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Abstract In this paper, we examine sixth grade students’ degree of conceptualization of
fractions. A specially developed test aimed to measure students’ understanding of fractions
along the three stages proposed by Sfard (1991) was administered to 321 sixth grade
students. The Rasch model was applied to specify the reliability of the test across the
sample and cluster analysis to locate groups by facility level. The analysis revealed six such
levels. The characteristics of each level were specified according to Sfard’s framework and
the results of the fraction test. Based on our findings, we draw implications for the learning
and teaching of fractions and provide suggestions for future research.
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1 Introduction

In order to understand how students learn new mathematical ideas, two distinct, though closely
interrelated approaches have been identified: procedural and conceptual. Several researchers (e.g.
Dubinsky, 1991; Gray & Tall, 1994; Sfard, 1991) have suggested that in concept formation
procedural understanding precedes conceptual. The concept construction occurs through
concrete situations, procedures and processes and moves on towards the abstraction of
mathematical concepts, to understanding of symbols and mental concepts. This development
has been described as: action–process–object (Dubinsky, 1991), procedure–process–procept
(Gray & Tall, 1994), and interiorization–condensation–reification (Sfard, 1991).

Sfard proposed a scheme of three stages of conceptualization or “structuralization”,
describing the characteristics that students exhibit at each stage in terms of behaviors and
skills. Some researchers used this scheme to investigate students’ construction of
knowledge in algebra (Goodson-Espy, 1998) or the fraction duality as process and object
(Herman, Ilucova, Kremsova et al., 2004).
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Based on theoretical and empirical evidence (Sfard, 1991; Gray & Tall, 1994; Kerslake,
1986), the present study accepts that procedural understanding precedes conceptual
understanding. It also assumes that full development of a concept is only achieved when
a student possesses both conceptual and procedural understanding of the concept. To
investigate these views, the study examined students’ understanding of fractions using the
three stages described by Sfard (1991). The choice of fractions was motivated by the fact
that many students fail to understand them conceptually, remaining at the procedural,
superficial knowledge level (English & Halford, 1995).

An integration of the research concerning student’s conceptualizing of fractions and
Sfard’s theoretical framework will contribute to deeper understanding of students’ way of
developing fraction knowledge. The results of the study will inform teachers and facilitate
them in sequencing related topics of instruction (Noelting, 1983).

The rest of this paper is organized in four sections. In the next section, we summarize the
theoretical background and define the research questions. In the third section, we describe the
methods and in the fourth one, we present the findings of the study. Last, in the concluding
section, we discuss the findings and draw implications with regard to theory and practice.

2 Theoretical framework

2.1 Concept formation

Researchers asserted that learners acquire new mathematical ideas in variable ways, mainly
procedurally/operationally or conceptually/structurally (Dubinsky, 1991; Gray & Tall, 1994;
Sfard, 1991). Learners proceed through these two ways of learning to enhance their
mathematical knowledge. Mathematical knowledge is defined in this study as “an
individual’s tendency to respond, in a social context, to a perceived problem situation by
constructing, re-constructing, and organizing, in her or his mind, mathematical processes
and objects with which to deal with the situation” (Cottrill, Dubinsky, Nichols,
Schwingendorf, Thomas, & Vidakovic, 1996, p. 171). Procedural knowledge or operational
conception refers to processes, algorithms and actions, or to processes of actions (Sfard,
1991; Hiebert & Lefevre, 1986). Conceptual knowledge is defined as the knowledge loaded
in relationships (Hiebert & Lefevre, 1986; Hallett, Nunes, & Bryant, 2010). Sfard described
conceptual knowledge as structural conception that treats a mathematical notion as an
abstract object, as a static structure.

These two distinct types of knowledge lead to different results in terms of mathematical
performance. Even though both the procedural and conceptual approaches can be efficient
in problem solving, and regardless of which of the two types of learning comes first in the
acquisition of a mathematical idea, researchers (Charles & Nason, 2001; Sfard, 1991; Gray
& Tall, 1994) suggest that learners who rely on conceptual knowledge may have an
advantage over those who develop only the procedural knowledge. Learners relying on
conceptual knowledge develop sophisticated mathematical thinking, while those who rely
on procedural knowledge face difficulties in handling complicated conceptual structures.
Procedural learning, although indispensable in mathematics, can only be stored in
“unstructured, sequential cognitive schemata” which cannot be easily processed and
therefore may lead to insufficient understanding and mere completion of routine
mathematical tasks. Conversely, conceptual understanding includes “static, object-like
representations”, which compress the operational information into a whole, and develops
cognitive schemata into more convenient structures (Sfard, 1991, p. 26). These compact
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abstract entities encompass mathematical ideas procedurally and conceptually, providing the
learner with higher-order thinking and proficient knowledge (Gray & Tall, 1994).

While research is more consistent as to the importance of conceptual understanding, a
discussion is still going on, concerning which of the two approaches precedes the other in
students’ learning of a mathematical notion (Byrnes & Wasik, 1991; Rittle-Johnson et al.,
2001). Hallett et al. (2010) have argued that children may possess some mix of conceptual
and procedural knowledge and that there exist individual differences in the way of
combining these two approaches. However, research seems to be inclined that students
perform best in mathematics when they acquire both conceptual and procedural
understanding of a mathematical notion (Sfard, 1991; Hallett et al., 2010).

Researchers viewing that in the concept formation procedural/operational understanding
precedes the conceptual/structural one, developed frameworks describing the process of
concept formation (Dubinsky, 1991; Gray & Tall, 1994; Sfard, 1991). The main core in
these frameworks is essentially similar and can be related to Piaget’s notion of “reflective
abstraction”, in which actions on known objects become interiorized as processes and then
encapsulated as mental objects of thought (Pegg & Tall, 2005).

The framework of Sfard (1991) differs from the others in a major way: even though she
recognized the ontological gap between operational and structural conceptualization, she
underlined the complementary nature of the two faces of learning, supporting the dual
nature of mathematical constructs. In this framework, it seems that the ability of a learner to
develop a mathematical concept is a gradual progress leading to reified objects whose
structure gives a conceptual growth focusing on the properties of the objects. Sfard (1991)
distinguished three hierarchical stages, which correspond to three degrees of structuraliza-
tion. At the interiorization stage, the learner becomes accustomed to the processes
performed on lower-level mathematical objects and gradually develops competence to
perform these processes. This competence allows the learner to interiorize the process, that
is to think of a process without actually carrying it out.

At the condensation stage, the learner becomes capable of thinking about a complicated
process as a condensed whole, without feeling an urge to go into details. During this stage,
the learner gradually becomes capable of compressing lengthy sequences of operations into
more manageable elements in a form that it is easier for him/her to use and think; he or she
deals with alternative forms and representations of the concept, combines processes, and
makes comparisons and generalizations.

Finally, at the reification stage, the learner becomes able to conceive of a concept as a
“fully-fledged object” (Sfard, 1991, p.19); the various representations of the concept are
integrated in the learner’s reified construct so that the construct no longer depends upon any
process. The learner perceives the construct by understanding the conceptual category in
which it belongs and its main properties and he/she notices relations between its
representatives. The reified concept can be used as an input in higher-order processes,
while new mathematical objects can be constructed out of the present one.

2.2 Fractions

A factor contributing to students’ difficulties in learning fraction refers to its multifaceted
construct (Behr, Harel, Post, & Lesh, 1992; Kieren, 1993; Lamon, 1999). In this respect,
five subconstructs have been identified: part–whole, ratio, quotient, measure, and operator.
For instance, the fraction 3/4 can be conceived as a part of a whole (three out of four equal
parts), as a quotient (three divided by four), an operator (three quarters of a quantity), a ratio
(three parts to four parts), and finally as measure (as a point on a number line).
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In this study, we focus on two of these subconstructs, as grounds to examine students’ level
of conceptualization, namely the part–whole and the measure, together with the notions of
equivalence, comparison and addition of fractions. The choice of these two subconstructs was
based on research (Charalambous & Pitta-Pantazi, 2007; Hannula, 2003; Ni, 2001) revealing
consistently that students’ performance on tasks measuring the part–whole subconstruct was
higher than their performance on tasks measuring the other subconstructs; on the other hand,
students’ performance on tasks related to the measure subconstruct was the lowest. In
addition, in Kieren’s theoretical model of the fraction concept the part–whole subconstruct is
considered fundamental for developing understanding of the other four subconstructs. In this
model, the measurement subconstruct is considered necessary for developing proficiency in
additive operations on fractions (Charalambous & Pitta-Pantazi, 2007).

The choice of the equivalence and comparison of fractions was based on research (e.g.
Behr et al., 1992; Ni, 2001) suggesting the importance of order and equivalence to the
understanding of a fraction as an entity (a single number). The use of fraction addition items
was used to investigate students’ approaches in solving fraction addition activities classified
as procedural (Kerslake, 1986) or conceptual (Byrnes & Wasik, 1991). Moreover fraction
addition assesses students’ ability to conceive the fraction as both a process (3/4) in an
isolated context, and a fraction in process (3/4+1/6; Herman et al., 2004). In the specific
social context in which the study was conducted, the fraction as part-whole subconstruct
dominates mathematics textbooks and instruction, while the measurement subcontract
appears less frequently. The other three subcontracts are not taught in a uniform way in this
social context. Equivalence, comparison and addition of fractions are emphasized in the
mathematics textbooks for grades 5 and 6.

2.2.1 The part–whole subconstruct and the measure subconstruct

The notion of fraction is frequently introduced via the part–whole subconstruct, which
requires an ability to partition a continuous quantity or a set of discrete objects into equal-
sized parts or subsets (Lamon, 1999). Several progressive activities have been suggested to
help students master the part–whole subconstruct. Students have to recognize when an area
or a set of models are divided in parts of equal size or not, they have to be able to proceed
with partitioning and unitizing, that is, to construct a fraction when a whole is given and to
conceive of a whole when a fraction is given. Students should realize that the relationship
between the parts and the whole is conserved, regardless of the size, shape and arrangement
of the equivalent parts and that the more parts the whole is divided into, the smaller the
produced parts become. Students are also expected to repartition the whole and reconstruct
the unit (Boulet, 1998). Research has shown that the part–whole subconstruct is quite easy
for young students. For instance, Charalambous and Pitta-Pantazi (2007) found that the
mean score for fifth and sixth grade Cypriot students in part–whole items was 75%.

On the other side, the measure subconstruct could be regarded as an indication of
convergence of several subconstructs (Hannula, 2003). In the measure subconstruct, a measure
is assigned to some interval on the number line (or region in the case of two dimensional
models), a unit fraction is defined and used repeatedly to determine a distance from a preset
starting point (Charalambous & Pitta-Pantazi, 2007). Lamon (1999) considered the following
three capabilities as an indication that students understand the measure subconstruct: (a)
perform partitions other than halving; (b) find any number of fractions between two given
fractions; and (c) use a given unit interval to measure any distance from the origin.

Several researchers have reported on students’ difficulties with the number line. For
instance, Hannula (2003) found that only 20% of the fifth graders could locate the
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fraction 3/4 on a number line marked with the interval 0–1. Students have more
difficulties when the unit measure is not equal to the denominator of the fraction, than
when it is equal to the denominator. The reason for students’ difficulties in these tasks
may be found in the two different representations involved (the symbolic and the iconic;
Charalambous & Pitta-Pantazi, 2007).

2.2.2 Fraction equivalence

Understanding of fraction equivalence constitutes one of the most important mathematical ideas
in the primary school and a major difficulty for students (Ni, 2001). This difficulty has been
ascribed to the multiplicative nature of the concept and also to the various subconstructs related
to the fraction concept. Specifically, the difficulty concerns two related aspects of operative
thinking, the multiplicative thinking and the conservation of the whole and the parts. According
to Kamii and Clark (1995) multiplicative thinking constitutes a hierarchical structure, for
example to think of 4×3 involves thinking on two hierarchical levels at the same time:
“one 3, two 3s, three 3s, four 3s”, and “four 3s” at once. Moreover, conservation of the
whole and the parts in the case of fraction equivalence refers to students’ ability to
think of the same part of a whole as being for example three-twelfths and one-fourth.

Parallel to this, Ni (2001) argued that students’ conception of the equivalence of
fractions depends on the subconstruct involved in the process; the part–whole subconstruct
is the easier since to perceive equivalence of two fractions in their regional area
embodiments, one can make the judgment with the aid of perceptual prompts. In addition,
English and Halford (1995) contended that equivalence of fractions represented in set
embodiments is not suitable for noticing fraction equivalence since an understanding of
equivalence is a prerequisite to identify equivalence of fractions. In this situation, the ratio
remains constant while the number of counters increases or decreases. Moreover, perceiving
equivalent fractions represented on a number line requires the conception of equivalence of
two quotients together with the recognition of the denseness and order of rational numbers
(Ni, 2001). In support of the above, Kamii and Clark (1995) found that only 44% of the
fifth graders were able to perform a task requiring multiplicative reasoning, and Ni (2001)
found that fifth and sixth grade students performed best on the area items, less well on set
items, and the poorest on the number line items.

2.2.3 Comparison of fractions

The comparison of fractions includes finding of the order relation between two fractions
(Arnon, Nesher, & Nirenburg, 1999). One of the key elements in comparing fractions is to
understand that the greater the number of parts into which the unit is partitioned, the smaller
the fraction size (English & Halford, 1995). To succeed in the ordering of fractions, children
need to conceive that among fractions with the same denominator, the larger the numerator,
the larger the fraction, (for example 2/4<3/4), while among fractions with same numerator,
the larger the denominator, the smaller the fraction, (for example 3/4>3/5; Nunes et al.
2004). The difficulty that students face with the comparison of fractions can be seen in
several studies. For instance, in the NAEP study (Kenney & Silver, 1997), only 12% of the
fourth graders could compare two fractions with the same numerator and justify their
answer, while only 30% of the eighth graders could order three fractions from the smallest
to the biggest. Likewise, in the TIMSS study (Christou, Papanastasiou, & Philippou, 2003)
only 25% of the Cypriot fourth graders could compare the fractions 1/3 and 1/4 and justify
their answers.
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2.2.4 Addition of fractions

Students’ difficulties with the concept of fraction extend also to fraction operations;
students may well apply the algorithm, but they lack any conceptual understanding and
have limited idea of the sensibleness of their action. One possible reason is the way
fractions are presented in many textbooks, through meaningless procedures (English &
Halford, 1995). Students may not get involved in forming connections between the
symbolic procedures and their manipulations with concrete analogs. This lack of conceptual
understanding makes students develop only procedural competence. A second cause may
be the prerequisites of this operation. Kieren’s theoretical model supports the view that the
notion of fraction as measurement is considered necessary for developing proficiency in
additive operations on fractions (Charalambous & Pitta-Pantazi 2007). Since the
measurement subconstruct is the most difficult for students to understand and it is rarely
met in mathematics textbooks (Delaney, Charalambous, Hsu, & Mesa, 2007), it may lead
students to limited understanding of the addition of fractions. In the study by Herman et al.
(2004), students could find the sum of two fractions applying routine procedures using
LCM but were unable to represent fraction addition.

2.2.5 Students’ development of the fraction concept

Structural operation and the action–process–object models (Sfard, 1991; Dubinsky, 1991)
indicated that the process conception precedes the object conception; “a process solidifies
into object, into a static structure” (Sfard, 1991, p.20). Similarly, other researchers (Charles
& Nason, 2001; Gray & Tall, 2007) agreed that the concept of fraction begins as a
procedural activity in which different procedures may produce different sized fractions
with the same quantity. The process of abstraction starts when students realize that
different sharing situations can end up in equivalent fractions, thus the attention shifts
from the sharing process to the outcome as an object, the fraction. In the same vein,
Kerslake (1986) reported that many children were able to add fractions correctly but they
were unable to explain the procedures they used, supporting the view that procedural
precedes conceptual understanding.

Contrary to these views, other studies suggested that conceptual understanding is
the basis of development and that procedural understanding is only a helpful means to
be applied after the acquisition of conceptual understanding. In Byrnes and Wasik
(1991) study, fourth and sixth graders were asked to answer questions assessing their
conceptual understanding and, in a second study, their procedural understanding.
Conceptual understanding was measured by the recognition of equivalent fractions and
ordering of fractions and procedural understanding by addition of fractions with
different denominators and multiplication of fractions. They found that to succeed in
fraction addition required students to apply the same type of knowledge as that used to
compare and order fractions using approaches other than the common denominator
procedure.

Hallett et al. (2010) suggested that in understanding fractions, students may use a mixed
approach of procedural and conceptual understanding according to their individual
differences, and that the two kinds of understanding may be viewed as separate, without
one necessarily leading to one another. In their study with fourth and fifth graders, they
found five distinct clusters of students as regards their success with procedural and
conceptual fraction problems. That means that students have relied on one or both types of
understanding and these differences may not be developmental. An important finding of
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this study was that students who possessed both conceptual and procedural understanding
outperformed the other students.

This finding is in line with Sfard’s belief that “certain mathematical notions should be
regarded as fully developed only if they can be conceived both operationally and
structurally” (p. 23). Herman et al. (2004) investigated if fraction in process (1/2+1/4) and
fraction as process (1/4) are interrelated according to Sfard’s theory. They found that
students could represent fraction as process but only few students could produce the image
for the addition of fractions even though they could find the sum of the fractions in their
symbolic form. In line with Hallett et al. (2010) they concluded that the routes of these two
parts may be cognitively separate. A sound explanation of these results could be that few
students can conceive this duality and these are the students who succeed in developing the
notion of the fraction concept.

2.2.6 Aims and research questions

Based on the above analysis, we focused on students’ conceptual understanding of fractions
according to Sfard’s theoretical framework. The prime aim of the study was to seek further
insight into the way through which students proceed in the process of fraction
understanding. Instruction based on learners’ previous knowledge, through the difficulty
levels, would thus be more meaningful (Noelting, 1983), providing a “prescription for
teaching” (Sfard, 1991).

More specifically, the aim of this study was to develop and validate a test measuring students’
mathematical performance in fractions, especially part–whole and measure subconstructs, along
Sfard’s framework. In particular, the study sought answers to the following questions:

1. To what extent does a test developed along Sfard’s theoretical framework satisfactory
assess students’ performance in fractions?

2. Are there three distinguishable difficulty levels concerning students’ abilities in
fractions, in accordance with the characteristics of interiorization, condensation, and
reification (Sfard, 1991)?

3 Methods

3.1 The development of the test

To answer our research questions, we progressively devised a test assessing the characteristics
of each one of the stages proposed by Sfard (1991). Most of the tasks comprising the test were
adopted from published research (Hannula, 2003; Herman et al., 2004; Kamii & Clark, 1995;
Lamon, 1999; Saxe, Taylor, MacIntosh, & Gearhart, 2005). The tasks were further developed
using specific representations that, in line with other studies (Ni, 2001) we assumed and
tested in the pilot study, would play a determining role in students’ understanding of fractions.
Eventually, the tasks reflected the characteristics of each of the model’s stages and suited the
curriculum for fifth and sixth graders in Cyprus as evidenced by the official mathematics
textbooks. Many of the activities created to assess the characteristics of the condensation and
the reification stage are missing from the mathematics textbooks; they were planned to require
students to apply conceptual approaches similar to other studies (Hallett et al., 2010). The test
consisted of 21 tasks in seven triads reflecting understanding at each stage of Sfard’s scheme
in the two fraction subconstructs and the three operations respectively. Some items required
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only a step-by-step procedure, while others required the application of both conceptual and
procedural understanding of the concept. The rationale for choosing these tasks follows (all
tasks are shown in Appendix A).

Task A1 (Lamon, 1999) requires students’ awareness that a fraction represents equal
shares of a quantity. This task was created to assess characteristics of the interiorization
stage as it requires a step-by-step procedure, i.e., count all the parts of each shape-
denominator, count the shaded parts-numerator and find the fraction, which is the key
towards understanding of the part–whole subconstruct (Boulet, 1998). In parallel, task B1
(Saxe et al., 2005) reflects characteristics of the condensation stage because students might
combine different processes to reunitize the whole. In task C1 the shape is divided into
parts of unequal size and different shape; students should reunitize the whole, a final step in
the process of understanding the fraction as part–whole (Boulet, 1998). This task mirrors
traits of the reification stage, since the students should be able to perceive the fraction as an
object and conceive the representations of the parts.

Task A2 (Lamon, 1999) reflects features of the interiorization stage, since students have to
follow a certain procedure—count all the objects (rectangles and triangles), count the triangles
and write the fraction. Task B2 (which was constructed for the study) requires alternation
between different representations and combination of processes with other processes—both
characteristics of the condensation stage. Task C2 (Lamon, 1999) assesses characteristics of
the reification stage, since the various representations of the concept are expected to be
unified in the learner and the construct is no longer dependent upon any process.

In task A3 (Lamon, 1999) students have to follow a procedure, count all the objects (18),
divide the number of objects by the denominator and multiply by the numerator. Students’
achievement in B3 requires a degree of interiorization of the concept of fraction and also the
combination of different processes. In C3, students have to combine the various relations of
the categories of the fraction (unit fraction, fraction, whole, improper fraction).

Task A4 is designed to assess students’ understanding of themeasure subconstruct. This task
(Hannula, 2003) evaluates characteristics of the interiorization stage, “a process has been
carried out through mental representation” and number line representations are representations
of mental objects corresponding to mental operations (Ni, 2001). Task B4 was created for the
study and assesses students’ ability to combine various processes and to alternate between
different representations, a characteristic of the condensation stage (Sfard, 1991). Students can
achieve success in task C4 if they can conceive the concept of fraction as an object, a static
structure and detach it from any process, while at the same time they are expected to have a
sense of equivalence, of density, of order, and relative magnitudes of fractions (Lamon, 1999).

Task A5 assesses students’ understanding of the equivalence of fractions requiring the
application of a routine procedure. In task B5, students are called to alternate between different
representations and to reason for fraction equity, characteristics of the condensation stage. Task
C5 asks students, in the context of a problem, to represent the equivalence of fractions using the
symbol x. To succeed in this task, students should perceive the invariance of a multiplicative
relation between the numerator and the denominator or the invariance of a quotient (Kamii &
Clark, 1995) and turn it into a static entity—the symbol x, a new-born object.

Task A6 refers to the comparison of two fractions with like denominators, an application
of a routine procedure. Task B6 involves comparison of two fractions with unlike
denominators using two different ways. The flexibility in the approaches used we believe
starts from the condensation stage. Task C6 requires students to find a fraction between two
fractions with consecutive denominators. To succeed in this task students should conceive
of each fraction as an object, and the density of fractional numbers. All three tasks were
developed for the present study.
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In A7, students are asked to apply a routine that leads to the sum of two fractions with
like denominators, an application on lower-level mathematical object. In B7, they have to
find the sum of two fractions with unlike denominators. This task is considered to measure
characteristics of the condensation stage since even if students apply the common
denominator procedure this is not a straight forward procedure. It involves awareness of
the fraction as a concept and the combination of various processes such as the equivalence
of fractions. Moreover, other studies showed that students may use also conceptual
approaches to solve this task (e.g., Byrnes & Wasik, 1991). Finally, the parallel task C7
(Herman et al., 2004) consists of three steps. The first step is associated with the sum of two
fractions with unlike denominators, the second asks students to represent the process of the
sum by making a drawing, and the last step asks students to pose a problem from the
addition of the two fractions. These three steps of task C7 assess students’ ability in the
operation of addition as both a process and an object in process.

The tasks of the test were content and face validated by ten experienced primary school
teachers and two university tutors of Mathematics Education. Based on their comments,
minor revisions were made.

3.2 Participants

The test was administered to sixth graders by the researchers. In the pilot study, it was
completed by 302 participants. After the analysis of the data, modifications were made
to three of the tasks in order to correspond to the difficulty and the characteristics for
which they were developed for. The final version of the test was administered to 321
students from 15 classes of an economically homogeneous school district and it lasted
from 40 to 60 min.

3.3 Data analysis

The specific construction of the test with the items reflecting certain characteristics of the
framework under examination led us to mark students’ responses with 0 if the answer was
wrong and 1 if the answer was correct. We performed two types of analysis on the 321
students’ responses, Rasch model and cluster analysis: the first to examine the reliability of
the test as a whole and to specify the sequence of items by difficulty and the second to
search for groups of students in each of the difficulty levels.

The Rasch model is appropriate for the specification of this scale because it allows the
researcher to test the degree to which the data meets the requirement that both students’
performances on the test items and the difficulty of the items form a steady order (within
probabilistic constraints) along a single scale (Bond & Fox, 2001).

Identifying an individual’s position on this scale provides information about this
individual’s probability of success on items below (high probability) and above (low
probability) this position. At the same time, identifying an item’s position on the scale
informs precisely about the individuals who can succeed (those scoring higher than this
item’s position) or fail (those scoring lower than this item’s position) on the scale.

Specifically, in the Rasch model, the probability that a person j will give a correct response
to an item i is modeled on the basis of his/her ability θj and on the item difficulty βi. These
two parameters are both estimated on the same continuous scale. It is hypothesized that the
probability of a correct response is a logistic function of the difference between θj and βi. This
S-shaped function converts any value of the real line into a value between 0 and 1. Moreover,
the parameters θj and βi refer to the same latent range. This latent range is described in two
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ways: as the dimension on which the participants are located in increasing order regarding
their ability and as the dimension on which the items are located in increasing order regarding
their difficulty. The Rasch model converts these likelihoods into quantitative estimates of item
difficulty and person ability formed in the same equal-interval metric, the logit scale, in
reference to the log odds unit used (Wright & Masters, 1981).

In addition, reliability and validity assessments require the following criteria: First,
that item difficulty and person ability estimates should be related with an error term
that would allow the researcher to set up confidence intervals for all item and person
ability estimates. Second, it requires having model fit statistics that would allow the
researcher to examine if both items and participants fit the requirements of the model.
The fit statistics used are (a) infit (weighted) and (b) outfit (unweighted) mean square.
Fit statistics are used to assess whether a person’s ability (an item’s difficulty) is
coherent with other persons’ ability (other items’ difficulty) and are based on the
differences between the expected and observed scores. Outfit statistics are based on the
disparity between observed and expected scores. In the calculation of infit statistics,
extreme persons or items are excluded. Likewise, the fit statistics can be approximately
normalized using the Wilson–Hilferty transformation. The normalized statistics are
called infit-t and outfit-t and they have a mean close to zero.

Cluster analysis was used to search for the existence of difficulty levels, i.e., whether the
items could be systematically grouped into levels of difficulty along a continuum that
reflects Sfard’s framework. We used the procedure for detecting pattern clustering in
measurement designs developed by Marcoulides and Drezner (1999). This procedure
enables us to segment the observed measurements into constituent groups (or clusters) so
that the members of any one group are similar to each other, according to a criterion (in our
case difficulty). Next, examining students’ responses, we proceeded in determining a
pattern in each level according to the pre-described characteristics.

4 Findings

4.1 Item fit

The fit of the Rasch model was examined first by investigating the overall fit of the items in
the fraction test and also by investigating the fit of individual items. The infit and outfit
mean square were the fit statistics used in order to detect any discrepancies between the
Rasch model prescriptions and the fraction data. Fit analyses were run in Quest (Adams &
Khoo, 1996) and the results are shown in Table 1.

Table 1 presents the overall fit of the items as reported by infit and outfit fit statistics.
According to Table 1 both item fit statistics have means very close to 1 which indicates that
pupils’ responses to test items are generally in accordance with the Rasch model. The
analysis also revealed that all test items have item infit with the range 0.83–1.21. Usually
items are considered to fit the Rasch model if they have item infit in the range 0.77–1.30
(Adams & Khoo, 1996).

4.2 Person and item descriptive statistics

This section presents and examines person and item estimates as reported from the Rasch
model, the reliability of these two estimates and the relation between them, through an
item-person map. Table 2 presents a summary of item difficulties and person performances.
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The mean item difficulty is located at 0 by default. The mean person ability estimate is
0.31 logits which shows that the test was slightly easier for the particular sample.
Reliability estimates are interpreted in the same way as Cronbach’s alpha, i.e., on a 0 to 1
scale. According to Table 2 the reliability of both item and person ability estimates is quite
high. According to Bond and Fox (2001), the higher the number of reliability estimates, the
more confidence we can place in the replicability of item placements across other samples
or of person placements across other tests like fraction test.

Figure 1 illustrates the scale for the 21 items of the fraction test with item difficulties and
student measures adjusted on the same scale. Person's performances are represented by an
“X” on the left hand side of the map while items are indicated by their item number on the
right hand side of the map. The vertical line in the middle of the map represents the logit
scale as both item difficulties and person abilities are measured in logits. Equal distances on
the map, either up or down, have equal value as the logit scale is an interval scale.

The difficulty scale extends from easy items (negative logits) at the bottom of the
column and moves on to harder items at the top. The distance between logits has a
probabilistic meaning; in our study an ability estimate for a given student means that the
probability that he/she will succeed on an item at the same level is at least 50%.

Clearly, all test items have a good fit to the measurement model, indicating an agreement
among the 321 students located at different positions on the scale, across all 21 items.

Figure 1 presents items developed to meet the characteristics of the interiorization stage
(1–7) to be located at the bottom of the scale as easier than the items created to assess
characteristics of the other two stages. The items developed based on the characteristics of
the condensation stage were located in the middle of the scale (8–14), while the items
reflecting characteristics of the reification stage were found to be the hardest (16–21).

Item C1 (15) was the only item which was planned to assess characteristics of the
reification stage and in practice appeared to be easier. The task asked students to write the
fraction presented in a shape divided in unequal size and shape parts expecting them to
reunitize the whole; it might be the upper step in the understanding of the fraction as part–
whole according to Boulet (1998) but it nevertheless refers to part–whole subconstruct,
which is among the easiest for students to understand.

It appears that the easiest items of the scale were 7, 5, and 6, requiring the application of
procedures, the addition of similar fractions (A7), the equivalence of fractions (A5), and the

Table 1 Overall item fit

Statistic Infit fraction test (21 items) Outfit fraction test (21 items)

Mean 1.00 0.99

SD 0.10 0.23

Minimum 0.83 0.51

Maximum 1.21 1.31

Table 2 Summaries of items and persons estimates

Statistic Item estimates (21 items) Person estimates (N=321)

Mean 0.00 0.31

SD 1.64 1.35

Reliability of estimates 0.99 0.81

Levels of students’ “conception” of fractions 71



comparison of fractions with the same denominators (A6). Item A1, which asked students
to circle the representations of the fraction 1/4, proved to be harder than the other tasks also
planned to reflect characteristics of the interiorization stage. Students were expected to be
aware that fractions represent equal parts of the whole. Not surprisingly, the hardest item of
this stage was A4, which referred to the measure subconstruct (A4).

In the same vein, the hardest among the items reflecting condensation stage traits was B4
(11), which required understanding of the fraction as measure subconstruct (Fig. 1). The
second most difficult item of this group was B6 (13), which asked the comparison of two
fractions in two different ways followed by item 9 (B2) asking students to alternate between

Fig. 1 Scale of pupils ability and item difficulty
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different representations of a fraction as part of a set of discrete objects. Next came item 12 (B5)
in which students had to write the fraction represented in a continuous quantity-rectangle and
choose among the representations of continuous quantities-circles the one that represented the
fraction. The easiest task of this group was B7 (14), which required the addition of fractions
with unlike denominators.

At the top of the scale were the items developed to reflect characteristics of the reification
stage. The hardest item of all C5 (19) corresponded to the equivalence of fractions using the
variable x, requiring a level of abstraction. The second most difficult item C7 (21)
corresponded to the addition of dissimilar fractions through various procedures. Another item
that proved to be hard for students was the C6 (20), which asked for a fraction between the
fractions 1/9 and 1/8. The difficulty of this item might be due to the various sub procedures
students should engage in order to complete the task. For instance, to perceive these fractions
as objects each one representing a set of equivalent fractions and realizing the denseness and
order of fractions. Next in the facility order was item C2 (16), which asked students to circle
from various representations the ones that corresponded to a certain fraction followed by C3
(17) asking students to find an improper fraction based on a given fraction, and C4 (18) that
corresponded to the measurement subconstruct.

4.3 Using cluster analysis to specify levels of concept formation

Having established the reliability of the test, we moved to the second research question, to
investigate if the items were systematically grouped into levels of difficulty corresponding
to the three stages developed by Sfard. Appendix B provides a description of the procedure
used to identify clusters (Marcoulides & Drezner, 1999).

Applying this method to segment the 21 test items on the basis of difficulty that emerged
from the Rasch model, the optimal clustering resulted in six clusters, explaining 61% of the
variance, indicating six difficulty levels in the process of fraction concept development.
Table 3 summarizes the results of cluster analysis.

Level 1 refers to the item Α7, which proved to be the easiest item. Level 2 consisted of
the items A5, A6 and A2, developed according to the characteristics of the interiorization
stage. Level 3 can be characterized as a transition level from the interiorization to the
condensation stage as it includes items A3, A1, and A4, the hardest items of the
interiorization stage, and items 14 (B7) and 8 (B1), the easiest items of the condensation
stage. Item 15 (C1) was also placed in this group due to its difficulty as already justified.
Level 4 encompass items 10 (B3), 12 (B5), and 9 (B2), all of them reflecting condensation
traits. Level 5 can be conceived as a transition from the condensation to the reification
level; it consists of the hardest items built on the features of the condensation stage, 13
(B6), 11(B4) and the easiest items reflecting features of the reification stage, 18 (C4), 16
(C2), and 17 (C3). Finally, in Level 6, the hardest items reflecting characteristics of the
reification stage were placed. These were items 20 (C6), 21 (C7), and 19 (C5).

5 Discussion

5.1 Investigating the reliability of the test

On the basis of the outcomes of this study, 20 of the 21 items of the test could be
consistently placed on a scale concerning difficulty, reflecting characteristics of the three
stages described by Sfard in understanding fractions. The role of representations in
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students’ way to the understanding of fractions was apparent; the presence of some
representations in the items was a decisive element in turning the concept on a higher level
regarding conceptual understanding. The role of graphical embodiments was also stressed
in the study of Ni (2001).

All items assessing characteristics of the interiorization stage proved to be within most
students’ reach. The addition of fractions with same denominators requiring the application
of a procedure proved to be the easiest of all items, revealing that students initially develop
procedural understanding—a finding in line with Kerslakes’ (1986) study on fraction
addition. Next along the difficulty sequence appear to be the items evaluating students’
understanding of the equivalence and comparison of fractions, requiring the mastery of a
certain rule. Success in tasks of this kind has been predicted by Sfard (1991) who argued that
students may get through using step-by-step procedures, without necessarily understanding
the fraction concept. The recognition of the part whole subconstruct in a regional area
involving a conceptual trait, proved to be more difficult than the three pre-mentioned items.
This clearly indicates that in students’ understanding of fractions, procedural learning
precedes conceptual learning, unlike the results of other studies (Byrnes & Wasik, 1991;
Hallett et al., 2010). In line with other studies (Charalambous & Pitta-Pantazi, 2007; Hannula,
2003), the most difficult item mirroring characteristics of the interiorization stage was the item
assessing the measure subconstruct. According to Lamon (1999), students’ difficulty with the
measure subconstruct may be due to the absence of relevant activities in the mathematics
classrooms; there appears to be an overdose of part–whole subconstruct activities at the
expense of the other fraction subconstructs, something observed in the specific context in
which the study was conducted. Consequently, teachers should be aware of and pay equal
attention to all the different fraction subconstructs.

Item B4 was the most difficult among the items developed to assess characteristics of the
condensation stage (Hannula, 2003). This task asked students to find the fraction presented
in a regional area and place it on a number line. Unbalanced instructional emphasis
concerning this fraction subconstruct together with the alternation between two representa-
tions, an activity rarely met in mathematics classroom, might be the causes for this result.
The second hardest item of this group proved to be the one asking students to compare two
fractions in two different ways and to justify their reasoning. Difficulties in the comparison
of fractions were also traced in other studies (Christou et al., 2003; Kenney & Silver
1997) while asking students to use two ways to approach the item made it even harder.
The easiest item developed for the condensation stage was the sum of two fractions with
unlike denominators. This finding may again indicate students’ facility to acquire
procedural knowledge at the expense of conceptual knowledge. Even though Sfard (1991)
states that the precedence of the operational conceptions over structural is invariant
regarding the instruction process, the overdose of activities on fraction operations at the

Table 3 Cluster analysis of the 21 items into six groups

Clusters Rasch Tasks

1 –… to −3.11 7 (A7)

2 −2.37 to −1.69 5 (A5), 6(A6), 2 (A2),

3 −1.27 to −0.39 3 (A3), 1(A1), 4 (A4), 14 (B7), 8 (B1), 15 (C1)

4 0.09 to 0.33 10 (B3), 12 (B5), 9 (B2)

5 0.9 to −1.65 13 (B6), 11 (B4), 18 (C4), 16 (C2), 17(C3)

6 2.25 to … 20 (C6), 21 (C7), 19 (C5)
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expense of activities for the development of conceptual understanding may facilitate this
sequence of understanding.

The task referring to fraction equivalence using the symbol “x” proved efficient in assessing
characteristics of the reification stage, as it was found to be the hardest of all the test items. The
dose of abstraction included in this activity functioned as an obstacle, despite the fact that
those students had some introductory lessons in algebra. In line with other studies (Hallett
et al., 2010; Herman et al., 2004), the addition of fractions with unlike denominators and the
graphic representation of this process assessing students’ conceptual and procedural
understanding, proved very difficult for students. This finding supports the results of Hallett
et al. (2010) that students possessing both conceptual and procedural understanding perform
the best of all the students. The third most difficult item reflecting traits of the reification stage
was found to be the task requiring students to find a fraction between two given fractions with
consecutive denominators, just as found in other studies (Kenney & Silver, 1997; Christou, et
al., 2003). Many factors might have contributed to this difficulty, such as students’ lack of
ability to perceive the density of fractions with respect to two given fractions, or the lack of
ability to perceive the two fractions as mental objects.

In conclusion, the results of the study reveal that students’ diverse knowledge of
fractions, procedural or/and conceptual, leads to students’ diverse performance in solving
fraction tasks. Moreover, the results may be a first indication that students’ ability to
understand fractions and apply their knowledge for solving fraction tasks can be modeled as
a one-dimensional construct. The term “first indication” is used since the study
concentrated on two subconstructs of the fraction concept, the three stages by Sfard and
certain representations. The results also provide useful information for the instructional
process (Noelting, 1983) regarding students’ knowledge of fractions.

A deeper insight into students’ approaches through the way from the procedural to
conceptual understanding of fractions follows.

5.2 The difficulty levels in the way to acquire a fraction concept

In this section, we refer to and illustrate the six difficulty levels found in the study with regard to
Sfard’s three stages of concept development. We describe the characteristics of each level,
examining the problems involved and the strategies used by students, in an attempt to shed
some light on the way from the procedural to conceptual understanding of fractions.

Level 1 is characterized by procedural understanding. Students placed in this level are able to
perform a simple step-by-step procedure for computing the sum of fractions with like
denominators. In Level 2 similar characteristics as in Level 1 portrayed the items grouped
together. Students could also apply a step-by-step procedure to fill themissing numerator in two
equivalent fractions and to find the largest fraction among two fractions with same
denominators. Figure 2 shows that a student used multiplication to fill the missing term.

The third item of the group, concerned with writing the fraction of a part of discrete objects,
could also be accomplished by students applying only procedural understanding. A similar item
was used by Hallett et al. (2010) for the evaluation of students’ procedural understanding.

We consider Level 3 to be a transitional level from the interiorization to the condensation
stage in the development of the fraction concept. This level illustrates Sfard’s (1991) phrase:
“the squeezing of lengthy sequences of operations into more manageable units” (p. 19).
This level differs from the former two levels since it includes items requiring a high degree
of procedural understanding and a low degree of conceptual understanding. Such a group
was also identified by Hallett et al. (2010). Specifically, students placed in this level were
able to find the fraction of a set of discrete objects (A3) and to select the correct
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representation of a fraction as a part of the equally divided whole (A1), a first step towards
the conceptual understanding of fractions. Students were able to locate a fraction (3/5) on a
number line from 0 to 1 divided into five equal parts, interiorizing the fraction as a mental
object (A4). The ability to combine certain processes, a characteristic of the condensation
stage, was also reflected in the next item of this group, the calculation of the sum of two
fractions with unlike denominators. Many students applied the approach they were taught.
They found a common multiple of the denominators of the fractions and converted the two
fractions to ones with the same denominator using equivalent fractions, for example 2/5=
12/30. The last two items in this group refer to students’ ability to divide a given
representation of a fraction in equal parts (B1 and C1; Boulet, 1998) and find the fraction of
the shaded part as a student did in Fig. 3.

The role of representations such as the number line and the representation of the fraction
shape divided into unequal parts can be regarded as a decisive step in forming this level.
For example in Fig. 3, the representation of the fraction forced that student to apply more
than a routine procedure showing his awareness that the whole should be partitioned in
smaller equal parts in order to write the fraction of the shaded area.

In conclusion, the items of Level 3 assess students’ ability to combine certain processes,
and to exhibit signs of conceptual understanding to a certain extent.

Level 4 corresponds solely to the characteristics of the condensation stage. The relevant test
items reflect students’ ability to think of a process as a whole, combine various processes, make
comparisons and alternate between different representations. Again representations hold an
important role in the formation of this level. Students in this level combined various processes
and proceeded in the reconstruction of the whole from a given quantity, 2/3 equals four objects,
finding the value of 1/3 and then the 3/3 (B3).Moreover students were able to alternate between
different representations and succeed in tasks B5 and B2. Most important is the fact that such
activities are rarely met in the classroom. The student in Fig. 4 used fraction equivalence to
make comparisons and to choose the correct representation of the fraction signified in another
representation. Student’s reasoning for the choice of the representation referred to the
representation as being more than half but less than 3/4, meaning that the student had
interiorized the fraction as object and could justify his/her answer.

Level 5 can be a transitional level encompassing features of the condensation and the
reification stage. Students placed in this level exhibited a perception of the fraction as an abstract
construct to a certain extent and a possession of flexible thought. Specifically students’ flexible
thought could be exhibited through task B6, in which students had to compare two fractions in
more than one way. Three of the approaches students used are presented in Fig. 5, i.e., the
comparison of each fraction with one-half, the conversion of two fractions to fractions with
common denominators, and the application of rules of proportion.

In addition, students placed in this level could find the fraction represented as a continuous
quantity (3/4) and place it on a number line divided into different parts (eighths) than the ones
presented by the fraction’s denominator (B4). This activity requires the alternation between

A5. Fill in the fraction with the correct numerator.Fig. 2 A student’s response to
task A5
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different representations and the perception of fraction as an abstract construct. In this level,
students were able to fill in a number line marked from 0–1/2 divided in thirds (C4), with a
missing fraction, an activity that entails the perception of a fraction as an imaginary construct,
with its general properties (characteristic of the reification stage) like the equivalence, and order
of fractions. Indeed, some students used fraction equivalence 1/2=3/6 and filled the missing
fraction, 1/6, in the number line. Again, these two activities are rarely met in classrooms.
Moreover, students could chose between various representations the ones that correspond to the
same fraction (C2), disclosing a characteristic of the reification stage; the various
representations of the concept are integrated in the learners’ reified construct and the construct
no longer depends upon any process. Last, students were able to find an improper fraction 7/6
from a given set of 12 objects which constituted the whole (C3), an activity which requires the
perception of the fraction concept as on object, and a combination of the various relations of the
categories of the fraction (unit fraction, fraction, whole, improper fraction).

Level 6 corresponds solely to the characteristics of the reification level. The results of
this study show that the process solidifies into object, and students’ are able to investigate
general properties of fractions and various relations between their representatives. A distinct
characteristic of this level was students’ ability to move back and forth between an object
and a process and thus understanding the mathematical idea both conceptually and
procedurally (Hallett et al., 2010; Sfard, 1991). Specifically, students could find a fraction
between two consecutive fractions (C6), an activity that requires the perception of the
fraction as an object and the acquisition and coordination of various sub procedures and
representation. Specifically, a student used the comparison of fractions with the same
numerator to find a fraction between two consecutive fractions, 1/9=2/18 and 1/8=2/16 and

B 5. Which of the five circles represent the same fraction as the one
 represented in the rectangle? Explain your answer. 

Fig. 4 A student’s response to task B5

B1. Write in fraction the shaded part in each shape. 

Fig. 3 A student’s response to task B1
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wrote 2/17 as an answer. Another student used fraction equivalence and turned fractions to
fractions with the same denominators using 72 as the LCM in the first attempt and 144 in
the second one, 1/9=8/72=16/144 and 1/8=9/72=18/144 and gave 17/144 as an answer. A
representative item of this stage referred to the sum of two fractions with unlike
denominators and the representation of the process (C7; Fig. 6) since in structural
conception one knows both why and how to do something (Sfard, 1991). In line with the
results of Hallett et al. (2010), this study reveals that students being able to apply both
conceptual and procedural approaches perform best in mathematics.

Sfard notes that reification requires seeing the newly formed object in the context of
processes that act upon it. Very few students managed to draw the process of the fraction
addition and explicitly highlight how the two parts fit together in the process of adding. The
most difficult item of this level (C5), which constitutes the point where an interiorization of

B 6. Describe two ways to compare the fractions below.

18

8

9

5

1)

2)   

3)

Fig. 5 Students’ approaches in task B6

C.7. a) Calculate the sum. 

b) Make a drawing to show the process of the sum of the two fractions. 

Fig. 6 A student’s response to task C7
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a higher level concept begins, is the one in which students had to use the symbol x and
represent a problem referred to the equivalence of fractions as Fig. 7 sketches. An example
of two approaches used by two students is presented in Fig. 7.

The first student chose to write only the generalized form of the pizza’s pieces, providing the
static relation between two magnitudes (response a) and the other explained his thoughts in a
more sophisticated way (response b). Particularly, the second student explained that the
numerator should be four times smaller than the denominator writing this fraction using the
symbol x. This higher level item forced students to turn process into object (Sfard, 1991).

5.3 Further consideration

The results of the study, based on the specific social context, provided an indication that a
difficulty scale across operational and structural understanding may exist. This study
concentrated on two fraction subconstructs and some representations. More research using
quantitative methods could investigate the fact that students' understanding of fractions can
be described as a one-dimensional construct taking into consideration the fraction
subconstructs, a framework’s characteristics and the various representations.

In addition, the cluster analysis revealed six levels, each of them including distinct
characteristics regarding students’ behaviors, attitudes and skills, as regards Sfard’s
framework in relation to fractions. Even though Sfard (1991) views the hierarchical
sequence from procedural to conceptual understanding invariant of external intervention
like teaching and textbook, we suggest that teaching and textbook can contribute to the
acceleration of students’ way through the stages. The findings of the study reveal that
students who rely only on procedural knowledge have lower performance on fraction tasks than
students who gain also conceptual knowledge. Moreover, the study suggests that the use of
representations and the alternation between representations are substantial elements for the
development of students’ conceptual knowledge. The importance of teaching students more

Three friends ordered three pizzas of the same size and shape. George ate 
16

4 of his pizza. 

Andreas ate 
12

3 of his pizza. Costas ate x pieces of his pizza. If the three friends ate the 

same amount of pizza, write how many pieces might be Costa’s pizza using the variable x.

Response a

Response b

(x must be 4 times smaller than 

the denominator. So 
x

x

4
)

Fig. 7 Students’ responses to task C5
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than one approach for solving a task is also stressed. Finally, activities that demand explanation
and justification using various means (words and figures) can also contribute to students’
understanding of fractions. Concisely, the specific levels disclosed in the study can constitute
the basis for a sequencing of instructional activities related to fraction understanding, to a
certain extent, since the study focused on two of the fraction subconstructs.

No doubt, further research is needed to illuminate the six levels revealed in this study in
the same and different social contexts including also other fraction subconstructs. It is also
essential to investigate environmental or affective factors that may facilitate students’ way
from the procedural to conceptual understanding represented through these levels.
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Appendix B

The method applied for finding clusters
Suppose that I1, I2, I3, … In represent the items to be clustered into groups. First we find the

range of the observed measurements that is (Imax−I2min). Next, we change the item values to a
standardized 0–1 scale, using the formula Si ¼ Ii � Iminð Þ=ðImax � IminÞ, a transformation that
conserves the relative item standing. We next sort the values Si in ascending order and calculate
the gaps between two consecutive items, using the formula iΔ ¼ Siþ1 � Si (where i=1, 2,
3, … n). Finally, we sort the values of Δi in descending order (Δ1, Δ2, Δ3 …); the largest
term Δ1 divides the items into two groups according to the largest gap identified among these
items. The second largest term Δ2 further splits one of the two resulting groups into two
subgroups based on the second largest gap, and so on. Hence, when the first k largest Δs are
considered, the items are split into k+1groups. The number of clusters that can be formed is
determined by exploring the contribution of each iΔ to the cumulative Δ, which is expressed
as a percentage and represents the explained variance.
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