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Abstract This article focuses on the development and problematization of a task designed
to foster spatial visual sense in prospective and practicing elementary and middle school
teachers. We describe and analyse the cyclical stages of developing, testing, and modifying
several “task drafts” related to ideas around dilation and proportion. Challenged by
participant non-actions and non-responses, we as task designers identified and anticipated
sources of difficulties, which motivated repeated modification of the task to further the
intended learning goals. The task in its present form incorporates numerous considerations
including choices around materials, wording of questions and prompts, and sequencing of
experiences. It also reflects our enriched understanding of exploration strategies and the
roles of manipulatives and technology in spatial visual tasks designed for adult learners.

Keywords Visual - Spatial - Geometry - Mathematics education - Teacher education - Task
design

Spatial visual reasoning in mathematics refers to the application of visual and spatial
representations (e.g., diagrams, physical or dynamic graphical models, and mental imagery)
and processes (e.g., composing, decomposing, mental and hands-on moving). Research
shows that increased attention to spatial, visual, and kinesthetic approaches to learning
mathematics helps students make connections between various representations of the
underlying concepts (Bryant, 2009; Goldenberg & Cuoco, 1998; Goldin, 1998). The
importance of spatial and visual reasoning is recognized by teacher groups such as National
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136 M. Sinclair et al.

Council of Teachers of Mathematics (NCTM, 2000), as well as researchers in mathematics
education (cf., Arcavi, 2003), and if we expect students to learn and apply spatial visual
approaches, it is important to ensure that mathematics teachers are well-prepared to
recognize and apply such reasoning themselves. This suggests a need for research on how
to help teachers develop the requisite skills—and to do that, we require appropriate tasks.
This article examines the process of designing one such task.

Our ongoing research investigates how to help practicing and prospective elementary
and middle school teachers develop spatial and visual skills for teaching geometry and
measurement in geometric situations. In our work, we have observed groups of teachers and
teacher candidates engaged in cooperative experiences with 3-D and 2-D tools such as
physical models, diagrams, and interactive computer sketches. A substantial portion of our
work has involved creating, adapting, and revising specific tasks to meet our evolving
understanding of experiences that support the growth of spatial visual reasoning. In this
paper, we examine and analyze the process of developing and refining one of those tasks.
Entitled The Filling Task, it focuses on dilation, ratio, and proportion in the elementary and
middle school curriculum, and includes two subtasks—a Geometer s Sketchpad (GSP) task
and a 3-D model task.

1 Background

Literature on mathematical knowledge of teachers and for teaching (Ball, Hill, & Bass,
2005; Lampert, 1992; Ma, 1999), suggests that many elementary teachers have a weak
mathematics background and often hold a procedural view of mathematics. While the
majority of research focuses on teachers’ competency and comfort with numerical strands
of mathematics, there is evidence of a need for more attention from researchers toward
developing teachers’ competency and comfort with geometric strands of mathematics, in
particular with regard to spatial and visual reasoning (cf., Battista, Wheatley, & Talsma,
1982; Gal & Linchevski, 2010).

1.1 Visualization

Visual reasoning, or visualization, “generally refers to the ability to represent, transform,
generalize, communicate, document, and reflect on visual information” (Hershkowitz,
Ben-Chaim, Hoyles, Lappan, Michelmore, & Vinner, 1989, p. 75). Similarly, Presmeg (1997)
describes visualization as a process of mentally constructing and transforming visual images.
Presmeg (1997), as well as Arcavi (2003) and Eisenberg and Dreyfus (1991), recognize
challenges around visualization that stem from a social perspective of mathematics learning.
Arcavi (2003, pp. 235-236), building on the work of Presmeg (1997) and Eisenberg and
Dreyfus (1991), classifies these challenges into three categories: (1) cultural, beliefs and
values about what is mathematics; (2) cognitive, the high cognitive demand of visualizing
conceptually rich images; and (3) sociological, the diverse cultural background of students,
some of whom come from visually rich cultures while others do not. Despite the cognitive
strain recognized by Arcavi (2003) and Eisenberg and Dreyfus (1991), research (cf.,
Koedinger, 1992) shows that visualization can be an effective and efficient means of
condensing information and increasing its accessibility. Keeping in mind these issues, our
research goals included designing a task which would (1) emphasize visualization and spatial
reasoning as ‘“mathematics”; (2) ease the cognitive demand of visualization through
scaffolding and connection-making; and (3) offer a novel take on common experiences such
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as pouring water into a vessel. We were also cognisant of the tendency for students (even
university level mathematics students) to avoid visual reasoning in preference to algebraic
(and numerical) reasoning (Eisenberg & Dreyfus, 1991), and thus we attempted to promote
visual reasoning in a variety of ways in the design (and revisions) of our task.

Our research is further motivated by the observations of Battista et al. (1982) who found
that preservice elementary teachers often have poorly developed spatial visual reasoning
skills for geometry, and also have substantial anxiety about working with these approaches.
Whiteley (2004) agrees with Arcavi (2003) that visualization and mental imagery are
central to mathematical reasoning, and he argues that the situation with teachers has not
changed since the Battista et al. study. He objects to the rote nature of school geometry, and
notes that students are seldom involved in analysing what they see or in exploring 3-D
objects, and he attributes this in part to teachers’ poorly developed visual reasoning skills.
His position resonates with the observation of Del Grande (1990) that geometry “has been
difficult for pupils due to an emphasis on the deductive aspects of the subject and a neglect
of the underlying spatial abilities” (p.19).

1.2 Teachers and geometry

In regard to specific concepts in geometry and measurement, The mathematical preparation
of teachers (Conference Board of the Mathematical Sciences, 2001) maintains that in order
to teach young children, elementary teachers must develop competence, for example in the
following:

* Visualization skills: becoming familiar with projections, cross-sections, and decom-
positions of common 2- and 3-D shapes; representing 3-D objects in two dimensions
and constructing 3-D objects from 2-D representations.

* Basic shapes, their properties, and relationships among them: developing an
understanding of angles, transformations (reflections, rotations, and translations),
congruence, and similarity. (p. 22)

There is a gap between the Conference Board of the Mathematical Sciences’ (CBMS)
recommendations and the observations of Battista et al. (1982) and Whiteley (2004) on
teacher knowledge; the researchers’ findings indicate a pressing need for teachers to accrue
experiences with tasks and activities that will help develop their visual reasoning. This
raises the question of Zow to develop visual reasoning in adults.

Much of the literature on developing visual and spatial sense in geometry has focused on
children (cf., Del Grande, 1990; Lehrer, Jenkins, & Osana, 1998; Wheatley, 1990;
Yakimanskaya, Wilson, & Davis, 1991). For instance, Del Grande categorized skills that are
key to children’s development of 2- and 3-D geometry understanding: (1) spatial perception
(eye motor, figure ground, position in space, perception of spatial relationships, and perceptual
constancy), (2) visual discrimination, and (3) visual memory. Clements (1999) also stresses the
importance of spatial perception and adds visual imagery. In connection with the latter, he
suggests that children need opportunities, for example, to rotate objects in their minds.

1.3 Our research question
While these studies address issues with children, we anticipate that similar considerations

are important for developing spatial visual sense in adults. Our research offers a first step in
understanding how a visual and spatial sense of proportion may be fostered in adults.
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Our research on adults’ visual and spatial understanding of proportion is motivated by
the guidelines of the NCTM and CBMS. Proportional reasoning and dilation are recognized
as important mathematics curriculum topics, and create a “unifying theme” in middle
school grades in particular (Lanius & Williams, 2003). In line with the NCTM, the CBMS
(2001) suggests that prospective middle school teachers should be able to do the following:

*  Demonstrate understanding of how similar figures result from a dilation, and the role of
proportional relationships in determining similarity.
*  Demonstrate ability to visualize and solve problems involving 2- and 3-D objects. (p. 32)

We see a valuable opportunity in connecting these two points. Proportional relationships can
be counter-intuitive—particularly when scaling area or volume is involved. However, a visual
and spatial sense of dilation and proportionality can, in our view, be an effective tool for
discerning the proportional reasoning within scaling relationships for dilated lengths, areas, and
volumes. In order to develop such a sense, we introduce a task that incorporates physical
manipulation of 3-D models, which is a well-known means of developing visual-spatial sense
(cf., Clements, 1999; Robichaux, 2005), as well as a 2-D exploration with computer software,
whose interactive nature also fosters the development of visual and spatial skills (cf., Clements,
2002; Guven & Kosa, 2008; Smith, Gerretson, Olkun, Yuan, Dogbey, & Erdem, 2009).

2 Framework for task design

In a 2004 article, Sierpinska calls for greater attention by mathematics education researchers
to task problematization—that is, to debating variations of a task and discussing the effects
of such variations on learning and research results. Sierpinska argues that design research is
needed to clarify what is arbitrary and what is essential about tasks, reminding researchers
that such knowledge allows replication of task-based research results, and also informs the
development of systems of tasks (Sierpinska, 2004). Our research offers an example of task
problematization in the spatial-visual domain of middle school mathematics, and offers a
theoretical mechanism within which task problematization can occur. The theoretical
underpinning of our work draws on and interconnects three theoretical frameworks for task
design: the elaboration of the hypothetical learning trajectory (HLT) of Simon and Tzur
(2004), the cyclical process of task design of Gadanidis, Sedig, and Liang (2004), and the
research on the design of technological learning tasks of Sinclair (2003).

In our view, the integration of these three distinct perspectives is imperative in
problematizing tasks—Gadanidis et al. (2004) and Sinclair (2003) attend to how the design
and refinement of the task interface may enhance learning, and Simon and Tzur (2004)
offer a framework that connects the mathematical task with the teacher’s intended learning
goals and his or her hypotheses on student learning. Thus, while Simon and Tzur guide
decisions on the overarching mathematical goals of the task, and provide a means for
analysis of learner response, Gadanidis et al. and Sinclair enable the communication and
implementation of the task. Each of these perspectives is discussed in detail below,
beginning with Simon and Tzur’s elaboration of the HLT.

2.1 Hypothetical learning trajectories
The construct of HLT was introduced by Simon as a way to explicate how mathematical

tasks can be used to promote mathematical conceptual learning via a constructivist
perspective (Simon & Tzur, 2004, p. 92) The hypothetical learning trajectory includes three
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main aspects: the teacher’s goals for student learning, the mathematical task that will be
used to promote student learning, and hypotheses about the process of students’ learning
(Simon, 1995). Tasks are selected based on the hypotheses of student learning in connection
to the intended learning goals set out by the teacher. Simon and Tzur (2004) offer a
mechanism—reflection on activity—effect relationship—as an elaboration of Piaget’s
reflective abstraction, and as a theoretical means by which to generate HLTs. Activity—
effect corresponds to the perspective of Simon and Tzur (2004) that learners set goals,
engage in activity to meet these goals, and then necessarily attend to the effects of their
goal-driven activity. Specifically, they suggest that the learning process begins with an
individual setting goals that are “a function of [his or her] current conceptions and [are]
related to the task at hand” (ibid., p. 94); these goals are often distinct from the learning
goals set out by the teacher. As the individual engages with the task at hand, his or her
activity is goal-driven and attention is directed towards the effects which that activity has on
meeting said goals. Reflecting on the relationships between the activity and its effects is, in
this perspective, a way in which new (for the learner) concepts may be constructed. Simon
and Tzur (2004) clarify that reflection need not necessarily involve conscious thought.
Further, though they identify a connection between physical and mental activity, they
emphasize that it is the mental activity that forms the basis for conceptual learning.

Reflection on activity—effect relationships informs the development of HLTs by
providing a mechanism with which to generate a hypothetical learning process in the
context of a certain task. In particular, it motivates the question “What activity, currently
available to the students, might be the basis for the intended learning?” (Simon & Tzur,
2004, p. 96) which in turn provides a basis for thinking of the learning process and the
corresponding role of the task in that process. Simon and Tzur (2004) apply this mechanism
to the generation of a task on subdividing fractional parts, for which they identify what they
expect the student will do (activity) and to what mathematics that will lead them (effects).
They use this hypothesis to inform task design and selection.

Connecting this framework to our research, we use reflection on activity—effect to inform
our HLTs, and in particular the mathematical goals connected to our task. However, more is
needed in task design—particularly when tasks involve computer software or 3-D models,
both of which offer learners many possible distractions. As Gadanidis et al. (2004) observe,
online mathematical task design requires deliberate pedagogical and interface choices in
order to facilitate mathematical learning. Thus in our research, we look to Gadanidis et al.
(as well as Sinclair, 2003) for a refined framework with which to direct learner attention in
ways that reflect the intended learning goals of the task designers. As these refinements
speak to computer software tasks, one of the contributions of our research is in extending
the framework to a broader set of tasks, including investigations with 3-D models.

2.2 Designing technological mathematical investigations

Gadanidis et al. (2004) brought human computer interaction and mathematics education
expertise together to examine one online mathematical investigation from two design
perspectives—pedagogical and interface—then redesigned it in light of their analysis and in
anticipation of further testing and refinement. They identified important computer interface
design principles around visual encoding, representations, and organization. These
principles inform decisions about which elements (e.g., questions, prompts, and diagrams)
to include, and how to orchestrate the task. At the same time, since pedagogical sensitivities
constrain the task design, appropriate choices in topic, terminology, and an understanding
of the intended audience are also necessary. Gadanidis et al. (2004) describe a cyclical
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process of task design, which includes development, testing, analysis, (re)design, (re)
development, (re)testing...and which informs such things as the visual and logical layout of
a webpage. At subsequent stages of the task development, the designer modifies in light of
learner responses. The cyclical process of task design that Gadanidis et al. advocate
resonates with Simon and Tzur’s observation that a “teacher is regularly involved in
modifying every aspect of the HLT” (2004, p. 93) as his or her understanding of students’
conceptions develops through task implementation and reflection. Gadanidis et al. note that
learner responses or confusion may reveal obvious difficulties, e.g., a particular word or
item that they do not understand, or responses may point to underlying problems of the
design. For instance, an individual may answer a question in a way that suggests he or she
may not have noticed a phrase, an image detail, or a motion. Though a difficulty may be
evident in only one case, the designer must query whether this signals the need to make one
or more changes.

In accordance with these observations, Sinclair (2003) notes that a task designer
creates opportunities for student learning by including appropriate on-screen affordances
that direct attention. Learners’ actions and responses—perhaps more particularly their
non-actions and non-responses—enrich the task designer’s understanding of task
elements and how they interact to further or hinder the intended learning goals. In the
terminology of Simon and Tzur (2004), reflections on (learners’ reflections on) activity—
effect relationships enrich the task designer’s understanding of how learners interact with
the design features of the task.

In regard to the interactions of task elements our research draws on Sinclair’s (2003)
design of technological learning tasks, which revealed the importance of carefully
structuring the links between prompts/questions and preconstructed dynamic geometry
sketches to support learning. For instance, an onscreen button to add a line or measure an
angle, or capabilities for revealing information in a novel way are affordances that the task
designer may use to direct learners’ investigation and attention. Sinclair (2003) further
notes the importance of setting prompts and questions to help learners use those affordances
to notice, interpret, and extend their thinking. For example:

1. When a question aims to help the learner notice and interpret details, the sketch must
draw attention by providing the visual stimulus.

2. When a statement prompts action, the sketch must contain the necessary provisions, so
that the learner can take the required steps.

3. If a question invites exploration, the sketch must open options for the learner by
supporting multiple paths.

Relating these ideas to our study, we extend the frameworks of Simon and Tzur (2004),
Gadanidis et al. (2004), and Sinclair (2003) to offer a refined perspective on the design of
non-technological tasks, and in particular to the design of 3-D investigations. Guided by the
elaborated HLT framework, in this paper we describe the intended learning goals, as well as
our expectations for learner activity and response. We adhere to pedagogical and interface
sensitivities in the design of both the GSP and 3-D model portions of our task, and we
attend to how the materials and software affordances selected (e.g., hollow polyhedral
shapes) encourage or hinder the learner in taking appropriate action (e.g., holding, turning,
moving, and filling) in response to a prompt or question that is designed to guide the learner
as he or she acts. Further, we introduce the idea of task drafts, which are discussed and
analysed with respect to learning at each stage of the design cycle, and as such offer a
mechanism within which task problematization can occur.
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3 Methodology

In this section we briefly outline our methodological choices, including the specific content
and meta-content learning goals associated with our HLT. We introduce our “participant
testers” and describe our initial understanding of their (pretask) knowledge, and we
motivate our initial organizational choices in task design. Due to the cyclical structure of
task design and refinement, we examine the nature of participant response, action, and non-
action during engagement with iterations of the task in order to inform subsequent “task
drafts”. These are discussed, analysed, and motivated in Section 4. As the design of our
initial task draft stemmed from reflections of action—effect relationships as we ourselves
experimented with different material, interface, and phrasing choices, the specific details
regarding these choices (for each of the task drafts) is also elaborated upon in Section 4.

3.1 Grounded theory

The grounded theory approach developed by Glaser and Strauss (1967) was used in this
study. Glaser (2002) elaborates that in grounded theory:

categories are generated from the data and properties are generated concepts about
categories...Once discovered, concepts leave the level of people. They become the
focus of the research, to be later applied to people’s social psychological behavior. As
the theory generates, and integrates through memoing and sorting, the conceptual
level goes up, often from substantive to formal theory. (p. 29)

This quotation indicates that the process of using grounded theory goes beyond creating
rich descriptions, the hallmark of qualitative analysis. The data are thoroughly and
systematically examined, and categories are established where the focus of the researcher is
on finding a concept that organizes the whole. Glaser stresses that to conceptualize what is
happening involves abstraction; the resulting conceptualization becomes applicable across
people, place, and time, and can be used to explain other processes or behaviours.

We chose grounded theory for this study because it is particularly applicable when a
researcher is examining a set of data in a relatively new area. While there is research in the
areas of task design (cf., Gadanidis et al., 2004), visualisation (cf., Whiteley, 2004), and
teacher knowledge (cf., Ball et al., 2005), that connects to our investigation, a survey of the
literature showed no previous studies that focused on adult development of spatial visual
skills related to teaching. Thus, the researchers entered the data analysis phase without
preconceived ideas about what should occur. As the discussion section will illustrate, the
categories that emerged from our analysis reflect a number of topics in the mathematics
education field, topics such as exploring and investigating, visual reasoning, and connection
making. We further connect these categories to Simon’s (2006) notion of key
developmental understandings (KDUs)—that is, “understandings that are critical to the
development of important mathematical ideas” (p. 363). Specifying KDUs is a way for
researchers to “impose a coherent and potentially useful organization on their experience of
students’ actions (including verbalizations) and make distinctions among students’ abilities
to engage with particular mathematics” (Simon, 2006, p. 360). Such an organization
necessarily informs the generation of categories which then “transcend the descriptive”
(Glaser, 2002, p. 25). In Simon’s perspective, one way “to identify KDUs is to observe
students engaged in mathematical tasks to specify understandings that can account for
differences in the actions of different students in response to the same task” (2006, p. 363).
In our systematic examination of participants’ activity and data, we attend to cues that
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illuminate KDUs related to visual-spatial reasoning around proportionality and use this to
conceptualize the specific needs of adult learners.

3.2 The participant testers and our learning goals

Our research occurred over three testing stages with pre- and in-service elementary and
middle school teachers. The stages each lasted approximately 2 h during which participants
worked in small groups of two to four, and field notes were collected. Written responses to
prompts and questioning were also collected and used to inform our analysis and task
refinement. In the first phase of testing, 18 preservice elementary teachers engaged with
The Filling Task. The second testing phase involved 24 practicing elementary and middle
school teachers. In the third session, our refined task draft was tested with another group of
18 preservice elementary teachers. Participants in each of the testing phases were novices
with respect to GSP; in addition, the majority of participants at each stage were anxious
about their understanding of mathematics in general, having not studied mathematics
beyond the high school level.

Our research team has substantial experience with this demographic, and this experience
informed our hypotheses for participants’ learning processes. We expected that participants
would be more familiar and comfortable working with 2-D analogues rather than with 3-D
shapes given their common experiences with school curricula, and that they would need an
opportunity to learn or review the basics of the GSP software. Thus, our initial task draft,
which included both 2-D GSP and 3-D model explorations, made use of a medium with
which we believed participants would be most comfortable: pen and paper. A worksheet
package that included instructions and prompts for both the GSP and 3-D model portions of
the task was provided; details of this package are discussed below. We further anticipated
that our participants were likely to approach spatial visual tasks as beginners—possibly
anxious beginners, who viewed geometry as a memory and logic exercise. Thus we
hypothesized that participants might benefit from tasks that incorporated opportunities to
(re-)develop the spatial and visual skills mentioned by del Grande (1990) and Clements
(1999). In particular, we were interested in providing participants with an opportunity to re-
experience concepts in a way that would enrich their relational (Skemp, 1976)
understanding of the ideas. That is, one of our learning goals was for participants to
develop a visual sense of relationships and connections rather than relying on memorized
rules.

The over-arching learning goal behind our task drafts was to (re-)develop spatial and
visual skills with respect to relationships and connections among dilation, ratio, and
proportion. Our hypothetical learning trajectories (realized as task drafts) were developed
around three themes: (1) “big ideas”—the spatial visual concepts and experiences
foundational for teaching elementary school mathematics; (2) making connections—
providing experiences to foster and extend teachers’ linking of ideas; and (3) using
strategies—modeling methods of exploration to enable deep thinking about spatial visual
concepts to recognize and address misconceptions.

We sought to foster connection-making among multiple representations and also
between dimensions by including a kinesthetic component to the task, which incorporated
manipulating 3-D models and 2-D technological objects. The technology component was
designed to provide opportunities for participants to see dynamic change and develop
imagery for such change. Through this component, we aimed to foster spatial visual
strategies that would allow learners to “see” connections between diagrams in 2-D and their
3-D instantiation.
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As mentioned, more of the specifics of The Filling Task are detailed below; however,
we take a moment to briefly describe the scope and content here. The task has two
distinct components—a GSP examination of dilation, and a 3-D exploration of cross-
sections of polyhedra. The GSP task on dilation was intended to draw attention to the idea
of center, to broaden the usual curricular treatment of scale diagrams, and to allow the
user to investigate changes in length and area dynamically. The 3-D model task evolved
out of a discussion around imagining cut surfaces (cross-sections), which we anticipated
would be a new and interesting channel through which spatial visual skills could develop.

4 The filling task: iterations and task drafts

This chapter examines and analyses three testing phases of three task drafts of The Filling
Task. 1t is partitioned into three sections each of which discusses the contents, testing of,
and subsequent revisions of a particular task draft. Section 4.1 begins with a discussion of
preliminary decisions and motivations behind interface and material choices for the 3-D
models and the GSP sketches. Observations and interpretations of the testing sessions are
then discussed, with particular attention to participants’ struggles with GSP and with
connecting ideas between the two separate tasks. We close the section with reflections on
the activity—effect relationship of our task choices and an outline of the corresponding
revisions. Section 4.2 is structured in a similar way, with attention to content and
arrangement of the second task draft, participant experiences with that draft, and subsequent
revisions. We discuss the specific changes and considerations made in explicitly connecting
the two tasks, as well as participant responses to, and struggle with, the new interface
design and the revised 3-D exploration. We further consider revisions regarding the
sequence and focus of our task, and a refined hypothesis for the learning process as related
to our expressed learning goals is offered. Section 4.3 briefly outlines our most recent task
draft, the specifics for which are included in Appendices A and B. The section focuses
primarily on the testing session in which participants more readily made connections
between the 3-D models and the GSP sketches, and sets the stage for a detailed discussion
in Section 5 of the key developmental understandings related to visual—spatial proportional
reasoning.

4.1 Initial task draft: two separate tasks
4.1.1 Content

The Filling Task was initially two distinct tasks. One task investigated cross-sections of 3-
D polyhedra; the other used GSP to examine dilation. We designed two types of models
for the 3-D exploration: one that focused on slicing and one that focused on filling. Both
models would lead into an examination of area (an important elementary and middle
school topic) and would also bring in proportional reasoning through exploring what
happens to the area when the slice or fill level is, for example, a quarter of the way up.
The idea behind slicing was to have participants cut through a pyramidal form, parallel to
the base, thus producing similar shapes. We discussed how and what to slice—and what
to slice with—and tried to determine a progression from least to most difficult. We
decided to start with a square-based pyramid, and then move to the tetrahedron, and then
the cube. We anticipated that these would be novel yet accessible shapes that could also
open the door to extended explorations. We experimented with styrofoam, florist foam,
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plasticine, clay, and play dough, but rejected those that, once cut, could not be used again.
As an alternative to slicing, we also considered filling; clear plastic shapes were readily
available and could be filled with sand, rice, or water. In this situation, similar shapes are
produced on the surface area of the sand, rice, or water by filling the pyramid to varying
levels. These similar shapes are a result of a dilation whose center is the apex of the
pyramid, and whose factor is calculated as a ratio of distances from the center to
corresponding vertices of the shapes. We decided to use water, because it would allow one
to see cross-sections and truncated 3-D shapes from multiple points of view. Prompts for
the 3-D exploration included:

1. What shape(s) can you make when you cut through a pyramid/tetrahedron/cube?

2. What are their properties?

3. How are the shapes related to one another?

4. Can you alter the way you slice or fill so that the shapes will be noticeably different?

The accompanying GSP task included a demo of a dilated triangle, as shown in Fig. 1
below. As one of our learning goals was to encourage participants to reflect on changes in
area after a variety of different dilations, the sketch included a slider and instructions on
how to vary the dilation, as well as a “reset” button. An important aspect of our design was
to provide participants with an opportunity to play. Research has shown that play motivates
and engages students. At the heart of “playfulness” is the idea of self-direction (Reiber and
Matsko, 2001). Participants were encouraged to play directly, and we anticipated that by
providing “reset” buttons, participants would be able to explore creatively without being
concerned about ‘ruining’ the sketch. In resonance with Sinclair’s (2003) perspective on
structuring links between prompts/questions and preconstructed dynamic geometry sketches
to support learning, the slider offered participants appropriate provisions to direct their
actions and attention, while the reset button was included to help foster exploration and

Iummmmow-l =

Dilations
Play with the dilation sketch below by clicking on the arrow tool and
dragging points, objects, and the slider around.

Click JRESET|

Click |Show Segmentsjand drag points, objects and slider to see
how a dilation is made.

Click RESET again.

Slider

.
Center of Dilation

1]2)3)4)35)5)7 ] Dicimix] § 4 J»]

Fig. 1 GSP sample screen 1—exploring dilations
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“play”. Further, a “show/hide” button offered participants an opportunity to see “how” a
dilation is made and to make connections to the 3-D model portion of the task. The layout
of the sketch was informed by Gadanidis et al.’s (2004) advice on logical organization and
visual encoding (e.g., using visual elements such as colour to present or differentiate ideas).
For instance, buttons were well emphasized, instructions were direct and to the point, and
appropriate steps to reduce onscreen ‘“clutter” were taken. Also, the original and dilated
triangles were of different colours so that both would remain visible even when
superimposed. In order to draw participants’ attention to the idea that dilation has a center
(one of our expressed KDUs (Simon, 2006)), and to introduce that terminology, we created
a point outside the original triangle and labeled it “Center of Dilation”. We were aware of
the possibility of overwhelming participants with too much onscreen information and
designed each screen accordingly.

In addition to the dilation demo, a GSP file with a number of blank screens and a pen-
and-paper worksheet package was provided. At this stage in the task design, we believed
that participants would benefit from constructing objects with the software and making
connections between those constructions and their pen and paper task. As such, the
worksheet included (a) instructions for creating a segment and dividing it into a fixed ratio;
(b) instructions for dilating a polygon by a factor of 3, followed by a number of prompts
and questions about the dilated shape; (c) instructions to use the fixed ratio to dilate a
polygon, followed by additional questions; and (d) various opportunities to apply dilations
to onscreen figures. After the onscreen work, participants were asked to apply the ideas to
familiar patterns as in Fig. 2 below.

As before, these prompts were designed to help make connections between participants’
prior knowledge and experience with 2-D dilation, in both static and dynamic
representations, and with their new experiences exploring 3-D models.

Enlarge the quilt square below by a factor of 3.

What is the scale factor by which the center design is transformed?

Fig. 2 Paper-and-pencil segment of GSP activity, first test session
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4.1.2 Testing

The first test of the 3-D model task confirmed our expectation that appropriate materials were
important to the success of this hands-on investigation and to participants’ learning processes.
For the slicing approach, we observed that students found it difficult to create 3-D shapes with
plasticine, and while the softer play dough could be shaped using plastic moulds, participants
had difficulty getting a clean cross-section cut (i.e., one that clearly showed the shape). The
filling approach also posed some challenges, however they were easier to mediate. The
effects of surface tension elicited discussion, and was noted as an opportunity to explore the
reliability of mathematical models—an issue which arose for us as an important KDU
(Simon, 2006) in the area of mathematics pedagogy. Other challenges participants faced
included using plastic shapes that were simply too small for making observations. In
general, participants expressed interest in the variety of surface shapes that could be
produced by cutting or filling a shape, and generated substantial lists to illustrate their
findings. At this stage in the testing, the Filling Task did not include time for a collective
discussion of those results, which we saw as a missed opportunity. The GSP demo, though
brief, led to a discussion of the idea that the slices through the tetrahedron models and the
various fill levels of water could be thought of as dilations. This was an important
connection for participants and it motivated subsequent changes to our task design.

Our observations from this session also revealed that most participants were unfamiliar
with GSP and needed more scaffolding than we had expected. In particular, constructing
objects—some of which are not easy for the GSP beginner (e.g., the divided segment)—
took considerable time, which distracted participants from attending to issues of dilation.
Many participants did not connect the GSP activity of creating and dilating a polygon with
the pattern activity illustrated in Fig. 2 or the 3-D model, and we hypothesize that this was a
result of attention being focused too intently on constructing objects in GSP and the
associated challenges. As one participant, Chris, commented “I couldn’t figure out how to
divide the segment. We tried all kinds of things, but nothing worked and then time was up.”

4.1.3 Revisions

As a result of the first testing session, we made a number of modifications to both the 3-D
model and the GSP task. As mentioned above, the slicing component of the 3-D model
exploration posed significant difficulty. Participants struggled to slice the plasticine in such a
way that the cross-section showed a scaled version of the shape’s base. As such, this approach
failed to illustrate clearly the mathematical concepts we had intended and was thus not in line
with our original learning goals and HLT (Simon & Tzur, 2004). In contrast, while the filling
task had raised concerns about surface tension, the potential to use this opportunity to
heighten the pedagogical sensitivities of using mathematical models with our preservice and
practicing teachers motivated corresponding alterations to our HLT. Based on this testing
session, we also made decisions about the timing and focus of the activity. Extending
Gadanidis et al.’s (2004) observations regarding the importance of bridging pedagogical
intent and interface design, we determined that the exploration should focus on just a few
shapes, i.e., triangular- and square-based pyramids as a way to help direct participant
attention (Sinclair, 2003). Further, we reasoned that pouring water gradually into a (stabilized)
3-D shape and examining the resulting surface shapes could promote understanding of
proportional reasoning, one of our intended learning goals. Finally, based on our observations
of participants’ activity—effect reflections (Simon & Tzur, 2004), we realized more explicit
connections between important (for us) mathematical concepts ought to be made. Actually, it
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was more a lack of participants’ reflections that stimulated a change. For instance, from their
(non)responses to items 3 and 4 of the 3-D model questionnaire (listed above), we noted that
the majority of participants were not making connections between a scale factor’s effect on
side length and area, nor on the effect that tilting a shape would have on volume and surface
area. We reasoned that a more direct line of questioning was necessary.

The first testing of the GSP activity drew to our attention the need for substantial revisions. In
resonance with Sinclair’s (2003) observations regarding directing student attention, and because
of participants’ struggles with constructing polygons, we decided to shift to the use of
preconstructed sketches. The intent was to lessen the cognitive demand on participants and to
help maintain their focus on dilation. The revised screens were designed to lead the learner
through sequenced interactive investigations of ratios in connection with dilation. We included
a structured opportunity to dilate a pentagon, and eliminated the pattern activity altogether.
These revisions were informed by Gadanidis et al.’s description of the importance of visual
encoding of information—which they define as “the various devices and cues that depict the
information to communicate its intended, underlying meaning accurately and help the user of
the information to understand it correctly and easily” (2004, p. 283). Gadanidis et al. focus on a
limited set of examples of visual encoding, such as colour choices and sizing, and we apply and
extend this to include the considerations (discussed below) that influenced the design of our
preconstructed sketches. Furthermore, we included written instructions and questions onscreen
to help focus participants’ attention, as well as included specific prompts to help participants
connect the GSP activity with the 3-D model investigation. We reemphasize that in the spatial
visual domain many ideas span dimensions and we hypothesize that being able to move back
and forth between 2- and 3-D is key to developing a deep understanding of the related
geometric concepts. Thus, revisions were sensitive to aiding participants’ appreciation that a
(2-D) diagram can encode both 2- and 3-D information—that is, it may evoke the image of a
3-D object (e.g., by showing one line “above” another), or it may include measurements which
would only exist in 3-D (e.g., some lengths which would be impossible in a truly flat object).

In sum, as a result of this testing session we developed the 3-D model task to focus on
filling large, transparent plastic polyhedra with water; we emphasized tilting the objects; we
focused questions on proportional reasoning; and in light of the interest participants showed
in making connections between the filling activity and the GSP demo, we deliberately
linked the two tasks. We also decided to begin stage 2 testing with the GSP activity in order
to investigate any changes or effects on participants’ ease in making connections between
the 2- and 3-D representations of proportional reasoning. We hypothesized that participants’
familiarity with 2-D diagrams might stimulate comfort and exploration with the
preconstructed GSP sketches, which could then be connected to the 3-D model.

4.2 Task draft 2: from 2- to 3-D
4.2.1 Content

As mentioned, in this stage of task development, we decided to begin with the GSP activity
and then transition into the 3-D model exploration. The revised GSP task included eight
preconstructed GSP sketches (collected in one file) that addressed linear and area
relationships of scaled figures through dilation. All instructions and prompts were included
onscreen to encourage learners to focus on the sketches. Printouts of the screens were
provided for recording purposes.

Sketches were designed to be done in sequence, partly to ensure that participants learned
GSP procedures at a modest pace, and partly to build mathematical ideas. Aware of the
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tendency for elementary teachers to hold an instrumental (Skemp, 1976) view of
mathematics, and in particular geometry, many of our design choices were made with the
goal of enriching participants’ relational understanding. By providing opportunities for
participants to create connections between their developing visual sense and their
knowledge of formulae, we hoped to prevent in the long term what Skemp (1976) refers
to as a serious mismatch—pupils whose goal is to understand relationally, taught by a
teacher who wants them to understand instrumentally. We were also aware of a possible
mismatch between our intended learning goals and learner-directed goals (Simon & Tzur,
2004), which we anticipated might be instrumental in nature. As a result, we made many
deliberate choices in the design features of our sketches to emphasize relational
connections. Due to space considerations, we discuss only a selection of them.

We decided to focus the GSP activity on the dilation of a triangle since it is easily
manipulated by dragging and is a natural 2-D analogue of a pyramid. The first screen of our
sketch in this task draft was identical to the demo dilation sketch from the first task draft (which
is depicted in Fig. 1 above). As before, all screens were designed in light of the idea that visual
cues such as colour, orientation, location on the page, etc. play an important role in learners’
noticing of relevant mathematical ideas (Gadanidis et al., 2004). In designing subsequent
preconstructed sketches, we aimed to push the dilation exploration further by adding various
features. For instance in Fig. 3 below, the third screen of the investigation is depicted. It is a
copy of the first screen (Fig. 1) with the inclusion of architectural measurements of segments
and calculated ratios that could be hidden or shown by clicking the provided corresponding
button. The slider and “slider position” buttons gave participants freedom to control the scale
factor, while the ratios and measurements were intended to help participants connect a visual
sense of dilation with the results they would get from applying a formula.

In our design, we again were sensitive to the fact that screen clutter may be disruptive,
which is not to say that representations should be sparse, but that “presented information
should bring out the meaning of the information faithfully” (Tufte as cited in Gadanidis et
al. (2004), p. 284). Screen 3, Fig. 3, included a lot of information; however, we expected
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participants to be comfortable enough with linear scaling (and also due to their previous
exploration of an analogous dilation) that they would not feel overwhelmed by the
measurements. However, when designing a screen that would draw participants’ attention
to the surprising (for them) relationship between areas of dilated figures, for example, our
sketch revisited the images of the first and third screens, but without the measurements of
segments, and with “hide/show” buttons to allow participants to move between strictly
visual representations and the numerical relationships. We expected that less detail on the
linear aspects of the sketch would allow participants to focus their attention on the new idea
of ratio of areas, and that the “hide/show” buttons would help make connections between a
visual representation and the formulaic results. Text instructions and prompts directed
attention to possible mathematical relationships, and tended to be open in nature. These
included questions such as “What do you notice when you drag the slider?” and “What is
the relationship between the scale factor and the ratio of areas?” We acknowledged that
verbal/text prompts and questions are key to supporting mathematical understanding during
technological investigations (Sinclair, 2003), as is directed dragging in the specific case of
dynamic geometry software activities (Arzarello, Micheletti, Olivero, Robutti, & Paola,
1998). Such directed dragging was encouraged on several screens of the GSP activity. As
mentioned, in this session, the GSP task preceded the 3-D model task; as we will discuss
later, we have chosen to reverse this ordeOr in recent iterations of the activity.

The second task draft of the 3-D model exploration involved filling experiments with
pyramids, both square- and triangular-based. The focus was on observing and comparing
side lengths and areas of the surface shapes while the pyramid was in the upright position,
and then in a tilted position. In addition, participants were challenged to find how many
different types of shapes (i.e., triangle, quadrilateral, etc.) they could create by filling and
tilting the pyramid, and what their findings implied for cut surfaces of other 3-D shapes.
Prompts and questions were more directed than in the first testing stage, with the intention
of offering more scaffolding and transparency with regard to our learning goals. Specific
prompts included the following:

1. Using the materials provided, embed the bottom vertex of a pyramid in play dough so
that the top is parallel to the table.

(a) Pour in a small amount of water—record as best you can the shape of the surface
of the water from the top (e.g., with a picture, verbal description...).
(b) Pour in an additional amount—record the shape.
(¢) Pour again—record.
(d) Compare the shapes you have drawn as to their lengths of sides, surface area, and
volume.
2. Repeat #1 for the same pyramid tilted at a different angle.

Accompanying these two questions was a chart for recording purposes, depicted as a
scaled version in Fig. 4.

In the case of the triangular-based pyramid, the filling activity linked closely to the work
we designed for the GSP task, providing a concrete model of dilation. In both cases,
successive surfaces that accompanied pouring different amounts of water acted as the
“dilating triangles” and the bottom vertex of the pyramid as the center of dilation. With a
more explicit link between the 3-D model task and the GSP task, we saw the filling
experience as a preparatory, kinesthetic experience to the more visual, symbolic, and
numerical work in the GSP task. We hypothesize that the experience of displacing water
and feeling a change in weight as the volume in the pyramid increases and the volume in
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Fig. 4 3-D exploration worksheet, testing stage 2

the watering can decreases contributes to an embodied and intuitive sense of proportion. An
individual can physically feel a change in weight as he or she visually sees a change in
volume. However, research into the pedagogical consequences of such an embodied sense
is beyond the scope of this paper.

4.2.2 Testing

The second task draft was tested in a 2-h session with 24 elementary and middle school
teachers. In this session, we began with the GSP investigation. As in stage 1, participants
shared insights, strategies, and understandings during whole group and small group
debriefing sessions with members of the research team. Many participants in this testing
stage had limited mathematical background (i.e., nine of the 24 had taken only to high
school mathematics). Thus, as one might expect, participants found it difficult to
communicate mathematical ideas. One factor was the lack of specific vocabulary (e.g.,
polygon, rhombus, dilation). In the GSP task specifically, we noted that the lack of
mathematical knowledge was most obvious in the participants’ expressed surprise that
dilation involved a “center of dilation”.

In general, we found that participants were hesitant to explore (i.e., play with) shapes on
their own (both with the GSP and 3-D model parts of the task). As in the first stage of
testing, these participants had little to no experience with GSP. Our revisions to the prior
task draft had incorporated interface and pedagogical considerations (Gadanidis et al.,
2004), and motivated the inclusion of preconstructed sketches, so there was little need for
participants to know GSP procedures. Despite these considerations, participants’ use of
dragging appeared restricted and hesitant, rather than directed and purposeful. We also
noted that participants were moving step-by-step through the screens but were not making
connections between them; they seemed to lack an overall picture of the activity. For
instance, there was an absence of screens being revisited, despite the complementary nature
of the screens’ designs. Another indication was participants’ general surprise during the
debriefing discussion, where we observed comments such as “oh, ya, that’s the same thing
in screen 1”. The debriefing sessions did help pull ideas together, but we registered a need
to improve connections within the GSP activity.

During the 3-D model task, participants had difficulty making mathematical connections
around scaling, similarity, and proportional reasoning. In resonance with Eisenberg and
Dreyfus’s suggestion (1991), participants demonstrated a preference for numerical
reasoning over visual reasoning. They became distracted with making measurements,
pushing calculations, and seeking formulae, rather than trying to “see” the possible
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connections and compare the overall proportional changes. Further, their calculations were
at times disconnected from the visual representation. Examples of such disconnect included
using volume formulae to compare surface areas, and confounding measurements of lengths
such as measuring the depth of the water and using that measurement to find the area of the
surface shape. We interpreted this as a reliance on their instrumental understanding (Skemp,
1976) of proportion. We further connect this to participants’ goal-directed activity as the
“goals that learners can set are a function of their current conceptions and related to the task
at hand” (Simon & Tzur, 2004). In particular, we connect conceptions of geometry as a
memory and logic exercise with learning goals that are instrumental in nature. In an attempt
to foster relational understanding, we encouraged participants to attend to the visual
relationships and make connections with the prior GSP activity, rather than focus on the
numerical measurements they had introduced. We also encouraged them to use the
strategies that we had used in our sessions during task development (e.g., reorienting
oneself, repeated filling of the shapes at different angles, considering extreme positions of
shapes, amounts of water, and sketch configurations) and found that this helped them to
make progress in exploring and connecting the mathematics ideas. For instance, Tyler had
demonstrated behaviour typical of participants who were reluctant to explore or investigate.
When attending to the written instructions to tilt the pyramid at a different angle, Tyler
varied the angle minimally and questioned how much he was “allowed” to tilt the pyramid.
We suggested he try a variety of angles, and “go as far as you can” to see what changes
occurred. Although hesitant at first, Tyler gradually tilted the pyramid to consider extreme
positions and did so with varying amounts of water (Fig. 5). He commented, “I wouldn’t
have thought to tilt the pyramid so far because the surface shape would be so different and
so maybe kind of pointless to do that. But it was cool how no matter how far it goes [the
pyramid tilts] you can still see how the shape gets bigger or smaller depending on how
much water there is but basically still looks the same.” Tyler’s comment suggests that
through his exploration, he has begun to develop a visual sense of proportionality and
similarity of shapes.

As noted earlier, the GSP and 3-D model tasks were linked after the first task draft stage.
Specifically, relationships between the areas of the scaled dilated triangles were linked to the
relationships between the areas of the water surfaces at different levels. Comments showed
that some participants could see the GSP sketch in 2- and (simulated) 3-D immediately; for
others, the activity of filling the pyramids helped them make the connection. For instance, on

Fig. 5 Tilting the pyramid: first a little, and then a lot
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filling a tetrahedron with water Rhonda and Flora experienced an AHA! moment when they
noticed the connection to exploring the dynamic geometry sketch on dilation: “It’s a ratio—
this is the same as in the program.” Such connections to proportional reasoning were
supported by the access to measurements and ratios provided in the prebuilt GSP sketches.
Another pair, while exploring the shape of the water surface in their triangular-based pyramid,
used the word “dilation” to describe the changes caused by pouring in additional water,
showing that they had also made a connection between the two tasks.

4.2.3 Revisions

While a modest number of participants recognized the link between the two subtasks on
their own, we decided in our revisions to include more opportunities for connection-making
and reflections. One such revision was to reverse the order and place the 3-D model task
first and the GSP dilation task second. While our intention is that subsequently learners will
work back and forth between the two contexts, we contend that the hands-on investigation
is better preparation for the GSP task, than the GSP task is for working with the 3-D
models. Specifically, our thinking draws on various perspectives. First, children initially
learn mathematical ideas from their 3-D experience of the world and only later are schooled
into thinking in 2-D, i.e., going from 3-D to 2-D is a more natural sequence (Whiteley,
2004). Second, elementary teachers often lack mathematical background (cf., Ball et al.,
2005; Thanheiser, 2009) and view mathematics as “received knowing” (Cooney, 1999),
which is at odds with an exploratory/investigative approach, and we found that these
deficiencies were more easily addressed during the group-based hands-on investigations
than when participants were working with the software. These considerations are analogous to
interface considerations described by Gadanidis et al. (2004) who contend that the
arrangement of ideas intended to be communicated “mediates student engagement” (p. 275).

In response to our observations regarding participants’ instrumental goal-directed
activity, we made several additions to the worksheet package that accompanied the 3-D
model exploration. Our intention, and the corresponding effect for participants, was to shift
focus away from number/formula pushing and toward connection-making and heightened
visual spatial sense. We hypothesized that asking participants to “compare the shapes you
have drawn as to their lengths of sides, surface area, and volume” without follow-up that
explicitly directed attention toward our intended learning goals, contributed to activity
regarding measurements, and confounded calculations that we observed. Accordingly, the
questions we added to the worksheet prompted participants to reflect on both qualitative
and quantitative aspects. We also included a preliminary set of questions that asked
participants to anticipate or imagine the effects of this activity and its connection to
mathematics (as they understood mathematics). These revisions connect to Simon and
Tzur’s (2004) “criteria for identifying an effect as being part of the learning process: (a) that
the students could pay attention and would tend to pay attention to the effect, and (b) that
the effect can contribute to the intended learning” (p. 98). We hypothesized that the line of
questioning introduced in these revisions would encourage participants to pay attention to
visual spatial aspects and to connection-making, and that the effect might contribute to a
heightened understanding of proportion and dilation, as well as a new appreciation for the
visual spatial component of geometry (rather than the memory/exercise component we had
previously observed).

Considerations along these same lines led to substantial changes in the GSP activity as
well. We revised screens and included explicit names for each, e.g., explore transform, scale
factors. These titles, with a short description of that section of the activity, as well as several
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prompts, were provided as a worksheet addendum to the activity. Our intention was to
emphasize the key points of each screen and to add more scaffolding to help draw attention
to various proportional changes and their corresponding relationships. Though instructions
were still embedded in the sketches, we developed the worksheet to provide a “big
picture”—that is, to help reveal the structure of the task. We also added global questions
such as, “What questions do you have about what is happening? Can you think of
measurements, etc. you would like to see? Please explain.” Thus, instructions for the GSP
task had undergone considerable revising and we hoped that future task drafts would be
more successful at directing participants towards the intended learning goals.

Though not strictly part of the task draft, our revisions also included development of an
introductory GSP session. The session provides an overview of the toolbox, and
opportunities to use and explore items in the construct, transform, and measure menus.

4.3 Task draft 3: from 3- to 2-D
4.3.1 Content

As indicated, in this task draft, the 3-D model task preceded the GSP task. A brief
demonstration of pouring water into shapes was used as an introduction, and participants
were encouraged to “play” and to record their findings. Instructions for the GSP task
prompted participants to work on the first two sketches in sequence, and then to explore,
guided by their interests, the subsequent sketches. Worksheet questions for this, our most
recent task draft, as well as snapshots of a selection of the GSP screens, are included below
in Appendix A and B, respectively.

4.3.2 Testing

Our most recent task draft was tested with a group of 18 elementary teacher candidates.
Activities were done in pairs, with one worksheet, one set of materials, and one laptop per
pair. As in the first two stages, participants had various difficulties and successes. Their
limited mathematical background again made it difficult for them to communicate and to
make correct observations; and as before, participants were distracted by imperfections such
as the effects of surface tension. Nevertheless, the participants playfully explored the 3-D
models, generating long lists of different surface shapes and they even initiated looking at
extreme cases (e.g., by using very large angles for tilting).

In this stage of testing, due to class time considerations, the GSP introduction was
conducted a week prior to the Filling Task exploration. This eased the cognitive
demands on participants, and we noticed that they were more confident about using GSP
(e.g., dragging, modifying sketches) during the exploration than in previous testing
stages. However, we noted that many participants had difficulty interpreting GSP
measurements, in particular when GSP calculations yielded the same result for ratios of
varying segment lengths for a given scale factor, there was confusion as to whether or not
the program was recalculating data. Also, round-off errors in length measurements made
it difficult for participants to recognize proportional relationships. As in the first stage, we
noticed that some participants ignored onscreen instructions—their investigations were
dictated by the questions on the worksheet. As a result, they played with sketches simply
by dragging the main shapes and missed a number of opportunities built into the sketches.
In contrast to the first stage however, this behaviour was limited to a minority (four out of
18) of participants.
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As in the stage 2 testing, the link between the GSP and the 3-D model tasks was noticed
explicitly by participants. One example was quite striking—a participant looked at the very
first sketch—two dilated triangles and a point labelled “center of dilation”—and said to her
partner, “Do you not see lines here connecting these here and here?” pointing to the center
point and corresponding vertices in triangles and actually connecting them with her ruler
held in front of the screen. She was referring to lines that were not visible on the screen, yet
she was “110% sure it’s a pyramid.” Overall, we found that participants made connections
between the two sub-tasks more explicitly; we attribute this to the revisions, which
provided clearer opportunities to notice the relationships. However, we continue to see
significant difficulty with the “scaling of area” and are developing representations to
address this problem in future task drafts.

5 Discussion

Through this lengthy (and still unfinished) process, we have worked to problematize a
spatial visual task that will help elementary and middle school teachers broaden their
understanding of dilation, ratio, and proportion. That is, variations of the task have been
tested, discussed, and revised with respect to KDUs and an HLT (Simon, 2006; Simon &
Tzur, 2004) that evolved over time to meet the needs of our participants.

Our testing process has shed light on KDUs in the area of visual-spatial proportional
reasoning, as well as in the area of mathematics pedagogy. We identify features specific to a
visual spatial sense of proportion including:

(a) Making connections between 3-D models and their 2-D analogues, e.g., “seeing” the
lines of the pyramid in the GSP sketch;

(b) Appreciating dilation as a transformation which is applied to a shape and which has a
center, and gaining a visual sense of “how much bigger” length, area, or volume
become;

(c) Identifying features that are preserved (or not)—for instance when a 3-D model is
tilted at various angles, or when points on a GSP sketch are dragged;

(d) Noticing mathematically significant details and ignoring “distracters” such as physical
imperfections of models.

We elaborate here on points (c¢) and (d), taking points (a) and (b) as relatively
straightforward. Identifying features that are preserved is a broad KDU, relating to
invariance under transformations in general. A key aspect of generalizing and building a
robust concept is appreciating which “changes” or “variations” preserve key properties, and
which break the connections. With respect to a visual spatial sense of proportion, this can
offer important intuitive and embodied senses of area, volume, and proportional change.
Further, we contend that dynamic tools assist this process by allowing repeated observation,
sometimes with an animation that lets you sit back and “watch”, sometimes with an
affordance that allows you to freeze the image in steps giving you time to stop and reflect.

With regard to point (d) noticing mathematically significant details, we note that
awareness of the physical limitations of mathematical models can be interpreted as a KDU
in the area of mathematical modeling, as well as in visual reasoning and in teachers’
pedagogical knowledge. As such, we extend Simon’s (2006) notion of KDU beyond the
realm of mathematics and into that of mathematics pedagogy. In particular, we argue that a
teacher’s sensitivity to the practical constraints of a model, or of technology, can (as it did
for us as task designers) open the door to important learning opportunities. For instance,
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after our first stage of testing, we noticed considerable challenges with the materials in our
models. Our response at first was to improve our materials—we eliminated the plasticine
slicing and focused on the filling aspect. During the second stage of testing, we were aware
of the potential for confusion around the effects of surface tension and made use of the
opportunity to raise participants’ awareness of the limitations of physical models and to
help them focus on the mathematically significant features, e.g., visualizing the perfect
tetrahedron, or the imagined line of symmetry of a perfect isosceles triangle—both of which
were represented physically (and imperfectly) with the plastic model and the water surface.
In this process, our participants were learning (as the developers had earlier) what features
were distracting, and which were relevant to their reasoning. Such a process can draw the
learner into a meta-dialogue about mathematical ideas that we believe is particularly
appropriate for preservice and practicing teachers.

In keeping with our grounded theory approach, we further connect features (a)—(d) listed
above to broader categories of visual-spatial investigations that emerged as themes during
our data analysis. We first note, and then elaborate upon, three main categories:

1. Developing exploration strategies
2. Recognizing mathematical ideas across strands and dimension
3. Seeing the mathematics.

Regarding the first category, developing exploration strategies, we note participants’
reluctance and even inability to explore independently with 3-D models or computer
software. This category is illustrated by, for instance, Tyler’s hesitant tilting of the pyramid,
as well as participants’ inclination to introduce formulae to “solve” rather than to explore
and observe changes. There were also various incidents of participants’ reluctant dragging
of points or line segments during the GSP investigation, and a tendency in the early stages
of testing to move step-by-step through the GSP screens without exploring connections
between them. This category is connected to the KDU listed as item (c) above: Identifying
features that are preserved (or not) when the 3-D model was tilted at various angles, or
when points, etc., on the GSP sketch were dragged, since it is only through exploration
strategies that one is in a position to draw conclusions.

Recognizing mathematical ideas across strands and dimension is a category that emerged
with strong support in the data during each of the testing stages. Participants in early testing did
not identify connections between concepts such as dilation and similarity, or between 2- and 3-
D instantiations of concepts. The frequency and ease of recognizing mathematical ideas across
strands—that is, making connections between different representations—increased with
subsequent task drafts, particularly as our questioning became more directed and as links
between GSP screens were more explicitly drawn. As indicated by the AHA! moment of
Rhonda and Flora (“It’s a ratio—this is the same as in the program”), making connections
between mathematical ideas across dimensions—between the 3-D models and their 2-D
analogues (item (a) of our KDUs)—facilitated connection-making between concepts and across
strands. The ability to “see” the lines of the pyramid in the GSP sketch drew attention, for
instance, to the fact that the different cross-sections of the pyramid (i.e., the surfaces associated
with different levels of water) were similar, and also to the idea of dilation as having a center.
We found further evidence in the data of connection-making across numerical and geometric
representations, which occurred in later testing stages and which was noticeably absent in the
first testing stage. Careful visual encoding of the GSP task, for example, kept the focus of
investigation on visual aspects, but also provided access to measurements and ratios to help
solidify concepts.
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The third category observed in the data we refer to as seeing the mathematics. It was
clear at all levels of testing—though with encouragement and support, participants in later
sessions fared better—that these teachers and teacher candidates were not doing the type of
things associated with KDUs (b) appreciating dilation as a transformation and gaining a
visual sense of “how much bigger” length, area, or volume become; and (d) noticing
mathematically significant details and ignoring “distracters” such as physical imperfections
of models. We observed a lack of non-numeric solving strategies, as well as a reliance on
formulae and measurement, combined with a lack of terminology for describing what they
saw.

Taken together, these categories present a picture of participants who had trouble
progressing beyond a superficial investigation. Many lacked strategies for engaging
mathematically with the objects, were unaware of and lacked experience with making
connections between strands and dimensions, and were unable to “see” (and talk about)
mathematical details in objects and dynamic sketches. In later versions of the tasks, we
helped participants by giving specific suggestions (i.e., try tilting the pyramid to extremes),
explicitly pointing out connections (through screen statements and sketch provisions), and
asking more focused questions about what they were observing, but we are far from having
achieved complete success.

We suggest that the underlying difficulties faced by participants are related to what
Cooney (1999) refers to as “received knowing”. In this respect, our participants differ from
young children who are still open to investigating and wondering. In our jurisdiction,
elementary teachers seldom have a strong background in university mathematics and have
often been taught mathematics via traditional methods that include: telling students how
and what to do, teaching topics separately and disjointedly, and having students memorize
rather than discover or notice mathematical details. We believe that this shared
mathematical experience explains what we observed—adults unsure of how to proceed or
explore; adults who could not, without significant help, make connections; adults who were
often unable to separate a mathematical detail from a general one.

Though the adults in our sessions were actively “doing something” most of the time, we
suggest that they were still not engaging with the big ideas within the mathematics. They
expected that at some point, we would draw everything together and tell them what it all
meant. Thus, we theorize that in order to develop spatial visual reasoning for elementary
school topics, adults (specifically elementary teachers and teacher candidates without
substantial mathematics background) need to engage in tasks that first and foremost take
into consideration the tendency to see math as received knowledge. These tasks, as we have
shown in our delineation of the task drafts for this research, must be carefully structured to
ensure that participants develop exploration strategies, build connections, and learn to
notice mathematical details in geometric situations.

6 Concluding remarks

This paper exemplifies task problematization in the spatial visual domain of elementary and
middle school mathematics, and offers the construct of fask drafis as a theoretical mechanism
within which task problematization can occur. Through our analysis of the content of and
response to various task drafts of The Filling Task, we shed light on the specific needs of
prospective and practicing teachers that impact a researcher’s construction of hypothetical
learning trajectories, HLTs, (Simon & Tzur, 2004) for this demographic. We identified three
categories that emerged from the data—developing exploration strategies; recognizing
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mathematical ideas across strands and dimension; and seeing the math—that connect to
KDUs (Simon, 2006) of a visual-spatial sense of proportional reasoning.

Our study extends our understanding of spatial visual learning with elementary
teachers. It confirms Arcavi’s (2003) challenges around visualisation (cultural, cognitive,
and sociological). For instance, we found it necessary to continually moderate the
cognitive demand of our spatial visual tasks by modifying the tasks themselves and by
emphasizing the use of explicit visual strategies with the participants. In respect to
Arcavi’s cultural challenge, our findings indicate that mathematical engagement for
elementary teachers and teacher candidates must attend to the consequences of their
views and expectations of mathematics. Our observations in this area resonate with
Cooney’s (1999) work. We found that our participants’ approaches towards learning
mathematics were primarily passive—i.e., they did not reflect the curiosity, question
posing, and active search for answers that we associate with doing mathematics. Both pre-
and in-service teachers were hesitant to explore or investigate properties; they relied on
memorized bits of information and equations, and expected us to reveal the “answers”. This
suggests that the participants had experienced mathematics as “received knowing” (Cooney,
1999); they had not learned appropriate exploration strategies and thus were often unable to
benefit from opportunities to observe connections between different representations of
concepts. Our research illustrates the importance of developing tasks that will help elementary
teachers revise their approach to mathematics, e.g., tasks that require physical exploration
strategies, tasks that focus attention on connections between dimensions or mathematical
strands, and tasks that support posing and answering questions.

Although Arcavi’s sociological challenge relates to different visualisation abilities of
different cultural groups, we propose that it may also be appropriate for thinking about the
visualisation abilities of those who have been schooled differently. In this respect, our study
extends earlier research in the area of geometry learning (cf., Del Grande, 1990; Lehrer et al.,
1998; Wheatley, 1990; Yakimanskaya et al., 1991) by drawing attention to ways in which
educating teachers is different from educating children. In particular, our early observations
suggested that the geometry background of our participants, which had focused on geometry
as a logic and memory exercise, hampered participants’ ability to use spatial visual skills. Our
subsequent refinements of The Filling Task sought to address this important issue.

In conclusion, The Filling Task was designed through consideration and integration of
three theoretical perspectives that speak to the mathematical and pedagogical sensitivities
required for task design. We extended Gadanidis et al.’s (2004) and Sinclair’s (2003) work on
the design of technological tasks to the design of activities for pre- and in-service teachers
that integrated opportunities for exploration with dynamic geometry software and with 3-D
physical models. We further connected these task design considerations to Simon and Tzur’s
(2004) construct of the hypothetical learning trajectory, which in our research was continually
refined and developed through the analysis and interpretation of adult participants’
engagement with various task drafts. Aware of our adult participants’ broader knowledge
base, we designed The Filling Task to support the investigation of proportional reasoning in
geometric contexts using spatial visual skills; as we became aware of their reticence around
spatial visual exploration, we refined the task to support development of abilities in spatial
investigations. We believe that the task at this stage provides the opportunity for prospective
and practicing teachers to develop flexible imagery, in which changes can be explored
mentally, and other variations not seen externally can be imagined. Using our newly acquired
understanding of the categories of teacher learning listed above, and of key developmental
understandings specific to teachers’ learning trajectories, we continue to modify the task with
the goal of helping teachers and teacher candidates “see” as mathematicians do.
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7 Appendix A—The filling task worksheets

Note: spaces for student responses have been removed.

Pretask questions

1.
2.

Imagine you have poured water into the pyramid...

What shape(s) do you expect to find?
Do you expect the shapes to change as you add more or less water? Why or why not?

The 3-D model activity:

W

Using the materials provided, embed the bottom vertex of a pyramid in play dough so
that the top is parallel to the table.

(a) Pour in a small amount of water—record as best you can the shape of the surface
of the water from the top (e.g., with a picture, verbal description...).

(b) Pour in an additional amount—record the shape.

(¢) Pour again—record.

(d) Compare the shapes you have drawn as to their lengths of sides, surface area, and

9
& =

Repeat #1 for the same pyramid tilted at a different angle

Repeat #1 and #2 for the other shaped pyramid.

Recalling step 1, describe in your own words what was happening to each of the
dimensions of the water’s shape as (1) more water was added, and (2) some water was
poured out. Please describe how the changes in dimensions are related, if they are.
Reflect on steps 1 and 2 above.

(a) In what ways, if any, did the shape of the surface area change when you tilted the
pyramid?

(b) In what ways did the shapes’ measurements change?

(¢) Do the same observations you made in question 4 above hold true for this new
shape? Why or why not?

How many different shapes in the top surface of the water can we create by tilting the

pyramid in different ways? Please sketch them.

Do the same observations you made in question 4 above hold true for these new

shapes? Why or why not?

The GSP dilation activity:

The questions in this section are numbered to correspond with the pages in the GSP

sketch. You are not required to explore all of the pages. Take your time with the ideas and
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concepts that are most striking to you. Please wait to explore questions 7 and 8 until after
the class discussion.

1.

2.

Explore dilations: drag and explore. What questions do you have about what is
happening? Can you think of measurements etc. you would like to see? Please explain.
Explore transform: the sketch was made with the dilation tool of the transform menu. See
how it works on a general shape. Could this be done with any shape? How do you know?
Scale factors: this page lets you use a slider to explore the effect of changing the scale
factor. Note: The scale factor is the ratio of the sides of the two copies. What do you notice?
Measured ratios: in this page, we have measured some ratios. What do you notice? When
you drag the points of one of triangles—what happens to the ratios? Please explain.

Are there other ratios you would like to see measured?
Ratios to center: in this page, we measure some other distances. What are you seeing?
What happens to ratios as you drag the points? Please explain.

What happens when you move the slider? Please explain.
Scale area: we have looked at how various lengths scale. How does the area scale?
Please explain.

Can you predict a formula for how the area scales when the scale factor of the sides
is ? Please explain the reasoning behind your prediction.
Scale drawing: this revisits the production of a scale drawing. How does this connect to
dilation?
In your opinion, how does this activity relate to the watering can activity? Please explain.

8 Appendix B—The filling task GSP sketches

Screen 1: Dilations (exploring visually)

GSP Dilation ActivityW - Explore Dilations ==EcE "<~
Dilations =
1. Play with the dilation sketch below by clicking on the arrow tocl and dragging
points, objects, and the slider around.

2. Click
3. Click and drag points, objects and slider to see how a dilation is
made.
0 1 R
Slider :
Center of Dilation
Explore Dilations | Explore Transfom | Scale Factors | Measwed Ratios | Ratios to Center | Scale Area | ScaleDrawing | Discussion| | 4 |» =
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Screen 3: Scale Factors (directed exploration)

[ GSP Dilation ActivityW - Scale Factors

[0
@
1o [l

Dilations continued
Dilating a figure about a center creates a scaled copy of the figure.

You can always start over with
1. Click

Drag points and cbserve. Estimate the scale factor.
2. Click Slider Position #2
Drag and observe. Estimate the scale factor.

3. Clickon 2

Drag points and center of dilation. What do you notice?

0 1 R
Slider

.
Center of Dilation

Esplore Diations | Explore Transform  Scale Factors | Measwed Ratios | Fiafios to Center | Scale Area | ScaleDrawing | Discussion| | 4| »

Screen 6: Scale Areas (connecting visual and numerical understanding)
GSP Dilation ActivityW - Scale Area =R "

Dilations continued [RESET] =
Dilating a figure about a center, creates a scaled copy of the figure. L

1. The ratio of the areas of ABC and A'B'C' is calculated at the right. What do you notice?
2. Click on the preset slider positions for clues. Use the Show Ratios button for more clues.
3. Drag the slider point, the center of dilation and other points to see the effect.

BA'
What is the relationship between the scale factor and the ratio of the areas? Ba 162
0 2 1 2 3 R (Areanwe)
Slider (Area ABC)
Siider Posiion #3 B
Hide Ratios B /
4 526
ks
ull A'B'C
ABC
L[] a‘
Center of Dilation i
L._E. £8om
f'\ci i
Explore Dilationss | Explose Transfoem | Scale Factors | Measued Rlatios | Ratios to Center  Scale Avea | ScaleDrawing | Discussion | | « | | 1—
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Screen 8: Discussion (connecting the 3-D model and the GSP activity)

GSP Dilation ActivityW - Discussion ==

Center of Dilation

/\ »
/
Center of Dilation

-
Explore Dilations | Explore Transform | Scale Factors | Measwed Ratios | Ratios to Center | Scale Avea | Scalelrawing  Discussion Jﬂ | k|
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