metaphor (Oehrtman 2009), but in so
doing, neglect key features of Taylor series convergence (Martin & Oehrtman, 2010). By
using tasks assessable to individuals from diverse mathematical backgrounds, this paper
attempts to add to this body of literature by further detailing expert and student conceptions
based on different elements of the underlying structure of Taylor series convergence. In so
doing, differences between how experts and students identify, relate, and use such concep-
tions may shed light on the source of the confusion observed by Alcock.
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1.3 Expertise

An expert in mathematics has been described as having a more robust mental imagery, more
numerous images, ability to switch efficiently and effectively between different images, ability
to focus attention on appropriate features of problems, and more cognizance of their thought
and of how others may think (Carlson & Bloom, 2005; Hiebert & Carpenter, 1992; Lester,
1994). According to Hiebert and Carpenter (1992), individuals with a coherent understanding
of a particular mathematical topic have a complex system of internal and external representa-
tions that are joined together by numerous strong connections to form a network of knowledge.
In contrast to experts, a student’s system of representations of a mathematical topic may be
deficient in number and deficient in connections to form an adequate network of knowledge
(Hiebert & Carpenter, 1992; Lester 1994). Bezuidenhout (2001) observed that calculus stu-
dents’ understanding of limit, continuity, and differentiability “rests largely upon isolated facts
and procedures, and that their conceptual understanding of the relationships between these
concepts is deficient” (p. 498). Ferrini-Mundy &Graham (1994) report that “graphical contexts
and algebraic contexts may function for students as separate worlds,”where algorithms are seen
as unrelated to corresponding graphical representations (p. 42). Both the deficient conceptual
understandings and the disconnect between graphical and algebraic contexts can stem from
pseudostructural reasoning (Sfard, 1991, 1992; Sfard & Linchevski, 1994; Zandieh, 2000).

In other scientific domains, experts are consistently identified as having a lot of knowledge that
is well connected and influenced by underlying scientific theory whereas students may focus on
surface level features explicitly stated in a problem that tend to not be well connected to
underlying theory (Chi et al., 1981; Kozma & Russel, 1997; Larkin, McDermott, Simon, &
Simon, 1980). Even when knowledge is connected to some scientific theory, it can still be
incomplete or unconnected to other pieces of knowledge (diSessa 1988; Kozma&Russel, 1997).

2 Framework & methods

2.1 The emergent framework

To allow themes about Taylor series convergence to emerge from the data, open coding
(Strauss & Corbin, 1990) was employed (See Layer 1 in Fig. 1). Elements of individuals’
concept images (Tall & Vinner, 1981) emerged, and the most prominent images were
directly related to components of the underlying mathematical structure and operations that
could be performed on those components (Layer 2 in Fig. 1). Therefore, this study adopted
Sfard’s operational and structural notions of duality as a theoretical perspective. By empha-
sizing this dichotomous view instead of a trichotomous view (e.g. Briendenbach et al.,
1992), further distinction was made between operational and structural conceptions.

These images consisting of both operational and structural elements will be referenced as
structural images of Taylor series convergence. The calculation of an approximation may be
viewed as a process in which more terms are iteratively added to a Taylor polynomial to
produce a new polynomial that better approximates the function. In this case, the terms
themselves are used as objects concatenated onto the current Taylor polynomial. In another
situation, Taylor polynomials may be viewed as objects that are a part of a sequence {Tn(x)}
used to verify that the Taylor series converges to a given function. Therefore, a structural
image can refer to multiple components of Taylor series convergence in which each
component may be conceived operationally or structurally. These situations also suggest
that individuals might make references to terms, partial sums, and sequences of partial sums
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without attending to the details of other components of the underlying mathematical
structure, such as the remainder, and in so doing, demonstrate a pseudostructural image.

To reveal how participants were using their structural images, Carlson and Bloom’s
(2005) multidimensional problem solving framework (Layer 3 in Fig. 1) was adopted. They
describe “formal and informal knowledge about the content domain, including facts, defi-
nitions, algorithmic procedures, routine problems, and relevant competencies about rules of
discourse” (p. 48) as resources that individuals use when engaging in difficult problems.
Therefore, elements of an individual’s concept image constitute resources for that individual.
They also listed problem solving behaviors that included accessing resources, strategizing,
and clarifying ideas as one moves though phases of planning, executing, and checking.
Thus, the effectiveness of one’s resources are dependent upon a degree of control one has to
access appropriate resources at appropriate times. Therefore, an individual’s ability to move
between different structural images to address tasks meaningfully would demonstrate a type
of “well connectedness” of understanding frequently displayed by experts.

The frameworks discussed in this section constitute multiple layers of a Taylor series
framework comprised of structural images of convergences and how images are used. This
framework is used to reveal what an individual understands and how he/she uses such
understandings about Taylor series convergence on a component-by-component basis. Using
this framework, the research questions are refined to the following:

1. What are some different ways that spontaneously emerge in which experts and students
conceptualize Taylor series convergence relative to the underlying mathematical structure
and operations performed on that structure?
2. In what ways do experts and students use these conceptions of convergence and how
might these conceptions aid or hinder individuals in basic proof and estimation tasks
involving Taylor series convergence?

2.2 Method

At a mid-size, four-year university and a regional community college, data were initially
collected from five faculty and two graduate students who had either taught or used series in

Fig. 1 Framework for analyzing understandings of Taylor series convergence based on identifying structural
images (Layer 1), operational and structural elements of those images (Layer 2), and roles in problem solving
behaviors (Layer 3)
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their research. Subsequently, data were collected from 131 undergraduate students in
calculus and introduction to numerical or real analysis. Data consisted of questionnaires
and audio/video recordings and written work during individual interviews. Pseudonyms are
used in the reporting of data.

Faculty and graduate students participated in no more than three 60-min, tasked-based,
individual interviews (Goldin, 2000), and most completed all tasks in two interviews. Both
faculty and graduate students are identified as experts since there was no notable difference
in their reasoning. Experts were chosen to go first because conceptual resources at their
disposal should elucidate concept images in ways not previously considered (Carlson &
Bloom, 2005), and their perception of student thinking could help with designing the next
phase.

After having previously studied Taylor series using books by Stewart (2008) or Hass,
Weir, and Thomas (2007) to solve typical approximation tasks, 103 calculus students
completed a questionnaire. They were introduced to proofs using Taylor’s inequality (Stew-
art, 2008, p. 773) or the Lagrange remainder formula (Hass et al., 2007, p. 560). Also, 16
students from introduction to real analysis completed the questionnaire after they had covered
sequences and series (Bartle & Sherbet, 2000, pp. 52–95), and 11 students from introduction
to numerical analysis completed the questionnaire after they had revisited approximation
tasks typically seen by calculus students (Burden & Faires, 2005). Both real and numerical
analysis students are reported together as “analysis” students to emphasize the distinction
between calculus students and students from more advanced mathematical backgrounds.

The questionnaire consisted of 33 questions of various types. Some of the most infor-
mative questions concerned graphing Taylor polynomials for sin x given sine’s graph and
questions related to structural images where students could select multiple images that they
perceived themselves as employing (see Appendix). Five calculus, one real analysis, and two
numerical analysis students additionally participated in no more than two 60-min interviews.
This paper will focus on the analysis and discussion of interview tasks consistent between
the expert and student groups (Table 1) and will refer to other results as needed.

Many of the interview tasks were designed to be accessible to all the participants (Goldin,
2000) by not constraining participants to using difficult to recall procedures, such as the ratio
test or the Lagrange Remainder Theorem (Kung & Speer, 2010). Open form questions
allowed for students to be more spontaneous to the extent that they were less constrained to

Table 1 Common interview tasks between expert and student groups

Number Task

1. What are Taylor series?

2. Why are Taylor series studied in calculus?

3. What is meant by the “0” in “cos x01−x2/2!+x4/4!−x6/6!+−⋯ when x is any real number?”

4. What is meant by the “(−1,1)” in, “1/(1−x)01+x+x2+x3+⋯ when x is in the interval (−1,1)?”
5. What is meant by the word “prove” if you were asked to, “Prove that sine is equal to its Taylor

series?”

6. What are the steps in proving that sin x0x−x3/3!+x5/5!−x7/7!+− ⋯?

7. How can we estimate sine by using its Taylor series?

8. What is meant by the “approximation” symbol in “sin x≈x−x3/3! a Taylor polynomial for sine
when x is near 0?”

9. What is meant by the “near” in “sin x≈x−x3/3! a Taylor polynomial for sine when x is near 0?”

10. How can we get a better approximation for sine than using x−x3/3!?
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evoke particular structural images based on instructor or visual cues as was the case in
Kidron’s work. This allowed for more discussion about Taylor series convergence than
previously observed by Alcock. While addressing the first four tasks, participants would
typically make reference to “limit” or “convergence,” at which point the interviewer would
probe for more detail of their understandings. Participants were asked to respond to simple
proof and approximation problems in Tasks 6, 7, and 10 to capture how they were using their
structural images in basic problem solving situations. Since in calculus, the approximation
and proof questions are more commonly asked of Taylor series than power series, using
Taylor series terminology was more consistent with instruction.

2.3 Analysis

Data were analyzed using the layers in Fig. 1. Once concept images emerged though the first
layer of analysis, mathematical structures that were the focus of an individual’s attention
were identified using key expressions revealed in utterances, written word and symbols, or
in the form of gestures while engaged in discourse. Using this notion of expression, Sfard
(2001) defined the pronounced focus as the “expression used by [the participant] to identify
the object of her or his attention,” and the attended focus as what a participant is “attending
to—looking at, listening to, etc.” (p. 34). During interviews, participants were attending to
the task in front of them and to certain structural components of Taylor series as indicated by
their pronounced focus. To illuminate the operational and structural elements of these images
(Layer 2), efforts were made to distinguish between what participants were operating with
(structural component) versus what they were operating on (operational component). To help
explain how structural components were being used by individuals (Layer 3), as participants
engaged each task, components that were attended to were recorded. To explain reasons
behind these conceptual movements, the data were analyzed for indicators of images being
coordinated with problem solving behaviors, such as using images to clarify ideas, incor-
porate into strategies, etc.

3 Results

The emergent components of the structural images included: terms, the independent vari-
able, Taylor polynomials, the expanded Taylor series, and the tail of the expanded series.
Descriptions of the images associated with these structural components and what participates
were operationally constructing can be found in Table 2. Other components, such as the
center of the series, were mostly not attended to by the participant groups.

The dynamic partial sum image was one of the most often used images of both groups and
was common amongst all individually interviewed participants in response to different types of
approximation questions. Of analysis and calculus students, 61% and 42%, respectively,
selected a dynamic partial sum image for convergence on the questionnaire. For approximation
tasks, Taylor polynomials were conceived through a process that involved operating with terms
to construct a desired polynomial by iteratively adding terms until some condition was
achieved. Frequently, the dynamic partial sum image was embodied in chopping motion
gestures where every “chop” suggested another term being added to a Taylor polynomial.

Expert Wallace: Estimating sine by using its Taylor series can be uh, with the
particular parts [holds both hands up as if holding something between] that we take
from Taylor series expansion. For example [now moves right hand away from left
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hand by making chopping motions], first two terms, first three terms, first four terms,
and we can look at the estimation by going that way.

In contrast to the dynamic partial sum image, for the particular x image, terms and
polynomials were not conceived merely as formulas, but as formulas evaluated at a certain
point, indicated by 38% of calculus and 36% of analysis students. In explaining the meaning
of the equality, Expert Dylan initially attended to the action of substituting 37 rad:

If you want the cosine of uh, 37, or whatever, measured in radians, all you have to do
is plug that number into the formula on the right and take it out sufficiently far and you
will get an actual decimal approximation for that number.

By being able to operate with this particular value, Dylan indicated that he had conceived
of the independent variable as an object. His focus was on what happened to the values of
the Taylor polynomials evaluated at a particular value during the process of “taking” the

Table 2 Common structural images observed between groups

Layer 1 Layer 2

Image Description Structural component Operational component

Dynamic partial sum Focus on a single polynomial.
Convergence conceived
through the action of
successively adding
terms to a Taylor polynomial.

Terms Taylor polynomials,
and/or limit of Taylor
polynomials (Taylor
series)

Particular x Focus on a single value for
the independent variable.
Convergence conceived
through the action of
substituting specific values
for x, and not on convergence
over an interval.

Independent variable Taylor polynomials,
and/or limit of Taylor
polynomials (Taylor
series)

Sequence of partial
sums

Focus on the sequence of
Taylor polynomials.
Convergence conceived
through a limit process of
polynomials approaching a
function.

Taylor polynomials Limit of a sequence of
polynomials

Remainder Focus on the difference
between Taylor polynomials
and approximated function.
Convergence conceived
through a limit process
of remainders approaching zero.

Taylor polynomials
and generating
functions

Limit of a sequence of
remainders

Remainder as Taila Focus on the “tail” of the
expanded Taylor series.
Convergence conceived
through a limit process
of tail approaching zero.

Expanded Taylor
series, Taylor
polynomials,
and tail

Limit of the tail

Termwisea Focus on Taylor series terms.
Convergence justified by
terms approaching zero.

Terms Limit of the terms

a Only appeared in the student group
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Taylor polynomial “out.” Others might coordinate particular values for x with the entirety of
the series.

The least selected image on the student questionnaire, with only 34% of all students
indicating, was the sequence of partial sums image. In contrast, experts frequently demon-
strated this image in conjunction with the formal definition of series convergence as the limit
of partial sums. While responding to what it meant for Taylor series to converge, Expert
Dean’s focus moved to the sequence structure of convergence, and stated that “for a series to
converge, it means for a sequence of partial sums to converge.” To reiterate, he then noted,
“that’s the definition of convergence of series.”

Expert Marshal noted that one of the steps for proving that sine’s Maclaurin series is
equal to sine involved “looking at the difference between what you think it converges to and
the nth partial sum and then showing that that error goes to zero.” Indicating this remainder
image were 40% of calculus and 50% of analysis students. Not seen in the expert group, one
interviewed student focused heavily on the remainder as the “trailing terms” in the expanded
series. This image materialized when Jordan incorrectly viewed the limit of the “tail”
equaling zero as a sufficient condition for Taylor series convergence to a given function.
He viewed the Taylor series as an “infinite polynomial” that he could “cut” at any place and
produce a polynomial that he could “pick up” and use and a “tail” that “had value” that
became closer to zero for larger polynomials. His actions on the expanded series and the
Taylor polynomial, and his conception of the tail as having value suggests that he had
conceived of these as objects. On the questionnaire, 56% of all students indicated “tail”
convergence to zero sufficed to justify Taylor series convergence to a given function.

While all experts quickly recalled the harmonic series to disprove a termwise conception
of convergence, few students ever alluded to the harmonic series as a counterexample.
Perhaps the most noticeable difference between the expert and student groups was in the
high affirmation of the termwise image by the students. As the most selected image on the
questionnaire, 58% of calculus and 61% of analysis students indicated that termwise
convergence to zero was a valid sufficient condition for determining series convergence.
Even though, none of the interviewed students indicated a termwise conception on their
questionnaire, during interviews one student stated, “So each figure [term] gets smaller and
smaller and smaller and is adding less and less and less until it’s basically adding almost
nothing… That’s what I think convergence is.”

3.1 Graphical images

At multiple instances throughout the interviews, experts sketched Taylor polynomial/series
graphs to help better explain their reasoning. There was never any indication of experts
struggling to produce accurate graphs. In the questionnaire, students were asked to graph
Taylor polynomials for sine, given the graph of sin x (Question 5 in the Appendix). Of those
students who attempted this task, approximately 30% (21 students) produced graphs of
polynomials whose approximations to sin x became progressively more accurate toward an
implied center and 60 students (over 45%) did not even attempt this problem. When asked to
graph the Taylor series given the graph of sin x (Question 6 in the Appendix), of those
students attempting the task, only 36% (20 students) produced graphs that resembled tracing
over sine and 75 students (over 57%) did not even attempt this problem. Common incorrect
solutions included polynomials that approximated sin x well over a finite interval, or they
simply repeated a version of their incorrect response to Question 5.

For Question 5, Student Philip produced two very accurate graphs of cubic and quintic
Taylor polynomials. In response to being asked to graph the Taylor series for sine, Philip

Experts’ and students’ conceptions of Taylor series convergence 275



graphed four approximating polynomials (Fig. 2). From the graph it was unclear if he
viewed the Taylor series as the completion of all the Taylor polynomials, or if he viewed
the series as the set of all polynomials. The interviewer drew three individual Taylor
polynomials of different orders on separate axes. Philip indicated the series as the collection
of all polynomials that were built up in the progression of the graphs. “If you’re calling it a
series, then it’s all [sweeps his right hand from left to right over the graphs] of the different
ones.” His conception is consistent with the sequence of partial sums image with poly-
nomials viewed as objects, but the result of convergence was the sequence of Taylor
polynomials and not a function.

3.2 Differences in problem solving behaviors: Layer 3

Table 3 reveals that the remainder and partial sum structures were heavily relied on by the
expert group, while the sequence of partial sums was the least relied upon image. Using
Carlson and Bloom’s framework, these structural images can be viewed as resources
available to the individual. In this section, the focus is on when images were accessed and
why they may have been accessed by identifying indicators of problem solving behaviors,
most notably appearing were the behaviors of clarifying ideas and incorporating into
strategies.

For a closer analysis, consider the case of Expert Dean who relied upon a particular x to
clarify his meaning of convergence. He used particular x as a means to relate Taylor series
convergence to series convergence, and then he eventually related series convergence to
sequential convergence.

If you just write the series for any x whatsoever it just, it’s a function, but for a
particular x it becomes a series which has entries real numbers and then the question
can become whether the sum actually makes sense in the sense of whether it’s a real
number or not. If it’s a real number then it’s, the series converges. Um, but of course
convergent, convergence of a sequence is another matter, but we’re not talking about
that here. I guess I could say, for a series to converge it means for a sequence of partial
sums to converge.

Fig. 2 Student Philip’s graph of Taylor series
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Expert Dean’s response illustrates how experts connected Taylor series convergence to
other conceptions, such as sequential convergence, and that they were able to draw upon
these connections when talking about Taylor series convergence. The two experts that did
not connect Taylor series convergence to convergence of sequences in this context, evoked
images of remainder.

Dean did not continue to incorporate his particular x image in response to Tasks 5 and 6.
While addressing these tasks about proving Taylor series convergence to sin x, as if by
default, all experts responded with a remainder image. In these cases it was a part of a
strategy that typically involved 1) using a formula to find the terms of the Taylor poly-
nomials and 2) showing the difference between the Taylor polynomials and the function
converges to zero. Dean indicated that he understood that Taylor’s inequality yielded a
“sequence of upper bounds” for remainders. He also understood, together with the sandwich
theorem, that demonstrating that the upper bounds converged to zero sufficed to show that
the polynomials converged to the generating function.

References to the remainder or bounding the remainder persisted in expert images as they
moved through Tasks 7–9. In response to these tasks concerning the approximation proper-
ties of Taylor series, all but one expert alluded to a given error bound as an initial part of a
strategy for approximation. For Dean this bound on the error appeared as “level of precision”
in the following: “So if you’re given a level of precision, from Taylor inequality you can
estimate which power of the Taylor polynomial you need and then you can calculate that
Taylor polynomial at the value you need.”

Finally in Task 10, adding more terms to a Taylor polynomial typified all expert
responses to, “How can we get a better approximation for sine than using x−x3/3!?”

Table 4 reveals that students tended to access partial sum and particular x images as
resources during interview tasks. Like the experts, all students utilized a partial sum image in
response to Task 10, but unlike the experts, only four of eight students accessed a remainder

Table 3 Tallies of experts attending to structures related to structural images

Structure Interview tasks

1 & 2 3 & 4 5 & 6 7 8 & 9 10

Particular x 1 6 1 5 3 2

Partial sum 3 7 7 6 4 7

Sequence 0 6 2 0 0 1

Remainder 2 2 7 7 7 5

Table 4 Tallies of students attending to structures related to structural images

Structure Interview tasks

1 & 2 3 & 4 5 & 6 7 8 & 9 10

Particular x 1 4 2 5 4 1

Partial sum 1 4 4 7 8 8

Sequence 0 1 0 0 0 0

Remainder 0 2 4 5 2 0

Terms to 0 0 1 0 0 0 0
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image in response to Tasks 5 and 6. In fact, a closer look at the data revealed that three
students never referenced a remainder image while responding to any task. Noticeably
missing from all but one student was a sequence of partial sums image even though three
students indicated a sequence of partial sums image on their questionnaire.

For a closer analysis, consider the cases of Student Andy and Student Dave. Like Expert
Dean, Andy used his particular x image to clarify his understanding and as a part of a
strategy. In response to Task 3, Andy immediately referred to substituting in values for x, but
unlike the experts, Andy did not link Taylor series convergence to sequential convergence.
Instead he concluded that the function is “just basically the limit of the series.” When asked
to elaborate on what he meant by his reference to “limit,” he reverted to talking about
convergence in the context of a function approaching a horizontal asymptote. Likewise,
Dave did not allude to sequential convergence in Task 3, but instead framed his response in
infinitesimal language of the series being within “10-∞” of cos x.

Both Student Andy and Student Dave, included particular x as a part of a strategy to prove
Taylor series convergence, whereas no expert included this image in their strategy. Andy
initially stated that “this function, the answer if you plug in a certain number, show that that
equals the series.” Although he alluded to Taylor polynomials becoming closer and differ-
ences between polynomials as decreasing as the index increased, he never directly
referenced the sufficiency of remainder convergence to zero for proving series convergence.
In contrast, Dave did not allude to any remainder formula but only to a vague notion of
finding ways to show that things are “very close.” In total, three students included a
particular x image as a part of a strategy to prove convergence, four students alluded to
remainder, two of those four alluded to the sufficiency of the remainder converging to zero
for series convergence, and only one had a strategy resembling that of the experts.

In response to Tasks 7–9, Andy persisted in substituting in values for x to talk about
Taylor series in the context of approximations. Even so, Andy was not evoking any formal
pointwise conception of convergence because approximations were not dependent upon a
given error bound but were simply made accurate by adding more terms to partial sums. This
description also characterized three other students, including Dave. The remaining four
students, three of which were the three analysis students, expressed a need for a given
bound on the error.

Excluding the termwise image, this analysis showed that, to various degrees, both the
interviewed expert and the student groups accessed all of the structural images as resources
and used images to clarify ideas or incorporate into strategies. Even so, questions that
prompted images and how particular images were used were very different between the
groups. Experts tended to use their various images of Taylor series convergence in meaning-
ful ways that allowed them to clarify their understanding and present appropriate strategies
for addressing tasks. This appeared most prevalent when they explained their understanding
of convergence and when they engaged in an explanation for proving Taylor series conver-
gence. For the former, experts tended to connect their understanding to Taylor series
convergence, to series convergence, and then to sequence convergence. For the later, all
experts produced a strategy that involved demonstrating remainder convergence to zero as a
sufficient condition for series convergence. In contrast, most students lacked the control that
experts had when reasoning about Taylor series convergence. For example, Student Andy
used an image and continued to use that image in response to almost all tasks even though that
image was not directly appropriate for all tasks.

Per participant, experts averaged 13.3 and students averaged 10.4 instances of focusing
on these structural images during interview questions, including follow-up questions. For
some tasks, students “drew a blank” and were not be able to make progress, and other times,
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student responses were based on informal “approaching” type language without details
specific to Taylor series. Furthermore, when experts evoked an image while responding to
a question, 52.7% of the time the expert would also evoke an additional image in response to
the same question. In contrast, students used multiple images in only 30.1% of the instances
where they had already evoked an image in response to the same question.

4 Conclusions and discussion

This paper presented an exploratory study designed to reveal different ways in which experts
and students conceptualized Taylor series convergence by identifying and categorizing
particular reasoning patterns. In particular, two main research questions were posed:

1. What are some different ways that spontaneously emerge in which experts and students
conceptualize Taylor series convergence relative to the underlying mathematical structure
and operations performed on that structure?
2. In what ways do experts and students use these conceptions of convergence and how
might these conceptions aid or hinder individuals in basic proof and estimation tasks
concerning Taylor series convergence?

This study adapted Sfard’s (1991, 1992) operational and structural notions of duality to
introduce the idea of describing concept images of Taylor series convergence in terms of
focus on underlying structural components of Taylor series and operations performed on
those components. Together, the structural components and the operations constituted what I
called structural images. In addition, to unveil how experts and students were using these
structural images, this study introduced Carlson and Bloom’s (2005) problem solving
framework coordinated with the observed structural images. These frameworks, merged as
one (see Fig. 1), revealed differences between experts’ and students’ conceptions and how
these conceptions were used.

4.1 Expert and student reasoning using structural images

Structural images that emerged were identified as particular x, dynamic partial sum, se-
quence of partial sum, remainder, remainder as tail, and termwise (see Table 2). Indicators of
most of these images have appeared in other literature (e.g., Kidron, 2002, 2004), but the
operational and structural components have not been detailed for all of these images.
Depending on the structural image, different structural components were conceived as
objects with which to be operated. Movements between images (indicated by Layer 3) at
one moment, had participants conceiving of a particular component of a structure being
formed by a process and in the next moment, conceived as an object. For example, Taylor
polynomials created through a process in the dynamic partial sum image were conceived as
objects in a sequence of partial sums image. Furthermore, many of these images appeared
formulaically driven, especially for students. In the dynamic partial sum image where terms
were progressively added to a Taylor polynomial formula, the terms as formulas were
operated on like “object-like entities” (Sfard, 1992, p. 60). Likewise, for Student Jordan,
he performed the operation of “cutting” on an expanded Taylor series formula and then
“picked up” the Taylor polynomial formula.

Student inability to draw graphs further supports the conclusion that student conceptions
of terms and Taylor polynomials may be mostly formulaic. Hence, an image like the
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dynamic partial sum image may be much more akin to a frequently used algorithm than an
indicator of some deep understanding of convergence. This would be consistent with Ferrini-
Mundy & Graham’s (1994) findings of calculus students failing to connect graphical and
algebraic representations in other limit contexts. Additionally, the dynamic partial sum
image also suggests a process view of limit that can contribute to an unreachable conception
(Davis & Vinner, 1986; Kidron, 2002; Williams, 1991) which could explain why students
who had not experienced Kidron’s dynamic graphs were unable to draw Taylor series graphs
even when given the graph of the generating function.

The third layer of analysis demonstrated experts as systematic in their use of sequence of
partial sum and remainder structural images in response to clarifying convergence and
incorporating into strategies for proof tasks. Their ability to focus their attention on appro-
priate problem features is further supported when considering how experts switched to using
a remainder image when addressing proof tasks, no matter what image they had been
previously using. In contrast, most students were not reasoning with the systematicity seen
in the expert group. Individual students fixated on certain structural images across multiple
tasks and used that image in ways no expert did. For example, students used particular x as a
part of a proof strategy. Idiosyncratic variations of images, such as series as “all” partial
sums, also demonstrated lack of systematicity within the student group. Furthermore, the
observed disconnect between the harmonic series and its implications on convergence
indicated a lack of connection to theory which may have contributed to the students’
termwise conception as one of the most selected images in the questionnaire. All of these
findings are consistent with prior expert/novice literature (e.g., Carlson & Bloom, 2005;
Hiebert & Carpenter, 1992; Lester, 1994).

Students’ high usage of the dynamic partial sum, particular x (during interviews), and
termwise (on the questionnaire) structural images suggests students’ comfort with using
these structures as one would use a “surface level” feature (Chi et al., 1981; Kozma &
Russel, 1997). These images of Taylor series convergence can be viewed as “surface level”
in the sense that the objects they reference, the independent variable and term, are readily
available in any expanded Taylor series formula. Even Student Jordan’s remainder as “tail”
image was oriented toward an expanded Taylor polynomial formula that does not necessarily
need to involve the coordination with the approximated function. The high percentage of
students’ selections of the remainder as “tail” supports the likelihood of this image as a
surface level feature. In contrast, the remainder and sequence of partial sums structural
images can be viewed as “deeper” since these images involve the coordination of poly-
nomials with the approximated function, or a set of Taylor polynomials. The low percentage
of students’ selections of these images supports the likelihood of these images as “deeper”
images that are less accessible for students.

The students’ use of “surface level” structures, their fixations on images, their
inflexibility to move between images at appropriate times, and their use of formulas that
are disconnected from graphs are all symptoms of pseudostructural reasoning (Sfard,
1991, 1992; Sfard & Linchevski, 1994; Zandieh, 2000). For many students their concept
image may not be much more than what was evoked as some students never evoked
certain images during any task. Therefore, student conceptions of convergence may be
truly pseudostructural and thus, be incomplete and ill-connected (diSessa, 1988; Kozma
& Russel, 1997). These types of pseudostructural reasoning by the students could hinder
their ability to reason rigorously about Taylor series convergence and contribute to the
confusion observed by Alcock and Kung and Speer (2010). Although pseudostructural
reasoning can contribute to confusion, it should not exclusively be viewed in the
negative (Zandieh, 2000). Just by using structural images, by focusing on particular
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components and not attending to all the details of Taylor series convergence, experts
demonstrated a type of pseudostructural reasoning that allowed them to manage tasks
without having to continually coordinate all aspects of convergence. Pseudostructural
reasoning can allow someone like Student Philip to produce Taylor polynomial graphs
very quickly based more on correct notions of proximity and shape than on meticulously
coordinating the roles of x and y for each polynomial.

4.2 Limitations and questions

Because of the relative ease of the tasks, participants, especially experts, did not move
much beyond the planning or executing phases as described in Carlson and Bloom (2005).
Yet these tasks still revealed notable differences between experts and students, and student
struggles suggest that for some students these tasks were not so easy. Additionally, this
study focused on those evoked images that were related to the underlying mathematical
structure of Taylor series convergence. This does not mean that there cannot be other
elements of concept images related to Taylor series convergence that are not directly
related to the underlying mathematical structure, such as images based on metaphorical
reasoning (Martin & Oehrtman, 2010). Furthermore, some structures specific to Taylor
series, such as the role of the center, were not accounted for by the current set of
participants. This does not mean that a different group would not demonstrate a different
focus. Fortunately, the first layer of the framework would account for different structures
that emerged.

The results and limitations from this exploratory study suggest several questions. How
are these structural images used when engaging in more complicated problem solving
activities and to what extent do these images aid or hinder progress? Kidron (2002, 2004)
and Kidron and Zehavi (2002) have already demonstrated how a CAS may be used to
develop students’ understandings and demonstrated the importance of connecting algebraic
representation to graphical interpretations during the learning process. How else might these
structural images develop and in what ways are notions of Taylor series convergence
assimilated into previous knowledge schemas, such as limit or function schemas? These
questions can be addressed with well designed studies that have students engaged in more
problem solving activities, that closely follow students through the learning process of
calculus topics leading up to and including Taylor series, and that have students consistently
use and interpret power series graphs.

4.3 Conclusion

Taylor and power series are topics that have only recently come into the scrutiny of
mathematics education research. This type of framework can be used to take note of
what a student understands and how he/she uses such understandings about power
series convergence on a component-by-component basis. It is also conceivable that
adaptations to this framework could be beneficial for identifying relevant structural
images and how these images are used in other mathematical notions involving multiple
concept interactions.

This study indicates that the gap between expert and novice reasoning in the case of
Taylor series convergence exists primarily in graphical depictions and proper selection and
use of structural images, in particular non-surface level images. By better comprehending
what constitutes the gap between expert and students, we can design curriculum to help
make explicit those things that are a hallmark of expertise but students tend to miss.

Experts’ and students’ conceptions of Taylor series convergence 281



Acknowledgments The author would like to thank those who had valuable input during the data collection,
analysis, and/or production of this article. Including Teri Jo Murphy, Michael Oehrtman, Donna Foss, Craig
Swinyard, and everyone in the Calculus Research Group.

References

Alcock, L., & Simpson, A. (2004). Convergence of sequences and series: Interactions between visual
reasoning and the learner’s beliefs about their own role. Educational Studies in Mathematics, 57(1), 1–32.

Alcock, L., & Simpson, A. (2005). Convergence of sequences and series 2: Interactions between nonvisual
reasoning and the learners beliefs about their own role. Educational Studies in Mathematics, 58(1), 77–
100.

Bartle, R., & Sherbert, D. (2000). Introduction to real analysis (3rd ed.). New York: John Wiley & Sons, Inc.
Bezuidenhout, J. (2001). Limits and continuity: Some conceptions of first-year students. International Journal

of Mathematical Education in Science and Technology, 32(4), 487–500.
Breidenbach, D., Dubinsky, E., Hawkes, J., & Nichols, D. (1992). Development of the process conception of

function. Educational Studies in Mathematics, 23, 247–285.
Burden, R., & Faires, J. (2005). Numerical analysis. Belmont: Thomson Books/Cole.
Carlson, M., & Bloom, I. (2005). The cyclic nature of problem solving: An emergent multidimensional

problem-solving framework. Educational Studies in Mathematics, 58, 45–75.
Chi, M., Feltovich, P., & Glaser, R. (1981). Categorization and representation of physics problems by experts

and novices. Cognitive Science, 5(2), 121–152.
Davis, R., & Vinner, S. (1986). The notion of limit: Some seemingly unavoidable misconception stages. The

Journal of Mathematical Behavior, 5(3), 281–303.
diSessa, A. (1988). Knowledge in pieces. In G. Forman & P. Pufall (Eds.), Constructivism in the computer age

(pp. 49–70). Hillsdale: Erlbaum.
Ferrini-Mundy, J., & Graham, K. (1994). Research in calculus learning: Understanding of limits, derivatives,

and integrals. In J. Kaput & E. Dubinsky (Eds.), Research issues in undergraduate mathematics learning:
Preliminary analyses and results (pp. 29–45). Washington, DC: The Mathematical Association of
America.

Goldin, G. (2000). A scientific perspective on structured, task-based interviews in mathematics education
research. In A. Kelly & R. Lesh (Eds.), Research design in mathematics and science education (pp. 517–
545). Mahwah: Lawrence Erlbaum Associates.

Gray, E., & Tall, D. (1994). Duality, ambiguity, and flexibility: A “proceptual” view of simple arithmetic.
Journal for Research in Mathematics Education, 25(2), 116–140.

Hass, J., Weir, M., & Thomas, G. (2007). University calculus. Cambridge: MIT Press.
Hiebert, J., & Carpenter, T. (1992). Learning and teaching with understanding. In D. Grouws (Ed.), Handbook

of research on mathematics teaching and learning (pp. 65–97). New York: Macmillan.
Kidron, I. (2002). Concept definition, concept image, and the notion of infinite sum in old and new environ-

ments. In A. D. Cockburn & E. Nardi (Eds.), Proceedings of the 26th International Conference on the
Psychology of Mathematics Education, Vol. 3 (pp. 209–216). Norwich, UK: University of East Anglia.

Kidron, I. (2004). Polynomial approximation of functions: Historical perspective and new tools. International
Journal of Computers for Mathematical Learning, 8, 299–331.

Kidron, I., & Zehavi, N. (2002). The role of animation in teaching the limit concept. International Journal of
Computer Algebra in Mathematics Education, 9(3), 205–227.

Kozma, R., & Russell, J. (1997). Multimedia and understanding: Expert and novice responses to different
representations of chemical phenomena. Journal of Research in Science Teaching, 34(9), 949–968.

Kung, D., & Speer, N. (2010). Do they really get it? Evaluating evidence of student understanding of power
series. In Proceedings of the Thirteenth Conference on Research in Undergraduate Mathematics Educa-
tion, Raleigh, NC: North Carolina State University.

Larkin, J., McDermott, J., Simon, D., & Simon, H. (1980). Expert and novice performance in solving physics
problems. Science, 208(4450), 1335–1342.

Lester, F. K., Jr. (1994). Musings about mathematical problem-solving research: 1970–1994. Journal for
Research in Mathematics Education, 25(6), 660–675.

Mamona-Downs, J. (2001). Letting the intuitive bear on the formal: A didactical approach for the under-
standing of the limit of a sequence. Educational Studies in Mathematics, 48(2/3), 259–288.

Martin, J., & Oehrtman, M. (2010). Strong metaphors for the concept of convergence of Taylor series. In
Proceedings of the Thirteenth Conference on Research in Undergraduate Mathematics Education,
Raleigh, NC: North Carolina State University.

282 J. Martin



Monaghan, J. (1991). Problems with the language of limits. For the Learning of Mathematics, 11(3), 20–24.
Oehrtman, M. (2009). Collapsing dimensions, physical limitations, and other student metaphors for limit

concepts. Journal for Research in Mathematics Education, 40(4), 396–426.
Sfard, A. (1991). On the dual nature of mathematical conceptions: Reflections on processes and objects as

different sides of the same coin. Educational Studies in Mathematics, 22(1), 1–36.
Sfard, A. (1992). Operational origins of mathematical objects and the quandary of reification-The case of

function. In G. Harel & E. Dubinsky (Eds.), The concept of function: Aspects of Epistemology and
Pedagogy MAA Notes (Vol. 25, pp. 59–84). Washington, DC: Mathematical Association of America.

Sfard, A. (2001). There is more to discourse than meets the ears: Looking at thinking as communicating to
learn more about mathematical learning. Educational Studies in Mathematics, 46, 13–57.

Sfard, A., & Linchevski, L. (1994). The gains and the pitfalls of reification: The case of algebra. Educational
Studies in Mathematics, 26(2/3), 191–228.

Stewart, J. (2008). Calculus (6th ed.). Belmont: Brooks/Cole.
Strauss, A., & Corbin, J. (1990). Basics of qualitative research: Grounded theory procedures and techniques.

Newbury Park: Sage Publications.
Tall, D., & Vinner, S. (1981). Concept image and concept definition in mathematics with particular reference

to limits and continuity. Educational Studies in Mathematics, 12(2), 151–169.
Williams, S. (1991). Models of limit held by college calculus students. Journal for Research in Mathematics

Education, 22(3), 219–236.
Zandieh, M. (2000). A theoretical framework for analyzing student understanding of the concept of derivative.

Research in Collegiate Mathematics Education IV, 8, 103–126.

Experts’ and students’ conceptions of Taylor series convergence 283


	Differences between experts’ and students’ conceptual images of the mathematical structure of Taylor series convergence
	Abstract
	Background
	Operational verses structural understandings
	Power series
	Expertise

	Framework & methods
	The emergent framework
	Method
	Analysis

	Results
	Graphical images
	Differences in problem solving behaviors: Layer 3

	Conclusions and discussion
	Expert and student reasoning using structural images
	Limitations and questions
	Conclusion

	References


