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Abstract We present epistemological ruptures that have occurred in mathematical history
and in the transformation of using technology in mathematics education in the twenty-first
century. We describe how such changes establish a new form of digital semiotics that
challenges learning paradigms and mathematical inquiry for learners today. We focus on
drawing analogies between the emergence of non-Euclidean geometry with recent advances
in technological environments that are dynamic and interactive both visually and haptically.
This analysis yields a new digital semiotic theory.
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1 Background
1.1 Epistemological ruptures

We focus on epistemological ruptures in mathematical knowledge that have occurred
because of the existence of various epistemological obstacles (Bachelard, 2002) in the past.
We present an epistemological analysis not to present any new historical facts but instead to
help us think about the nature of mathematical knowledge and hence learning today.

We present two epistemological ruptures from pre-twenty-first century history, which
could be defined as the knowledge of mathematicians and how mathematicians questioned
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the work of previous mathematicians. We then present two analogous epistemological
ruptures from the twenty-first century, which focus on the affordances of new technological
environments and the knowledge of mathematics learners. Figure 1 outlines these four
ruptures. We claim that these later ruptures will cause similar perturbations in how
mathematics is conceived of in the future and how we apply it to learning.

The first pre-twenty-first century rupture describes Kant’s conception of space as the
space around us and the inflexibility of Euclidean geometry to analyze physical space.
Gauss and others challenged the Euclidean structure of space and new mathematical
structures were established to explore space. These new structures created a tension
between cognition and logic. The second pre-twenty-first century rupture focuses on
Euclid’s conceptions as synthetic and not as analytical, and on the need to develop a more
formal system with intuitive images in non-Euclidean geometry that link to reality.

The first twenty-first century rupture describes the evolution of dynamic modeling
environments that can modify our natural ontology to accommodate change and variation.
This “dynamic movement” illustrates a representational re-description of mathematics
(Tomasello, 2000). The second twenty-first century rupture is in the evolution of new
technologies that create not just visual but haptic experiences to analyze the mathematical
structure of space. Such technologies become new mediating artifacts to explore space
overcoming the need to abstract attributes of mathematical structures at a visual or literal
level.

The direct correspondence with the historical mathematical structure was broken after
the discovery of non-Euclidean geometry. We demonstrate that this is what is also occurring
with the implementation of dynamic mathematical software, which breaks the correspon-
dence with static mathematical objects in turning to new digital semiotics. This
demonstration is the heart of our semiotic argument.

1.2 Theoretical framework

These technological inventions allow such ruptures and a new kind of modernism that we
have seen in the past. Gutenberg’s printing press and Koenig’s flatbed cylinder press
accelerated social and technological change, which established broad educational literacy
campaigns (Krug, 2005) and impacted social identity and knowledge:

By the beginning of the nineteenth century, all of the social apparatus was present for
the creation of a mass, shared, language and literature which would help to produce
new definitions of social identity and relations as well as an ideological viewpoint
consistent with capitalism, empiricism, and the abstractions of time and place which
would fit well with the modern, urban, disjointed social and which legitimated the
roles of experts of all kinds in running the social. (p. 106)

Pre-21" Century 21" Century
Epistemological Rupture 1: Epistemological Rupture 1:
Emergence of an embodied Emergence of an embodied
mathematical structure mathematical structure through dynamic

modeling environments

Epistemological Rupture 2: Epistemological Rupture 2:
Reformalizing the mathematical Sensing the mathematical structure of
structure of physical space physical space

Fig. 1 Epistemological ruptures
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In mathematics education, the notion of epistemological obstacle has been a useful
construct to analyze errors and student difficulties (Sierpinska, 1987; Janvier, 1998) in
learning mathematics and the didactical consequences of acknowledging their existence
(Brousseau, 1997). But in the mid-1990s it was criticized for not addressing socio-cultural
factors. To quote Sierpinska (English & Sierpinska, 2004):

And then, in the mid-90s, from the post-modern perspective, epistemological
obstacles became a bad word; the philosophy underlying epistemological obstacles
was criticized for being “recapitulationistic and parallelistic”, for not sufficiently
taking into account the socio-cultural factors. (p. 466)

Herscovics (1989) has also criticized the notion since it was not established in terms of
individual learning experiences but the development of scientific thinking more broadly.
We believe that the notion can be used to discover epistemological ruptures but the notion
of culture needs to be redefined to address the co-evolution of technology and learning
today. For us, culture is the co-evolution of digital media and expressive communicative
actions. In other places (Moreno-Armella, Hegedus, & Kaput, 2008), we have begun to
develop a digital semiotic theory that unpacks the nature of this co-evolution.

We adhere closely to the pragmaticism of Peirce (Peirce Edition Project, 1998) in
analyzing the interaction of the (digital) sign, the artifact (its medium or mediated object)
and its interpretant (the effect of the digital sign on the interpretation process). This view is
based on Peirce’s well-known triad of icon-index-symbol where signs can evolve through a
series of referential associations (Deacon, 1997) to establish a meaning-making system and
symbolic thinking.

In contrasting epistemological ruptures pre-twenty-first century with present
development we propose a shift in semiotics to focus on a digital semiotic theory
that continues to support the study of semiotics in its focus on the interaction of signs
with the users of those signs but extending it to new “users” or “agents” that are
evolving in digital environments; many of these are digital representations of the
contributions of such users (e.g., the expressive actions of students, students’ graphical
constructions or equations).

We establish this shift through various notions including co-action that we have
introduced previously (Moreno-Armella & Hegedus, 2009). This notion explains how
technology users are involved in more than just a traditional semiotic enterprise when
interacting with a digital “interface”; instead, it allows us to think and explore by guiding
and being guided by that same environment. It is a reciprocal relationship—co-action—and
not a one-sided arrangement—interaction. An environment that allows users to build things
and see the interplay between their de-constructive and re-constructive actions presents a
physically dynamic interchange between force-push of stylus or mouse to programmatic
action. We can see the actions of our intentional force-push as being a structured thoughtful
action. So listening to someone, watching someone’s bodily motion, analyzing exploration,
contraction of muscles, tension in the self or voice, can all be necessary modifiers of the
environment explored. As our actions become deeply embodied into the very substrate of
the environment we are in, we modify this place for our future thinking—in the spirit of
Baldwin (1896)—both for others but most importantly for us. And so, the environment
guides our thinking and our future actions as we interpret the feedback in various evaluative
ways. Such co-action is an organizing principle for the way we make sense of sign-ing,
object-ing, and sense-ing the very essence of the structure.

In this mode, we are examining the evolution of how mathematical sign systems evolved
and how the symbolization process was transformed through representational re-descriptions
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over time. We are analyzing mathematical epistemology and applied epistemology in the
present day through a semiotic lens (Otte, 2006).

And so, we propose that mathematical structure is the semiotic essence of a new digital
semiotic theory. Without an understanding of mathematical structure and emerging
structures that we as users or agents can modify through the affordances of new technology,
we are not in a new era. As such, the embodiment of our prior knowledge allows us to
design and think about mathematical ideas, and new mathematical modeling activities,
hitherto un-heard of. For example, later on in our analysis, we shall discuss the idea of
circle-ness and see how triangle-ness is a very plastic term that stretches across paradigms
within one technological platform. It is no longer necessary to think about deficiencies but
affordances to see through the structure that Kant and Euclid painted. Mathematical
structures have historically been invisible and we shall illustrate how such ideas can
become accessible and perceivable through our interaction with digital technologies.
Structure no longer needs to be an abstract quality known only to the inventor.

2 Epistemological ruptures of mathematical knowledge: pre-twenty-first century
2.1 Epistemological rupture 1. Emergence of an embodied mathematical structure
2.1.1 Kant: forms of sensibility

In the first lines of the Introduction to his Critique of Pure Reason (1781/1787), Kant
explains (Wood, 2001, p. 24) that although our knowledge always begins with experience,
this does not mean that it arises from experience. This would happen because the knowing
subject actively contributes to the production of knowledge through his/her faculty of
knowledge. That everyone possesses an innate cognitive toolbox (forms of sensibility) that
transforms those perceptions into pieces of knowledge is one of the keystones of Kant’s
epistemology. Of course, nobody is aware of the workings of these forms of sensibility that
transform the original perceptions into knowledge and so we could have the conviction that
what we experience is reality in itself. Kant decided to live an epistemological life different
both from empiricism and the modern rationalist school of Descartes and Leibniz. His was a
third way. He even severely criticized Plato because he considered the Greek philosopher
was too far from the solid soil of sensuous experience. He expressed his criticisms with
these words:

The light dove, piercing in her easy flight the air and perceiving its resistance,
imagines that flight would be easier still in empty space. It was thus that Plato left the
world of sense, as opposing so many hindrances to our understanding, and ventured
beyond on the wings of his ideas into the empty space of pure understanding. He did
not perceive that he was making no progress by these endeavors because he had no
resistance as a fulcrum on which to rest or to apply his powers, in order to cause the
understanding to advance. (p. 27)

Kant was not an empiricist. His epistemology is based on those a priori forms of
sensibility that wisely transform the empirical material into knowledge. It is as if the
empirical data were a liquid entering a pitcher that conceded a shape to those empirical
data. Knowledge is then, for Kant, the result of giving shape to data through the innate
forms of sensibility. That is how space, for instance, was conceived in Kant’s magnum
opus. All we see around us can be seen, uniquely, as in Euclidean space, and there is no
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other possibility according to Kant. We filtrate the sensuous experience of space through
this geometric form of sensibility. At the end, the only possibility for the experience of
space is Euclidean: this is the only conclusion we can reach through our (innate Euclidean)
glasses. In his words:

Space is not an empirical concept which has been derived from external experience...
Space is a necessary representation a priori, forming the very foundation of all
external intuitions...Space is therefore regarded as a condition of the possibility of
phenomena, not as a determination produced by them; it is a representation a priori
which necessarily precedes all external phenomena. (p. 45)

Space is thus the pitcher and, furthermore, a Euclidean pitcher. Reality then, is imbued
with a deep subjective dimension that makes us conceive it unavoidably as Euclidean
space. Thinking this way led Kant to assert that human intellect imposes its laws on nature.
Certainly, this view was a kind of Copernican revolution.

2.1.2 Letters of Gauss

When non-Euclidean geometries began to make their presence felt, the custodians of
Kantian orthodoxy erected their opposition. They saw the new geometries as perhaps
interesting intellectual exercises but not impacting the true nature of space (Torretti, 1984,
p- 33). In fact, the order and rationality we perceive in the external world are imposed on it
by our forms of sensibility. As our sensibility is Euclidean, Kant taught that the nature of
space—its rationality—was in full agreement with The Elements of Euclid. Sir Arthur
Eddington, the British physicist, followed Kant’s teachings almost verbatim. In 1916, he
wrote (Eddington 1916/1979, p. 213):

The space and time of physics are merely mental scaffolding in which, for our own
convenience, we locate the observable phenomena of nature.

Nevertheless, the gates were already open and new conceptions of space began
demanding attention. Firstly, a clear-cut distinction was to be made between space, as
described and explored formally by Euclidean geometry and physical space. This
distinction was necessary as Kant had declared that physical space was shaped by our
Euclidean sensibility. Consequently, according to Kant, there was no difference. But there
was. During his university days, Gauss had heard the fuss about the fifth postulate of
geometry. It is well known how from Proclus to Legendre, for over 2,000 years, people had
fought with the postulate trying to establish it as a theorem. Because it had to be true. Very
young, Gauss tried to leave his mark on this old problem. Eventually he realized why his
attempts would be in vain. In his letter of 1817 to Olbers (Gray, 2007, p. 91), he wrote:

I am becoming more and more convinced that the necessity of our [Euclidean]
geometry cannot be proved, at least not by human reason nor for human reason.
Perhaps in another life we will be able to obtain insight into the nature of space,
which is now unattainable.

The voice of Gauss is particularly interesting because, besides being an extremely deep
thinker, most of his meditations—as he called them—with respect to the nature of space can
be read in the letters he wrote to his friends. These letters reveal such undertones, as if
Gauss had Kant in mind as an interlocutor with whom he was discussing secretly and
intensely. Along these revealing lines, we can read his realization that the nature of physical
space can escape the Euclidean almost iconic determination dreamt by Kant. At the same
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time, Gauss was reluctant to go against such an old tradition that this corner of the
universe had supported so well. It is natural to grant global legitimacy to local
experience. Consequently, Gauss was in the middle of a vortex, whirling around
tradition and a new deep idea: the separation of reality from mathematical space.
Iconicity would be broken. Gauss continued thinking on this problem through his
friends. The letters he wrote and received from Olbers, Schumacher, Bessel, and some
other confidants, played a role of mediators to his thought. Thinking through his
friends’ thinking was his personal approach that, at the same time, avoided all risk to
his immense shadow.

Regarding his attitude, one comes to think of what Wenger (1998) has called
communities of practice. That is, a group of people sharing a serious interest—in this
case geometry—that they learn better as long as they interact regularly. However,
interactions took place exclusively through Gauss’ letter with each one of them. This is
an especial community of practice with a kind of implicit interaction through Gauss’
guidance.

By 1817, his interests were not just theoretical but practical and experimental as
well. Euclidean geometry was a main tool in his present geodetic work (Breitenberger,
1984), thus for long years, he was having diverse opportunities to test the old knowledge.
Geodetic triangles measured 180°—even the famous (and controversial) BHI triangle that
Gauss used to link his triangulation of Hanover with contiguous ones (p. 277).
Nevertheless, in 1829, Gauss sent this probe into Bessel’s mind: “My conviction that
we cannot base geometry completely a priori has, if anything, become even stronger”
(Gray, 2007, p. 95).

A year later he added that his inner conviction (always convictions, never proofs...) was
that number had an a priori nature not shared by space:

Our knowledge of the former [space] is missing that complete conviction of necessity
(thus of absolute truth) that is characteristic of the latter [number]; we must in
humility admit that if number is merely a product of our minds, space has a reality
outside our minds whose laws we cannot a priori state. (p. 95)

Gauss’s perception was not that of his community of practice. It was his mediating
artifact and his sowing field for such an audacious point of view. Earlier, in a letter to
Taurinus, Gauss had explained some crucial results from a non-Euclidean geometry he was
investigating. He wrote, for instance, that in such a geometry, the area of the triangle can
never exceed a definite bound; the sum of the angles of a triangle can be as small as wished
if the sides are taken large enough. And he added:

All my efforts to discover a contradiction, an inconsistency in this non-Euclidean
geometry have been without success...But it seems to me that we know, despite the
say-nothing word-wisdom of the metaphysicians, too little, or too nearly nothing at
all, about the true nature of space, to consider as absolutely impossible that which
appears to us as unnatural. (p. 95)

He was fully aware of the implications from the existence of a non-Euclidean geometry.
It would be a definite rupture with the past, the emergence of a new mathematical
epistemology. There was no way to test the truth of geometry experimentally. We cannot let
be unnoticed this remark: that what is possible from the logical viewpoint can be unnatural
from a cognitive viewpoint. In fact, Gauss is saying—although implicitly—that below the
collection of results, we have as a body of mathematical knowledge, a structure emerging
that creates a tension between cognition and logic.
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2.1.3 Lobachevsky

Lobachevsky’s conception of geometry is similar to that of Gauss. In the New Principles of
Geometry (1825), he says (Bonola, 1955): “The fruitlessness of the attempts made, since
Euclid’s time, for the space of 2,000 years, aroused in me the suspicion that the truth, which
it was desired to prove, was not contained in the data themselves” (p. 92).

Thus, Lobachevky arrived at the conviction that it was not possible to prove the fifth
postulate as a theorem from the remaining postulates. This conviction fueled him to explore
the consequences of the new system that included as a postulate: through a point, not on a
given (straight) line L, there are at least two lines that never meet the line L. Let us call this
the hyperbolic postulate. By adopting the hyperbolic postulate, Lobachevsky made explicit
his rejection of Kant’s thesis that space is an a priori form of sensibility and consequently,
that it does not arise out of experience. Lobachevsky went quite far in his development of
this postulational system and never met any logical contradiction. But he knew that a
contradiction could be lurking ahead. Then, he tried a different approach to study the
coherence of his system. It is interesting to observe that there was never any doubt with
respect to the coherence of the Euclidean system. Everyone was convinced of its coherence.
In his Imaginary Geometry of 1835 (see Efimov, 1980), Lobachevsky wrote:

Based on astronomical observations, I proved in my works on the elements of
geometry that in a triangle whose sides are almost as long as the distance between the
Earth and the Sun the angle sum can differ from two right angles by an amount not
exceeding 0.0003 of a second...The propositions of practical geometry must
therefore be viewed as having been rigorously established.... (pp. 34-35)

Lobachevsky developed the corresponding hyperbolic trigonometry and found that,
translated into this analytic language, the theorems of the hyperbolic system were coherent.
In a sense that was as far he could go at that time with his available tools.

When Farkas Bolyai, the father of Janos Bolyai, learned of his son’s attempts to solve
the problem of parallels, he urged him to publish as soon as possible because “when the
time is ripe for certain things, these things appear in different places in the manner of violets
coming to light in early spring” (Kline, 1962, p. 559). The image that these words convey is
that ideas circulate throughout the communicational infrastructures of cultures; ideas
resonate and become crystallized by means of the diversity of representational media that
cultures provide. And in fact, that happened to Janos Bolyai’s world of Hyperbolic
Geometry that he thought of as a world he had created out of nothing.

The distinction between the objects of mathematics and the objects of natural science
was gaining momentum. Gauss’ student, B. Riemann, in his famous essay On the
Hypotheses Which Lie at the Foundations of Geometry went further in this line of thinking.
Poincaré (1905/1952) in his classic Science and Hypothesis made explicit his view when he
said: “geometrical axioms are neither synthetic a priori intuitions nor experimental facts.
They are conventions. Our choice among all possible conventions is guided by
experimental facts” (p. 50).

The idea of mathematical model was taking on a new epistemological status. We can
define mathematical objects as very slow processes. When we represent them symbolically,
we are making them stable; by crystallizing them, we make them objects of a discourse.
Nevertheless, this has not always been the case. Geometry has traveled a long journey
beginning with iconic drawings and arriving at the conscious realization that mathematical
structures, in their role as models, are the new mediating artifacts to explore space. Having
a structure, seen as a mediation-artifact, is having a determined mode of action that
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eventually will produce knowledge; a knowledge dependent on the artifact—the structure.
Artifacts are never epistemologically neutral.

2.2 Epistemological rupture 2. Reformalizing the mathematical structure of physical space
2.2.1 Euclid: synthetic vs. analytic

Frequently, modern authors criticize the Elements for “lack of rigor.” For instance, in
passages when Euclid uses “the point of intersection” of a circle with a straight line, those
critics react saying that the axioms Euclid used did not guarantee the existence of the said
point—with these or similar words. We propose that these authors are misunderstanding the
role and the nature of the drawings in the Elements. Let us explain with an example taken
from Book III, Proposition 2 in the Elements. This proposition reads: “If on the
circumference of a circle two points be taken at random, the straight line joining the
points will fall within the circle” (Heath, 1956, pp. 8-9).

The proof is by reductio ad absurdum. But then Sir Thomas Heath, the translator, adds a
commentary explaining that such a cumbersome proof is not necessary.

He says that to prove the proposition, it is sufficient to show that any point E (see Fig. 2)
in the segment joining the two points taken on the circumference, defines a segment
(with the center of the circle) that is shorter than the radius.

Why did Euclid take such a complicated route? Very simple. Because the Euclidean
conception of segment (and line) is synthetic, not analytic. This means, for instance, that a
point is produced at the intersection of two lines without implying that the lines “are made”
of points. A line and a segment are holistic objects—they have points but are not built from
the points. Consequently, Euclid had to consider the segment itself, not just its collection of
points.

These remarks are intended to demonstrate that the proof of a result depends on how the
objects involved are conceived. Heath’s misinterpretation, we believe, comes from ignoring
this fact.

The problem of ontology is ever present in Greek mathematics where the geometrical
objects from Euclid’s geometry result from empirical abstractions. This is not a passive

Fig. 2 Circle construction
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process on the part of the subject but results from observation and activity upon the
material world. In particular, the continuity ascribed to these objects reflects the synthetic
nature that these objects have in Euclidean geometry. The notion of a circle is abstracted
from active observation of round plane objects as well as from feeling round objects
following the border with your finger, that is, by feeling the shape. The transfer to
abstraction takes this experience aboard. Euclid’s drawings reflect the primary intuition of
physical objects. The axioms of geometry were adopted as self-evident truths about
physical space. In this line, we can understand why objections to the Fifth Postulate had to
do with the supposed lack of intuitive content of the assertion as it describes what happens
far away.

2.2.2 Gauss and Lobachevsky: truth about physical space

Gauss and Lobachevsky claimed that Euclidean geometry was similar to other
experimental sciences—that it did not contain the truth about physical space.
Lobachevsky explored the nature of physical space using astronomical triangles to test
if the sum of their angles was more than two right angles. That this sum was less than
two right angles had been proved formally—assuming that there was more than one
parallel to a given line—but they did want to confront this formal system with physical
space. Unfortunately, the experiments did not provide conclusive evidence. Neverthe-
less, this way of thinking represented a giant step ahead: mathematics could model the
material world. But now, the internal coherence of the model was independent from
former (that is, Euclidean) ontological considerations. Nevertheless, the ontological
conception of the Euclidean objects was too deep-rooted to easily get rid of it. In fact,
Euclidean geometry could be seen in the world around people whilst non-Euclidean
geometry—developed as a formal system—was still invisible. A geometer could draw a
Euclidean straight line (what they believed) but they could not draw a genuine non-
Euclidean line. It lacked an intuitive image. A new epistemology of mathematics was
about to arrive but its last step was yet frozen in the air.

2.2.3 Beltrami: representational re-descriptions

By 1868, the Italian mathematician, Eugenio Beltrami, proved the local consistency of
hyperbolic geometry. Beltrami showed that this geometry is locally equivalent to the
intrinsic geometry of surfaces of constant negative curvature (see Fig. 3).

The sides of the triangle are geodesic lines. These geodesics were interpreted as
corresponding to the straight lines of non-Euclidean geometry. This illustrates a triangle with
a sum of angles less than two right angles. Thinking in terms of intrinsic geometry led
geometers to interpret the Euclidean plane as a surface of zero curvature. The surface introduced
by Beltrami was the Pseudosphere (see Fig. 4) with constant negative curvature: ;—1

We insist this is a local model of Hyperbolic geometry because the geodesics cannot be
extended beyond the rim (thus, the second Euclidean axiom is only partially satisfied).
Perhaps it is well known that Hilbert proved years later that it was impossible to embed a
complete surface of constant negative curvature in the ordinary 3-dimensional space.
Hyperbolic geometry could be seen although just locally. The model changed the
perception of this geometry from something logically possible to something actually
existent on a surface. The system was abstract however intuition was provided for it. It is
not possible to exaggerate the importance of this work for mathematics. Bolyai and
Lobachevsky had considerably developed the formal structure of non-Euclidean geometry
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Fig. 3 Negative curvature

convinced that it was free from contradiction because the “Euclidean system itself did not
contain the whole truth of the physical space” and consequently could not become a
genuine obstacle to the existence of non-Euclidean geometry as a description of physical
space. They were convinced that the hyperbolic system was internally coherent but could
not provide a formal proof. Beltrami did this locally. His interpretation of non-Euclidean
geometry as the intrinsic geometry of a surface embodies the hyperbolic system in the
surface. So far, non-Euclidean geometry was a formal system; now it could be represented
and become visible. This kind of embodiment is what, in general, a model provides and
with this embodiment, the model provides as well an interpretation, a sense of truth for the
formal system.

Trying to understand human cognition, Karmiloff-Smith (see Tomasello, 2000)
explained that: “a specific way to gain knowledge is for the mind to exploit internally the
information it has stored by re-describing its representations” (pp. 194-195).

Fig. 4 The pseudosphere
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Of course, once this process has taken place, it is crucial that it be externalized through
new semiotic representations. This is what Beltrami did. His embodiment of hyperbolic
geometry as the geometry of a surface of constant negative curvature corresponds to a
representational re-description of the geometric elements pertaining to the surface itself.

With Beltrami’s model the human eye recovered its role as an interpreter. A new and
previously non-intuitive geometrical formal structure had a concrete realization. Perception
and abstraction turned out to be the sides of the same coin.

From this moment on, the rupture that had been taking momentum through the works of
Gauss, Lobachevsky, and Bolyai was finally crystallized. The coexistence of different
systems of geometry—Euclidean and non-Euclidean—was established and with this move,
the nature of mathematics was deeply transformed. Mathematicians realized that through
the art of mathematics they could provide symbolic models, not iconic models. Of course,
they could explore how well the model corresponded to reality under study. This is a
modern attitude and Lobachevsky’s work was probing this attitude.

With Euclidean ontology a mirror was placed between the world and mathematics. Non-
Euclidean geometry broke the mirror.

But an end is always a beginning. Mathematics is a human activity; an activity mainly
pursued with symbols. Now, this activity is about us, not about immaterial and atemporal
objects whose existence is pre-semiotic. We do not see ourselves reflected on a natural
mirror, we see ourselves refracted on a world we have saturated with our own activity. This
is our mirror, not the former, now broken, iconic mirror.

Truth is gone from mathematics. This helps explain the famous dictum of Einstein
(Pesic, 2007): “In so far as mathematical theories are about reality, they are not certain; so
far as they are certain, they are not about reality” (p. 147).

In summary, when we speak of the deep consequences of Euclidean ontology,
particularly how it hindered the conquest of non-Euclidean geometry, this does not mean
we had to transcend our senses and become pure thinkers. This stance would mean a back
step into Plato’s realm of pure ideas. What we say is that when a partial experience of space
is taken as a universal experience, the search for the new is closed. This is reflected in over
20 centuries of a quest for a proof of the fifth postulate. Mathematicians became blind to the
possibility of a new geometry.

Euclidean ontology made a segment a synthetic object. So, the reasoning was based on
the diagrams taken as absolute. The diagrams became the mediational artifacts for
Euclidean epistemology.

What we introduce in the next section is a perspective based on a post-non-Euclidean
geometry. This perspective entails a deep consequence that force is part of geometry, as we shall
demonstrate. We are living in a post-Einstein world so space cannot be conceived of anymore as
an empty vessel. Physics and geometry are blended and this is what we refer to as the rupture.

From the perspective of education, geometry cannot be taught as static. It cannot be
taught as cinematic geometry either. A genuine dynamic geometry has to incorporate force
and elastic dynamic visuals.

3 Epistemological ruptures of mathematical knowledge: twenty-first century
3.1 Emergence of embodied mathematical structure through dynamic geometry

Becoming symbolic beings means, broadly, that we have developed the strategy based on
the ability for something to take the place of another thing. Because this is essentially a
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social, communicative strategy, “taking the place of another thing” had to emerge as an
agreement within a community. The result—the symbol—is a cognitive artifact that enables
us to go beyond the biological frame to find the way to produce more objective versions of
human knowledge. The symbol crystallizes intentional human activity. Human knowledge
results from human activity and the new artifact, the symbol, radically altered the nature of
the activity that produced knowledge. Everything was re-described within new represen-
tational settings.

Dynamic geometry, as a semiotic medium, provides examples of representational re-
descriptions in geometry. We shall illustrate this point by introducing a model for
hyperbolic geometry. Beltrami’s model enabled us to see a hyperbolic straight line. Indeed,
what we saw on that surface, the pseudosphere, was a local embodiment of the hyperbolic
system. There is still a difference we see if we compare this embodiment with the Euclidean
plane. The latter has a naturalness lacking in the former, as we have discussed in the
previous pages. We can draw a segment on a piece of paper and we do not see this drawing
as an embodiment of the concept of Euclidean segment: It is the segment. But we cannot
draw, the same way, a hyperbolic segment on a piece of paper or using a dynamic medium
like, for instance, Cabri software. Our lives flow in a local, flat space. Hyperbolic space is
not flat, it has negative curvature. Beltrami gave the evidence. To draw a hyperbolic
segment or line, we need to do it through an explicit embodiment, that is, through a model
of the hyperbolic segment. The semiotic mediation of the model enables us to see with new
eyes, the segment, for instance. This has a deep consequence: we are constructing a way of
being for these hyperbolic objects and consequently, we develop a way of perceiving them.
In short: we are creating an ontology.

Consider the following example. The hyperbolic world is the interior of the disk
(see Fig. 5). The (straight) lines are the segments of orthogonal circles to the border of
the disk. Observe that diameters fulfill this condition.

The border of the disk is constituted by the points that are at infinite distance from the center
of the circle. In a famous chapter of his book Science and Hypothesis, (1952, pp. 65-68),
Poincaré described a (possible) world whose physical conditions led to a hyperbolic geometry
as the most “natural” geometry for that world. The following figure shows two parallels and
the fact that they are not equidistant (See Fig. 6).

Fig. 5 Hyperbolic model
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Fig. 6 Parallel lines

Given a line it is very easy to see how to draw at least two parallel lines. For instance,
through the point P, two lines parallel to the line / are shown (see Fig. 7).

Perhaps the most interesting movie we could film in this hyperbolic world is the
morphing from a “Euclidean” into a non-Euclidean triangle (see Fig. 8). If we select a very
small triangle it looks Euclidean in the sense that beings living in that world could find the
sum of the angles equal to 180° (within experimental error). But when the triangle is
growing, this Euclidean appearance (and nature) continuously changes. This is a lesson in
perception as well.

What can we learn from this? Structure as a mediating artifact can modify our natural
ontology to accommodate change. Modification is unavoidable; ontology is always there as
an emergent phenomenon from the semiotic object, which leads to the overcoming of the
epistemological obstacles that came as a barrier to past geometers.

Fig. 7 More parallel lines
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Fig. 8 Perceiving Euclidean
triangles in non-Euclidean space

3.2 Epistemological rupture 2. Sensing the mathematical structure of physical space

Haptic technology is another example of representational re-description, especially when
used with dynamic (interactive) geometry. Haptics have evolved over the past 10 years—
particularly out of a focus on virtual reality in the 1990s—and haptics have become more
available in a variety of commercial and educational applications—particularly
3-dimensional design and modeling, medical, dental and industrial applications. In a
meta-analysis of the use of haptic devices, Minogue and Jones (2006) found over 1,000
articles on haptics in the electronic databases ERIC and PsycINFO, but only 78 relating
haptics to learning/education. A large proportion of these were focused on “haptic
perception”—a major field in psychology focused on haptic sense—and the second
main set was focused on multimodality. Multimodality reaches into education in
various ways, intersecting deeply with a multimedia approach. Multimodal approaches
have also focused on the role of gesture with increasing interest recently (Wagner
Cook, Mitchell, & Goldin-Meadow, 2008) with particular focus on this mode as a form
of mathematical expressivity (Hegedus & Moreno-Armella, 2008; Hegedus & Penuel, 2008).

Historically, this shift has been translated as a way to create multiple learning pathways
for students to work within, and predominantly these were dominated by auditory and
visual modalities. Visual perception is inextricably linked with haptic or tactile-kinesthetic
perception (Scheerer, 1986). In fact, this perception is historically said to precede formal
language development and speech (Piaget & Inhelder, 1969). More recently, research in
brain sciences has confirmed the overlap between perception and physical action. Our own
movements and proprioception (continually sensing what our body is doing) allows us to
regulate and make sense of the physical world. In addition, Iacobini, Woods, Brass,
Bekkering, Mazziota, and Rizzolatti (1999) have highlighted an overlap between perceiving
a dynamical pattern and physically enacting it. In these dynamical situations, perception
occurs in many forms. Kozhevnikov, Hegarty, & Mayer (2002) investigated the relationship
between mental imagery and problem solving in physics, specifically in kinematics, and
reported that while spatial imagery (encoding of spatial relations among objects) may
promote problem-solving success, the use of visual imagery (pictorial imagery that encodes
the literal appearance of individual objects) presents an obstacle to problem solving in
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kinematics. Similar findings have been discovered in mathematics education where certain
kinds of imagery can create obstacles (Presmeg, 2006).

Studies have shown that students can experiment with everyday objects in the
3-dimensional world in which they live and create spatial graphs that portray the actual
motion, as well as time-based graphs using the variables of position, velocity, and
acceleration through a more sensory immersive experience (Dede, 1996, 2000).

Our recent NSF-funded work has built upon these established theoretical perspectives of
the role and use of dynamic mathematics software. We have worked on the incorporation of
certain haptic devices with The Geometer’s Sketchpad®. In particular we have focused on the
use of Sensable’s PHANTOM Omni® (http://www.sensable.com/haptic-phantom-omni.htm).
This controller is a desktop haptic device with 6 degrees of freedom for input (x, y, z, pitch, roll,
and yaw), and 3 degrees of output (X, y, and z). The Phantom’s most typical operation is via a
stylus-like attachment that includes two buttons. The Phantom has a very robust community
and Software Development Kit (SDK) behind it. The SDK (OpenHaptics-Academic Edition)
allows for two levels of programmatic control: precise programmer created feedback—such as
vibration—and pre-programmed feedback—such as springs and dynamic/static friction. The
PHANTOM provides up to three forces of feedback for x, y, and z. The PHANTOM is
primarily used in research, with a significant presence in dentistry and medicine.

We have investigated whether the device could be integrated in a mathematically
effective way so that it would be used as a semiotic mediator (as a dragged mouse might be
used in stand-alone dynamic geometry environments to mediate visuals). Our preliminary
work that we report on here incorporated four activities. The first was a point-activity where
connected points could be moved around to assess the ease-of-use of the device in
coordination with the visuals on a screen. The second presented two spheres that could be
pushed around a “universe.” Participants included two young children, two undergraduates
and a mathematics professor. Each participant was associated to project staff. All
participants quickly adopted the use of the device and made the connections described.
The third activity had no visual screen representation but the device was programmed to be
constrained by the forces of a spring. All participants described the forces exhibited
correctly without a visual. The fourth was a dynamic triangle exercise with 4 inputs we
report on here (see Figs. 9 and 10).

Figure 10 illustrates the geometric figure designed with constraints similar to those in
most dynamic geometry environments. A triangle is constructed on a pair of parallel lines.
The participants interacted with the figure by moving a cursor via the haptic device to one

Fig. 9 Experiment with a
6-year old
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Fig. 10 Dynamic triangles ¢ *

of the four hotspots (A through D). When selected, the force feedback of the device was
linked proportionally to the area of the triangle. The aim of the exercise was for the users to
understand that moving point A would not change the area of the triangle (since the height
and base of the triangle would be the same) and so the force was constant, hence the force
and area were invariant under this action. But moving point D (which moves the parallel
line) or points B or C (which changes the “base” of the triangle) would result in different
forces, as the resulting triangle would have a different area.

Our initial findings with young children, adults and professors provided evidence that
the haptic device could be very quickly utilized (within minutes). Participants used a variety
of dynamic metaphors in describing what they saw (a deformable triangle with various
degrees of freedom) and in terms of what they felt. The hotspots (directly linked to the
feedback from the device when dragged) were described by the children to be pulling or
pushing them. These expressive descriptions were translated during the activity from
informal to formal descriptions of the properties of the triangle (it was bigger or smaller),
yet invariance was less well formulated. The children in the study offered similar stories of
how the family of triangles could be interpreted in a playground context (i.e., as slides).
Adults in the study used the device in a more sensitive way, not moving the arm through
space as much as the children. In summary, we found that even a 6-year old could use the
device and begin to describe the structure, the various properties of the triangle (without
any formal introduction to geometry) and link his haptic experience (in terms of force
feedback) to these properties. Our ongoing work aims to build on this work in creating
activity structures (constructions that yield a wide set of activities) based upon similar
design principles from dynamic geometry (e.g., hotspots).

In this preliminary design work we have established an environment for young children to
sense mathematical structure through new media, both physically and visually. The intersection
of these senses challenges the role of perception in mathematical thinking, and if our thinking is
challenged through the transformation of the mediator (the controller, the dynamic visuals) and
the co-action with the environment then a new kind of semiotics emerges. Why? The sign
system is no longer engrained in a historic ghost form. Instead it exists in the very medium of
the new environment. We can use metaphors such as plastic and elastic to describe the
deformability and the accessibility of such forms, but it goes deeper, as the very mathematical
structure (form, shape, and attributes) can be explored since we as researchers and developers
can establish environments with specific curricular- and pedagogically refined constraints, for
example, the triangle example where the specific attribute of the triangle was linked to the
haptic sensation. It is this very turn in the representational structure and re-description that
establishes our proposed epistemological rupture; just as occurred with the models of Gauss,
Lobachevsky, Bolyai, and especially Beltrami.
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4 Reflection: a new digital semiotic theory

The non-Euclidean model devised by Beltrami showed that this new geometry was locally
the geometry of a surface with constant negative curvature. Being in existence at the same
time, non-Euclidean geometry shattered the Euclidean ontology and offered the vision of a
geometry as a possible model of space.

It also offered a pre-digital semiotic theory, i.e., it established the request for a new form
of semiotics that was saturated within the medium. If we could have a new medium, the
representational affordances might allow us to “see” what we previously could not
perceive; to sign what we could previously not signify; and to symbolize within a
consensual domain what we previously could not agree upon as a field.

Mathematical structures are about human experience; they mirror human deeds, not a
pre-given reality. We wish to underline that this point of view crystallizes the
epistemological revolution that came hand in hand with the new geometries.

The experience Gauss obtained through his geodetic labors was instrumental for his
research on the intrinsic geometry of surfaces. His Theorema Egregium was the key to
intrinsic geometry as it establishes curvature (in the sense of Gauss and later of Riemann) as
an isometric invariant. If Gauss had realized that the Minding—Beltrami surface with
constant negative curvature was a model for hyperbolic geometry, this geometry would
have been accepted earlier. But that was not the case. Euclidean geometry was a very
special case from this viewpoint: it corresponded to the geometry of a flat surface.

The transformation of this discipline was profound; the new epistemology could be
synthesized this way: Mathematics provides maps of the material universe; it is not the
terrain. This realization facilitates understanding of mathematics as a semiotic activity.

In 1854, Riemann gave a lecture: On the Hypotheses Which Lie at the Basis of Geometry
(see Pesic, 2007, pp. 23—40). He explained that, in this context, hypothesis refers to what
the mind adds. The most fundamental breakthrough Riemann made was to determine that
space is not an empty receptacle that eventually is filled with bodies; that bodies are not
simple passive presences of this space but actors that bend and shape the space itself by
their very presence.

In a now famous phrase (see Schwartz, 1979), John Archibald Wheeler said, “Space tells
matter how to move and matter tells space how to curve.” Curvature, at the end of the day,
explained forces. Once again we meet an analogy: we have discussed the fact that an
organism and its environment are coextensive. Now, we have that space and matter are
coextensive and their co-action is crystallized in the curvature of space.

Euclidean geometry is a structure—an artifact of knowledge. It structures our local
experience with space. As with every artifact, there is a Zone of Proximal Development of
the Artifact (ZPDA) associated with Euclidean geometry (Hegedus & Moreno-Armella,
2010). Non-Euclidean geometry is the realization of this ZPDA. Moreover, the ZPDA
corresponding to non-Euclidean geometry is mathematical structure, and model is a
different word for expressing the fact that mathematics is a way of understanding the world
with the artefactual mediation of formal, semiotic structures.

Human epistemic activity never stops. For instance, in Greek culture, the famous
impossibility problems (duplicating the cube, squaring the circle and trisecting the angle)
could be conceived of as showing the epistemological limits of ruler and compass.
Mathematical knowledge is mediated knowledge; then the nature of the knowledge we can
generate depends on the mediational artifacts.

We mention anew this epistemological problem: human activity is the producer of
knowledge, but knowledge is neither arbitrary nor pre-determined in nature. Being in the

@ Springer



386 S.J. Hegedus, L. Moreno-Armella

world, for us, means that we have a nervous system that has evolved and became adapted to
the evolving world. Our symbolic powers are a medium to produce representational re-
descriptions, and that constitute genuine knowledge. As Merlin Donald (2001, p. 155) has
explained:

Animal brains intuit the mysteries of the world directly allowing the universe to carve
out its own image in the mind. This is largely a receptive mode of knowing, and we
share it with our animal cousins. In contrast, the symbolizing side of our mind is more
aggressive in its approach. It creates a sharply defined, abstract universe that is
largely of its own invention.

The links between dynamic, interactive images and haptic experiences are the essential
attributes or properties of the mathematical structure. When we talk about essentials, we
refer to the “ness” of the structure. So for example, straight-ness is not only a form but also
something that we attribute to a particular feeling. It is interesting to note that we do not
describe all figures like this, so what is circle-ness? Can we ascribe an essential attribute to
a particular kinesthetic feeling? Certainly we can motion a circle by moving our arm where
the center of the circle is our shoulder socket and the arm can be a radius of a circle that our
hand traces out in space. But the circle is invisible. With a haptic experience, we believe
that such essential qualities will begin to enter our conceptual domain. Feeling circle-ness
or triangle-ness, or equilateral-ness can potentially allow us to access conceptual
mathematical structures in different ways. We believe that integrating this approach with
a dynamic visual environment increases the potential for learning and is one we are
continuing to investigate at this time.

Abstraction is an emergent quality of knowledge, as something that occurs between one
person and a piece of knowledge. Perception is an “artifact” or a channel for this to happen.
The result of abstraction is an increased level of concreteness; one appropriates things better
and this can be understood as embodiment. It does not mean something is “entering” one’s
body but rather one is transforming one’s body including one’s brain. We can read this
process along the transformation of geometry we have explained. The embodiment of the
parallel postulate led to a representational re-description of the space, something that can be
perceived in Gauss and Lobachevsky’s “experiments” with huge triangles trying—through
extended human experiences—to detect the structure of those objects (the triangles). So the
focus is on perception and cognition.

Feeling the shape, for instance, is a door to acquire the structures of geometry, to
understand that the shape of space is in “you”—extended already in space. Mathematics is
not outside and we need to embody it. Mathematics is not inside (static) and we need to
make it visible. Mathematics, rather, is in our movement in the world as an emergent
phenomenon for appropriating that world, which means to re-describe it.

Drawing a circle with a compass and feeling its shape with your finger, traveling
along the border or a round object, are two ways of re-describing the circle. Doing
that separately is part of the process to appropriate the shape. Addition is part of
abstraction.

Artifacts are not epistemologically neutral so if one uses an artifact as a mediator, the
nature of the knowledge produced is linked to the artifact and it is breaking one’s ontology.
Structure as a mediator can modify one’s ontology to accommodate change—to address
epistemological obstacles. Structure is an artifact to enter the secrets of geometry. We need
to embody to help us deal with the challenges (and overcome the epistemological obstacles)
in moving from Euclidean to non-Euclidean geometry. It is dependent on the chosen path
and the affordances of the tools in dynamic geometry.
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In Fig. 8, we saw the Euclidean triangle disappear into a non-Euclidean world and that
structure, as a mediator (as a mediating artifact) can modify our ontology to accommodate
change. We have attempted to defend the emergence of multimodal technologies that can
establish an infrastructure composed of elements or tools that afford new ways to
experience structure through dynamic visual or haptic experiences. We can envision new
multimodal experiences that allow us to feel spherical or hyperbolic triangles through an
embodiment of curvature and a radical move away from straight-ness to new forms of
triangle-ness.

Feeling and seeing shapes can be an embodied experience yet the affordances of new
technologies mediate structure that was not available before—in a sense, establishing an
augmented reality confronting previous epistemological obstacles.

In our paper, we have illustrated how structure acts as a mediator in two ways.
Firstly, structure acts as movement in geometry. It has always been there in geometry
but has been “silent” evolving historically between Euclidean and non-Euclidean
geometries, and emergent in dynamic representations. Secondly, structure acts as
movement in a haptic domain both as force and velocity. This is extending a visual,
interactive medium where dragging does not embody force or expressive change (i.e.,
a high-velocity drag does not mediate meaning any more than a low velocity drag),
yet a haptic experience can utilize velocity (or acceleration) to ascertain certain uni-
dimensional attributes (e.g., measures of length, area, or angular change) to a physical
action. Feeling is an exploration of embodied structure. This structure can be a geometry of
space.

In summary, this space is mediated by structure as functional relationships, both as
measurement (e.g., area to dragging), overcoming the epistemological obstacles of
geometry within static media and a new affine space to perceive and conceive the nature
of mathematics (i.e., directly mapping physical space to structure). And so, traditional
meanings of structure and construction (con-struere}—which implies a together-ness,
conformity and rigidity of a pre-defined order and form—can be transformed to incorporate
more crystallized or organic notions of symbol, object and processes that allow actions on
these objects. We believe that this process can define new learning environments in the
future and theories of teaching and learning that are focused on structure as a mediator
through new technologies.
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