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Abstract Videotape is an increasingly used tool in cross-national studies of mathematics
teaching. However, the means by which videotaped lessons are coded and analysed remains
an underdeveloped area with scholars adopting substantially different approaches to the
task. In this paper we present an approach based on generic descriptors of mathematics
learning objectives. Exploiting live observations in five European countries, the descriptors
were developed in a bottom-up recursive manner for application to videotaped lessons from
four of these countries, Belgium (Flanders), England, Hungary and Spain. The analyses
showed not only that the descriptors were consistently operationalised but also that they
facilitated the identification of both similarities and differences in the ways in which
teachers conceptualise and present mathematics that resonated with the available literature.
In so doing we make both methodological and theoretical contributions to comparative
mathematics research in general and debates concerning the national mathematics teaching
script in particular.
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1 Introduction

The mathematics education traditions of Europe (METE) project, funded by the European
Union, examined the teaching of mathematics to students in the age range 10–14 in
England, Finland, Flanders1, Hungary and Spain; countries which represent well the
geographical and cultural diversity of the continent. The project team spent the first year of
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1Throughout our study we have regarded Flanders, one of the two autonomous regions of Belgium, as a
country in the manner of the third international mathematics and science study (TIMSS) and its repeats.
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its 2-year programme developing, in a bottom-up iterative manner, a framework for
analysing mathematics teachers’ practice. During the second year the framework was used
to analyse sequences of videotaped lessons taught on standard topics representative of all
project countries’ curricula. One section of the framework focused on the learning
outcomes teachers were observed to privilege and it is on validating and demonstrating the
effectiveness of this particular scale for comparative mathematics education research that
this paper focuses.

2 Comparative mathematics education

Underpinning many comparative projects has been the belief that “studying teaching
practices different from one’s own can reveal taken-for-granted and hidden aspects of
teaching” (Hiebert et al. 2003, p. 3) and many have unveiled unnoticed but culturally
located teaching practices characteristic of the systems under scrutiny (Stigler,
Gallimore & Hiebert 2000; Wilson, Andrew & Sourikova 2001). In particular, “comparing
teaching and learning processes in different countries promises to help us to become more
aware of our own implicit assumptions concerning the learning of mathematics”
(Knipping 2003, p. 283). Moreover, TIMSS, PISA and their respective repeats have
highlighted substantial variation in the mathematics achievement of students from
economically comparable countries and provoked “a growing body of research aimed at
unraveling the cultural and instructional factors that explain why children in certain
countries so dramatically outperform their counterparts in other countries” (Yoshida,
Verschaffel & De Corte 1997, p. 329). In particular, due to the success of a number of
Pacific rim countries, many of these studies have compared aspects of mathematics
education in either the US or England with China (including Hong Kong), Japan, Korea or
Taiwan (An, Kulm & Wu 2004; Cai & Wang 2006; Leung 1995; Lin 1988; Ma 1999;
Stigler & Perry 1990) and have identified substantial differences in the mathematics
education traditions of what Tweed and Lehman (2002) have described as the Confucian
and Socratic traditions.

However, to assume that European countries, with their shared Judeo-Christian cultural
heritage, should evolve isomorphic educational systems would be naive as research has
identified substantial culturally located differences in the educational traditions of the
continent beyond the four dimensions proposed by Hofstede (1986). These include, for
example, the influence of the Protestant and Catholic churches on the development of
education in England and France respectively (Sharpe 1997) and societal emphases on the
individual, community and nation underpinning educational expectations in England,
Denmark and France respectively (Osborn 2004). Thus, it seems logical to accept that while
cultural differences, no matter how small, impact in various ways on teachers’ professional
conduct, comparative research would be more likely to provoke systemic change if it were
located in culturally similar rather than culturally dissimilar contexts.

A particular theme in recent comparative mathematics education research has been the
explication of the national mathematics script. Its advocates, although there are critics
(LeTendre, Baker, Akiba, Goesling & Wiseman 2001), argue that teachers in one country
behave in ways that identify them more closely with their compatriots than teachers
elsewhere (Schmidt et al. 1996). It embodies the pedagogical strategies which, through
repeated enactment, are typical of a country’s lessons and appear routine and beneath the
consciousness of most teachers (Cogan & Schmidt 1999). Explanations for such patterns
draw on beliefs that cultures “shape the classroom processes and teaching practices within
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countries” (Knipping 2003, p. 282), to the extent that they are so “deep in the background
of the schooling process… so taken-for-granted… as to be beneath mention” (Hufton &
Elliott 2000, p. 117).

In this paper we discuss the development of the METE project’s coding schedule and an
emergent imperative to identify and make operational essentially generic codes with the
power to expose meaningful similarities and differences in the ways teachers present
mathematics to their students. This is followed by analyses highlighting the sensitivity of
the framework to cross-cultural similarities and differences in teachers’ actions. Finally,
drawing on qualitative summaries of project lessons taught on percentages, we discuss the
potential of the framework as a tool for comparative mathematics education research in
general and an examination of the teaching script in particular.

3 The METE project

The mathematics education traditions of Europe project was a European Union-funded
study of the teaching of standard mathematical topics to students in the age range 10–14 in
Flanders, England, Finland, Hungary and Spain. In addition to the distinguishing politico-
historical characteristics discussed above, the performance of project countries on TIMSS
and PISA reflect well the range of European mathematics achievement. Moreover, they
reflect not only Europe’s geographical diversity but also variation in factors like educational
expenditure and demographics (OECD 2007).

The aim of the project was to examine, by means of both qualitative and quantitative
approaches, how teachers structure students’ opportunities for learning. In this regard
opportunity for learning was less a measure of curriculum coverage, as in the FIMS, than an
analysis of the didactic strategies exploited and mathematical knowledge and skills
encouraged by teachers. In so doing our intention was to make both methodological and
theoretical contributions to comparative mathematics education research in general and the
teaching script debate in particular. Thus, particularly in respect of the quantitative element
of the study, decision making was informed by the desire to avoid the outcome of Stigler
and Perry’s (1990) study of mathematics teaching in Japan, China and the US, whereby
every examined dimension differentiated the systems under scrutiny.

4 Method

According to Givvin, Hiebert, Jacobs, Hollingworth and Gallimore (2005, p. 313) a “key to
making progress on uncovering national or global patterns…is to examine classroom
teaching directly” and the use of video cameras offers several advantages over traditional
methods such as direct observation (Hiebert et al. 2003), although Ulewicz and Beatty
(2001, p. 17) caution against an over-reliance on video tapes, arguing that they “cannot
capture everything that happens in a classroom”. In respect of mathematics education, the
TIMSS Video Studies (Stigler, Gonzales, Kawanaka, Knoll & Serrano 1999; Hiebert et al.
2003) and the Learner’s Perspectives Study (Clarke, Keitel & Shimizu 2006; Clarke,
Emanuelsson, Jablonka & Mok 2006) have not only exploited video recordings to great
effect but also informed considerably the development of our own work.

The main data set comprised four sequences of videotaped lessons from each country.
Each sequence was taught by a teacher regarded locally as effective in the manner of the
learner’s perspective study (Clarke 2002). Thus, generality, the goal of the TIMSS video
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studies, was being traded for insights concerning national perceptions of best practice. Each
sequence comprised four or five lessons on one of four standard topics; percentages and
polygons in grades 5 or 6 and polygons again and linear equations in grades 7 or 8. These
topics were representative not only of all project curricula but also the transition of school
mathematics from concrete and inductive to abstract and deductive. Thus, between sixteen
and twenty lessons per country were to be recorded and, apart from England where
curricular recommendations2 allowed for the recording of only fifteen, this was achieved.

In terms of data capture, a single camera was focused on all utterances made by the teacher
and as much of the board-work as possible. In this manner, videographer decisions as to what
should be the focus of attention were minimised (Ulewicz & Beatty 2001). In all cases, a
tripod-mounted camera was placed at the side or rear of the room; teachers wore radio
microphones while telescopic microphones captured as much student-talk as possible. Since
our attention was on the ways in which teachers structured opportunities for learning, we
felt that the integrity of data collection was not greatly compromised through lost student
talk. After filming each videotape was compressed and transferred to CD ROM for copying
and distribution, before being coded by its home team against the project’s schedule.

Video-derived data are amenable not only to various forms of analysis but also present
multiple opportunities for revisitation. In this regard the METE team’s intention was to
exploit this variety and several initial qualitative analyses have been reported (Carrillo &
Climent 2005; Depaepe, De Corte, Op’t Eynde & Verschaffel 2005; Sayers & Andrews
2005; Szeredi & Török 2005). However, project data were also amenable to quantitative
analyses, particularly in respect of identifying replicable teacher behaviours and objectives.
In this paper we present a summary of a bottom-up development of a coding schedule
designed to address project research questions concerning teachers’ conceptualisation and
delivery of mathematics to students. In particular we discuss, from the perspective of
demonstrating its methodological contribution to comparative mathematics education
research, its potential for highlighting teachers’ inferable learning objectives and their
interactions.

The coding schedule was developed during the first year and although details of its
development can be found elsewhere (Andrews 2007a) we offer here an extended summary.
The initial intention was to exploit existing frameworks and Kilpatrick, Swafford and
Findell’s (2001) strands of mathematical proficiency, Hiebert and Lefevre’s (1986)
distinction between conceptual knowledge and procedural knowledge and Skemp’s
(1976) relational and instrumental understanding provided useful starting points. However,
early discussions soon revealed that concepts assumed universal had contextualised
meanings. This realisation led to a bottom-up process of live observation, discussion and
code development for 1 week in each country. One lesson was observed each morning by at
least one member of each project team. Each observation was supported by the quiet
translation of a home colleague and the videotaping of the lesson for discussion the same
afternoon. Discussions, which focused on identifying characteristic behaviours and
activities suitable for coding, were supported by the playing back, as many times as was
necessary, of the video-recording of the observed lesson.

Initial discussions were characterised by two difficulties. The first was a tendency to
account for every conceivable form of teacher action and objective. The second, due to
most team members being experienced mathematics teacher educators, concerned a

2 In addition to an acknowledgement of a mandated national curriculum, English teachers are invited to work
within a voluntary framework in which the number, and particular content, of lessons within a topic are
specified.
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collective inability “to suspend the desire to evaluate teachers’ efforts against unarticulated
indicators of teaching quality” (Andrews 2007a, p. 496). Fortunately, over subsequent
observation weeks, all of which were separated by team meetings at which the full project
team discussed progress against further viewings of videotaped lessons, these problems
were resolved. Firstly, as colleagues’ preconceptions were challenged and mediated “we
became more skilled at making objective statements about what was seen, rather than what
was missing” (Andrews ibid). Secondly, complex codes were rejected in favour of simple to
activate descriptors focused on generic activities and objectives.

Importantly, all those later involved in the coding of video-taped lesson were involved in
the cyclic process of code development. Moreover, observing lessons as they unfolded
allowed colleagues to experience, and therefore understand, the cultural contexts in which
they occurred. Thus, the project team felt confident not only that the outcome of the year’s
work was a robust schedule that all colleagues could operationalise but also that the process
ensured the content validity of the framework. That is, the active participation of
colleagues, almost all of whom were experienced observers as teacher educators, classroom
researchers or both, contributed significantly to the development of a schedule with high
levels of applicability to the mathematics lessons of each project country.

A significant consequence of this process, deriving from a collective acceptance that all
lessons are, in one way or another, episodic, was a decision to apply the codes to a generic
episode. That is, for the purposes of data collection and analysis a generically defined
episode, which was that part of a lesson where the teacher’s didactic intent remained
constant, was accepted as the unit of analysis to which any of the project’s generic codes
could be applied. Thus an episode could be short and managerial, as in the taking of a
register or long and didactic, as in a lengthy period of seatwork. This generic episode, along
with generic codes, provided a simple yet effective framework for describing and analysing
project lessons.

The final version of the framework comprised three sections. The first, which is reported
in this paper3, comprised seven items describing the observable learning outcomes of the
episodes under scrutiny. The second comprised four items reflecting the conceptions of
mathematics underpinning the tasks teaches present their students, while the third
comprised ten items addressing teachers’ observable didactic strategies. The coding
schedule’s descriptors were applied by members of each team to every episode of each of
that country’s lessons as either present (1) or absent (0), with the consequence that few
episodes were not multiply coded. Importantly, the affordance of multiple codings allowed
for important distinctions in teacher behaviours to be highlighted. For example, an episode
during which teachers presented an algorithm with no attempt to link it to underlying
concepts would have been coded for procedural knowledge only. Where teachers drew on
students’ prior understanding to facilitate their understanding of an algorithm an episode
would have been coded for both procedural knowledge and conceptual knowledge.
Working definitions of the seven generic learning outcomes can be seen in Table 1.

5 Results

In this paper we present several analyses to demonstrate how our inductively derived
generic codes, when applied to generic episodes, facilitated meaningful comparisons. We
also show how the interactions of the different objectives allude to differences, which may

3 This paper focuses on the one section of the schedule for no other reason than lack of space.

Comparative learning objectives 101



or may not be rooted in national traditions, in the coherence of the learning experiences
offered students.

As indicated above, each country’s team coded all the lessons videotaped in that country.
In addition, the first two lessons in each sequence were transcribed and translated into
English. This allowed for the production of subtitles, which enabled the English team to
watch and code between 40% and 50% of each other country’s lessons and determine inter-
coder reliability. To this end the METE team exploited the Cohen Kappa coefficient, which
accounts for agreements due to chance. Assuming a threshold value of 0.75, acceptable
levels of inter-coder reliability were found between the coders of England and Flanders
(κ=0.877), England and Hungary (κ=0.875) and England and Spain (κ=0.793). The first
two figures fall well inside the “almost perfect” band of agreement, while the latter is
essentially at the upper limit of the “substantial” band of agreement (Landis & Koch 1977,
p. 165). Unfortunately, due to circumstances beyond the Finnish team’s control, and despite its
playing a full role in the development of the project schedule, the Finnish lessons have not been
coded. Therefore this report is based on data from England, Flanders, Hungary and Spain.

5.1 A first level analysis of the observable learning objectives of project episodes

The mean of episodes coded for each observable outcome was calculated for each country.
Presented in Table 2 they show that teachers regularly emphasise the conceptual and
procedural knowledge of their students while derived knowledge is a rarity anywhere. This
conformity of objective was supported by the analyses of variance (Table 3) showing none of
these as influenced by nationality. It can also be seen that reasoning is a frequently observed
outcome although, as indicated by the ANOVA, there were nationally located differences.

The remaining three outcomes, structural knowledge, mathematical efficiency and
problem-solving were highlighted by the ANOVA as prone to the influence of nationality.
To understand these differences we compared each country’s data with those of all others—
a project level comparison—and with those of each other country—a pair-wise comparison.
In respect of the latter we had to consider whether multiple comparisons would require
amendment to the significance levels. The Fisher least significant difference (LSD) requires
no change to probability thresholds providing an analysis of variance has proved
significant. Our view, despite a veneer of generality embedded in almost 400 episodes,
was that our limited sample may have increased the risk of type I errors. Consequently, we
were reluctant to accept the apparent liberalism of the LSD. Alternatively, the Bonferroni
correction, which requires no initial ANOVA, recommends that typically acceptable

Table 1 Working definitions for each of the seven learning outcomes coded in project lessons

Conceptual knowledge (CK) The teacher encourages the conceptual development of his or her students
Derived knowledge (DK) The teacher encourages the development of new mathematical knowledge

or entities from existing knowledge or entities
Structural knowledge (SK) The teacher emphasises connections between different mathematical entities
Procedural knowledge (PK) The teacher encourages the acquisition of skills, procedures, techniques

or algorithms
Mathematical efficiency (ME) The teacher encourages learners’ development of procedural flexibility,

awareness of elegance or critical comparison of working
Problem-solving (PS) The teacher encourages learners’ engagement with the solution of

non-trivial or non-routine tasks
Mathematical reasoning (MR) The teacher encourages learners’ development and articulation of

justification and argumentation
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Table 2 The figures below show the percentage of each country’s episodes in which each learning outcome
was observed

Flanders England Hungary Spain All

Conceptual knowledge 71.2 78.6 64.1 77.3 73
Derived knowledge 4.5 1.0 6.4 2.7 4
Structural knowledge 17.1ac 1.03, agk 39.75, cgm 14.7km 17
Procedural knowledge 56.8 53.4 51.3 68.09 57
Mathematical efficiency 12.61, d 9.74, h 35.96, dhn 14.7n 17
Problem-solving 7.22, bef 20.4bl 30.87, e 38.710, fl 22
Reasoning 35.1 30.1j 44.98, jp 25.3p 34
Total episodes 111 103 78 75 367
Total lessons 20 15 18 16 69
Total didactic codes 299 237 320 264 1120
Codes per episode 2.711 2.312 4.113 3.514 3.05

Numeric superscripts refer to significant project level differences as identified by Mann–Whitney U-tests.
Alphabetic subscripts refer to significant pair-wise differences as identified by Mann–Whitney U-tests
subsequent to a significant ANOVA. The adapted Bonferroni correction, as applied to the pair-wise
differences, allows a threshold probability of 0.05/3=0.0167
1 z=2.123, p=0.034
2 z=4.578, p=0.000
3 z=5.078, p=0.000
4 z=2.363, p=0.018
5 z=7.081, p=0.000
6 z=5.613, p=0.000
7 z=2.010, p=0.044
8 z=3.137, p=0.002
9 z=2.374, p=0.018
10 z=3.799, p=0.000
11 z=3.320, p=0.001
12 z=7.071, p=0.000
13 z=7.583, p=0.000
14 z=3.968, p=0.000
a z=3.625, p=0.000
b z=2.808, p=0.005
c z=4.465, p=0.000
d z=4.490, p=0.000
e z=4.241, p=0.000
f z=5.258, p=0.000
g z=7.170, p=0.000
h z=4.604, p=0.000
j z=2.547, p=0.011
k z=3.588, p=0.000
l z=2.672, p=0.008
m z=3.912, p=0.000
n z=3.311, p=0.001
p z=2.981, p=0.003
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probability thresholds should be divided by the number of comparisons being made. Thus,
pair-wise comparisons across four countries yield six comparisons with a probability
threshold 0.05/6=0.0083. However, the conservative Bonferroni correction tends to
increase the likelihood of type II errors. Our approach to this dilemma was to combine,
in what we believe is a novel manner, the two conventions in the following way. Where
analyses of variance were significant we would use a threshold probability of twice the
Bonferroni value. Such a procedure insured against type I errors caused by a small sample
and type II errors due to over-caution.

The two analyses, project level and pair-wise, yielded some interesting outcomes in
terms of the frequencies with which structural knowledge, mathematical efficiency, problem
solving and reasoning were observed. A significantly smaller proportion of English
episodes was coded for structural knowledge at all pair-wise and project levels than
elsewhere. The opposite was true of the Hungarian episodes with a significantly higher
proportion of episodes coded for structural knowledge at the project and all pair-wise
levels. Mathematical efficiency was also a reasonable discriminator with a significantly
higher proportion of episodes being so coded in Hungary at the project and all pair-wise
levels. Also, although there were no pair-wise differences apart from with Hungary, there
were significantly smaller proportions of English and Flemish episodes coded for
mathematical efficiency at their respective project levels. A lack of problem-solving in
Flanders, at all pair-wise and project levels, distinguished the episodes of that country
significantly from those of all others, while in England a significantly smaller proportion of
episodes than in Spain was so coded. Indeed, when examined at the project level, there
were significantly higher proportions of episodes coded for problem-solving in the Spanish
and Hungarian episodes than elsewhere. Lastly, a significantly higher proportion of
episodes was coded for reasoning in Hungary than elsewhere at the project and pair-wise
levels with both England and Spain. We shall return to these findings later.

5.2 A second level analysis of the observable learning objectives of project episodes

The above results indicate both similarities and differences. The major similarities, that
teachers emphasise their students’ procedural knowledge and conceptual knowledge, seem
unsurprising and offer some support for the validity of the instrument and the manner of its
implementation. The major differences offer support for variation in the ways in which
teachers from different countries present mathematics to their students. However,
frequencies alone offer only a partial account and offer little in respect of explicating the
complexity of mathematics teaching. In the following we offer a second level analysis
which not only demonstrates how the generic codes interact in project episodes but also
highlights substantial differences in the ways in which project teachers conceptualise and
present mathematics to their students. In so doing we draw explicitly on the fact that if a
learning outcome had been observed during an episode it would have been coded as present
irrespective of which other strategies had already been coded. Thus, the majority of

Table 3 The results of Kruskal–Wallis analyses of variance showing the impact of nationality on the
frequency of applied codes

CK DK SK PK ME PS MR

χ2 4.53 4.33 58.78 5.69 32.30 29.51 10.86
Df 3 3 3 3 3 3 3
P 0.209 0.228 0.000 0.128 0.000 0.000 0.013
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episodes were multiply coded. This second analysis entailed the following. Whenever
an episode was coded for one learning outcome, say conceptual knowledge, the record for
that episode was checked for each of the remaining outcomes also. This process allowed us
to count the number of episodes coded for conceptual knowledge with procedural
knowledge, conceptual knowledge with structural knowledge, conceptual knowledge with
reasoning and so on. In so doing, we were able, without analyses of variance, to examine
some of the interactions between the learning outcomes in simple to report and accessible
ways. Lastly, due to its infrequent occurrence, we have not examined episodes coded for
derived knowledge with any other outcome, although it was retained as a second code.
Included in each table are the results of chi square tests to determine the influence of
nationality and Mann–Whitney U-tests, acknowledging when appropriate the adapted
Bonferroni correction, highlighting both project level and pair-wise differences.

5.2.1 Episodes coded for conceptual knowledge and other outcomes

The figures of Table 4 show that the distributions of conceptual knowledge with derived
knowledge, procedural knowledge and reasoning respectively were consistent across all
countries’ episodes. However, the distributions of conceptual knowledge with structural
knowledge, mathematical efficiency and problem-solving were all influenced by nationality.
At the pair-wise level a smaller proportion of English episodes was coded for conceptual
knowledge with structural knowledge than from any other country, while a significantly
higher proportion of episodes was so coded in Hungary. Both the Flemish and the English
episodes comprised smaller proportions of episodes coded for conceptual knowledge with
mathematical efficiency than in Hungary. The Flemish episodes also comprised a
significantly lower proportion of episodes coded for conceptual knowledge with problem-
solving than in either Hungary or Spain while the latter also comprised a higher proportion
than in England.

At the project level Hungarian teachers taught a significantly higher proportion of
episodes coded for conceptual knowledge with structural knowledge and mathematical
efficiency respectively than teachers elsewhere whereas English teachers taught a smaller
proportion of episodes coded for conceptual knowledge with structural knowledge than
teachers elsewhere. Flemish teachers taught a significantly smaller proportion of episodes
coded for conceptual knowledge with problem-solving while Spanish teachers taught a
significantly higher proportion than teachers elsewhere.

5.2.2 Episodes coded for structural knowledge and other outcomes

The figures of Table 5 show that the distributions of episodes coded for structural
knowledge with derived knowledge and procedural knowledge were consistent across the
four countries’ episodes. The pair-wise comparisons indicated only two significant results;
higher proportions of Hungarian episodes were coded for structural knowledge with
mathematical efficiency and problem-solving respectively than were the Flemish.

At the project level a smaller proportion of Hungarian episodes was coded for structural
knowledge with conceptual knowledge than elsewhere, a smaller proportion of Flemish
episodes was coded for structural knowledge with mathematical efficiency and problem-
solving respectively than elsewhere, while a higher proportion of Hungarian episodes was
coded than elsewhere. A higher proportion of Hungarian episodes was coded for structural
knowledge with reasoning than elsewhere while the opposite was true for the Spanish
episodes.
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Table 4 Below are the frequencies, with percentages in parentheses, of each learning outcome in relation to
episodes coded for conceptual knowledge

Derived knowledge (p=0.119)
0 1

Flanders 71 5 (7) 76
England 80 1 (1) 81
Hungary 48 5 (9) 53
Spain 56 2 (3) 58

255 13 (5) 268
Procedural knowledge (p=0.132)

0 1
Flanders 38 38 (50) 76
England 40 41 (51) 81
Hungary 32 21 (40) 53
Spain 22 36 (62) 58

132 136 (51) 268
Problem-solving (p<0.0005)

0 1
Flanders1, 2, a 70 6 (8) 76
England3 63 18 (22) 81
Hungary1 40 13 (25) 53
Spain2, 3, b 33 25 (43) 58

206 62 (23) 268
Structural knowledge (p<0.0005)

0 1
Flanders4, 5 61 15 (20) 76
England4, 6, 7, c 81 0 (0) 81
Hungary5, 6, 8, d 28 25 (47) 53
Spain7, 8 47 11 (19) 58

217 51 (19) 268
Mathematical efficiency (p<0.0005)

0 1
Flanders9 68 8 (11) 76
England10 72 9 (11) 81
Hungary9, 10, e 33 20 (38) 53
Spain 48 10 (17) 58

221 47 (18) 268
Reasoning (p=0.365)

0 1
Flanders 46 30 (39) 76
England 50 31 (38) 81
Hungary 27 26 (48) 53
Spain 39 19 (33) 58

162 106 (39) 268

Included are the results of chi square tests (probabilities in brackets) indicating the extent to which
distributions are influenced by nationality, and Mann–Whitney U-tests where numerical superscripts refer to
significant pair-wise differences and alphabetic superscripts refer to significant project level differences.
1 z=2.61, p=0.009
2 z=4.77, p<0.0005
3 =2.62, p=0.009
4 z=4.19, p<0.0005
5 z=3.30, p=0.001
6 z=6.83, p<0.0005
7 z=4.07, p<0.0005
8 z=3.16, p=0.002
9 z=3.67, p<0.0005
10 z=3.65, p<0.0005
a z=3.72, p<0.0005
b z=4.07, p<0.0005
c z=5.21, p<0.0005
d z=5.82, p<0.0005
e z=4.31, p<0.0005

106 P. Andrews



Table 5 Below are the frequencies, with percentages in parentheses, of each learning outcome in relation to
episodes coded for structural knowledge

Conceptual knowledge (p=0.017)
0 1

Flanders 1 15 (94) 16
England 1 0 (0) 1
Hungarya 9 25 (74) 34
Spain 0 11 (100) 11

11 51 (82) 62
Procedural knowledge (p=0.367)

0 1
Flanders 10 6 (38) 16
England 1 0 (0) 1
Hungary 17 17 (50) 34
Spain 4 7 (64) 11

32 30 (48) 62
Problem-solving (p=0.050)

0 1
Flanders1, b 16 0 (0) 16
England 1 0 (0) 1
Hungary1, c 23 11 (32) 34
Spain 9 2 (18) 11

49 13 (21) 62
Derived knowledge (p=0.738)

0 1
Flanders 15 1 (6) 16
England 1 0 (0) 1
Hungary 31 3 (9) 34
Spain 9 2 (18) 11

56 6 (10) 62
Mathematical efficiency (p=0.002)

0 1
Flanders2, d 15 1 (6) 16
England 1 0 (0) 1
Hungary2, e 16 18 (53) 34
Spain 10 1 (9) 11

42 20 (32) 62
Mathematical reasoning (p=0.049)

0 1
Flanders 7 9 (56) 16
England 1 0 (0) 1
Hungaryf 10 24 (71) 34
Spaing 8 3 (27) 11

26 36 (58) 62

Included are the results of chi square tests (probabilities in brackets) indicating the extent to which
distributions are influenced by nationality, and Mann–Whitney U-tests where numerical superscripts refer to
significant pair-wise differences and alphabetic superscripts refer to significant project level differences.
1 z=2.55, p=0.011
2 z=3.14, p=0.002
a z=1.97, p=0.049
b z=2.37, p=0.018
c z=2.41, p=0.016
d z=2.56, p=0.010
e z=3.81, p<0.0005
f z=2.18, p=0.029
g z=2.26, p=0.024
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5.2.3 Episodes coded for procedural knowledge and other outcomes

The figures of Table 6 show that the distributions of episodes coded for procedural
knowledge with conceptual knowledge and derived knowledge respectively were consistent
across all countries, while the remaining four outcomes were linked with 12 significant
pair-wise differences. In detail, higher proportions of Hungarian episodes were coded for
procedural knowledge with structural knowledge and mathematical efficiency respectively
than those of any other country. Also, a higher proportion of Hungarian episodes was coded
for procedural knowledge with reasoning than either the English or Spanish. By way of
contrast, a smaller proportion of episodes were coded for procedural knowledge with
structural knowledge in England that in any other country, while a smaller proportion of
episodes was coded for procedural knowledge with problem-solving in Flanders than any
other country.

At the project level Hungarian teachers taught a higher proportion of episodes coded for
procedural knowledge with structural knowledge, mathematical efficiency, problem-solving
and reasoning than teachers elsewhere. English teachers taught a smaller proportion of
episodes coded for procedural knowledge with structural knowledge, Flemish teachers a
smaller proportion of episodes coded for problem-solving and Spanish teachers, while
teaching a higher proportion of episodes coded for problem-solving, taught a smaller
proportion of episodes coded for reasoning than teachers elsewhere.

5.2.4 Episodes coded for mathematical efficiency and other outcomes

The figures of Table 7 show that the distribution of mathematical efficiency with all other
codes bar structural knowledge was uniform across countries. In terms of pair-wise
comparisons, a higher proportion of episodes was coded for mathematical efficiency and
structural knowledge in Hungary than either England or Flanders. At the project level,
similar results were obtained with a higher proportion of episodes coded for mathematical
efficiency with structural knowledge than elsewhere in Hungary and a smaller proportion so
coded in England than elsewhere.

5.3 Episodes coded for mathematical problem-solving and other outcomes

The figures of Table 8 show that the distributions of episodes coded for problem-solving
with derived knowledge, procedural knowledge and mathematical efficiency respectively
were uniform across countries. In respect of pair-wise differences a higher proportion of
Hungarian episodes was coded for problem-solving with structural knowledge than in either
England or Spain. Also, a higher proportion of Hungarian episodes was coded for problem-
solving with reasoning than the English. At the project level a smaller proportion of
Hungarian episodes was coded for problem-solving with conceptual knowledge, but a
higher proportion of problem-solving with structural knowledge and reasoning respectively
while a smaller proportion of English episodes was coded for structural knowledge than
elsewhere.

5.3.1 Episodes coded for mathematical reasoning and other outcomes

The figures of Table 9 show that the distribution of episodes coded for mathematical
reasoning with derived knowledge and procedural knowledge respectively were distributed
uniformly across all four countries. As far as pair-wise differences were concerned, a
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smaller proportion of Hungarian episodes was coded for mathematical reasoning with
conceptual knowledge than in England or Spain, while a higher proportion of Hungarian
episodes was coded for mathematical reasoning with structural knowledge than in Flanders,
England or Spain. On the same theme, a higher proportion of Flemish episodes were so
coded than in England. A higher proportion of episodes was coded for mathematical
reasoning with mathematical efficiency in Hungary than in either Flanders or England.
Lastly, a smaller proportion of episodes was coded for mathematical reasoning with
problem-solving in Flanders than in either Hungary or Spain, while a smaller proportion of
episodes were so coded in England than Spain.

At the project level Hungarian teachers taught higher proportions of episodes coded for
structural knowledge, mathematical efficiency and problem-solving than teachers else-
where. English teachers taught a smaller proportion of episodes coded for structural
knowledge and mathematical efficiency than their overseas colleagues. Hungarian teachers
taught a significantly smaller proportion and English teachers a significantly higher

Table 6 Below are the frequencies, with percentages in parentheses, of each learning outcome in relation to
episodes coded for procedural knowledge

Conceptual knowledge (p=0.058)
0 1

Flanders 22 38 (63) 60
England 14 41 (75) 55
Hungary 22 21 (49) 43
Spain 16 36 (69) 52

74 136 (65) 210
Structural knowledge (p<0.0005)

0 1
Flanders1, 2 54 6 (10) 60
England1, 3, 4, a 55 0 (0) 55
Hungary2, 3, 5, b 26 17 (40) 43
Spain4, 5 45 7 (13) 52

180 30 (14) 210
Problem-solving (p<0.0005)

0 1
Flanders6, 7, 8, c 58 2 (3) 60
England6 43 12 (22) 55
Hungary7, d 28 15 (35) 43
Spain8, e 34 18 (35) 52

163 47 (22) 210
Derived knowledge (p=0.168)

0 1
Flanders 58 2 (3) 60
England 55 0 (0) 55
Hungary 43 0 (0) 43
Spain 52 0 (0) 52

208 2 (1) 210
Mathematical efficiency (p=0.001)

0 1
Flanders9 52 8 (13) 60
England10 48 7 (13) 55
Hungary9, 10, 11, f 25 18 (42) 43
Spain11 44 8 (15) 52

169 41 (20) 210
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proportion of episodes coded for conceptual knowledge than teachers elsewhere. Lastly,
Spanish teachers taught a significantly higher proportion while Flemish teachers a
significantly smaller proportion of episodes coded for problem-solving than elsewhere.

6 Discussion

In the following we attend to three different but not unrelated issues. The first concerns the
extent to which the schedule satisfied the project team’s objectives concerning simplicity of
operationalisation but with the power to expose meaningful similarities and differences in
the ways project teachers present mathematics to their students. The second, alluding to
construct validity, concerns the extent to which the seven learning outcomes offers the
potential for constructing models of teacher behaviour which others working in the field
would recognise. The third, which resonates with notions of national teaching script,

Mathematical reasoning (p=0.002)
0 1

Flanders 41 19 (32) 60
England12 43 12 (22) 55
Hungary12, 13, G 22 21 (49) 43
Spain13, H 44 8 (15) 52

150 60 (29) 210

Included are the results of chi square tests (probabilities in brackets) indicating the extent to which
distributions are influenced by nationality, and Mann–Whitney U-tests where numerical superscripts refer to
significant pair-wise differences and alphabetic superscripts refer to significant project level differences.
1 z=2.40, p=0.016
2 z=3.53, p<0.0005
3 z=5.10, p<0.0005
4 z=2.80, p=0.005
5 z=2.90, p=0.004
6 z=3.02, p=0.003
7 z=4.23, p<0.0005
8 z=4.30, p<0.0005
9 z=3.27, p=0.001
10 z=3.27, p=0.001
11 z=2.87, p=0.004
12 z=4.30, p=0.005
13 z=3.51, p<0.0005
a z=3.52, p<0.0005
b z=5.29, p<0.0005
c z=4.18, p<0.0005
d z=2.20, p=0.028
e z=2.43, p=0.015
f z=4.13, p<0.0005
g z=0.015, p=0.001
h z=2.42, p=0.015

Table 6 (continued)
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Table 7 Below are the frequencies, with percentages in parentheses, of each learning outcome in relation to
episodes coded for mathematical efficiency

Conceptual knowledge (p=0.242)
0 1

Flanders 4 8 (67) 12
England 1 9 (90) 10
Hungary 10 20 (67) 30
Spain 1 10 (91) 11

16 47 (75)
47 63 60
Structural knowledge (p<0.0005)

0 1
Flanders1 11 1 (8) 12
England2, a 10 0 (0) 10
Hungary1, 2, b 12 18 (60) 30
Spain 10 1 (9) 11

43 20 (32) 63
Problem-solving (p=0.54)

0 1
Flanders 9 3 (25) 12
England 7 3 (30) 10
Hungary 21 9 (30) 30
Spain 3 8 (73) 11

40 23 (37) 63
Derived knowledge (p=0.616)

0 1
Flanders 12 0 (0) 12
England 10 0 (0) 10
Hungary 28 2 (7) 30
Spain 10 1 (9) 11
3 (5) 63
Procedural knowledge (p=0.863)

0 1
Flanders 4 8 (67) 12
England 3 7 (70) 10
Hungary 12 18 60) 30
Spain 3 8 (73) 11

22 41 (65) 63
Reasoning (p=0.160)

0 1
Flanders 5 7 (58) 12
England 6 4 (40) 10
Hungary 9 21 (70) 30
Spain 7 4 (36) 11

27 36 (57) 63

Included are the results of chi square tests (probabilities in brackets) indicating the extent to which
distributions are influenced by nationality, and Mann–Whitney U-tests where numerical superscripts refer to
significant pair-wise differences and alphabetic superscripts refer to significant project level differences.
1 z=3.00, p=0.009
2 z=3.51, p<0.0005
a z=2.33, p=0.020
b z=4.56, p<0.0005
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Table 8 Below are the frequencies, with percentages in parentheses, of each learning outcome in relation to
episodes coded for problem solving

Conceptual knowledge (p=0.030)
0 1

Flanders 2 6 (75) 8
England 3 18 (86) 21
Hungarya 11 13 (54) 24
Spain 4 25 (86) 29

20 62 (76) 82
Structural knowledge (p<0.0005)

0 1
Flanders 8 0 (0) 8
England1, b 21 0 (0) 21
Hungary1, 2, c 13 11 (46) 24
Spain2 27 2 (7) 29

69 13 (16) 82
Efficiency (p=0.335)

0 1
Flanders 5 3 (38) 8
England 18 3 (14) 21
Hungary 15 9 (38) 24
Spain 21 8 (28) 29

59 23 (28) 82
Derived knowledge (p=0.765)

0 1
Flanders 8 0 (0) 8
England 21 0 (0) 21
Hungary 23 1 (4) 24
Spain 28 1 (3) 29

80 2 (2) 82
Procedural knowledge (p=0.267)

0 1
Flanders 6 2 (25) 8
England 9 12 (57) 21
Hungary 9 15 (63) 24
Spain 11 18 (62) 29

35 47 (57) 82
Mathematical reasoning (p=0.014)

0 1
Flanders 6 2 (25) 8
England3 15 6 (29) 21
Hungary3, d 7 17 (71) 24
Spain 18 11 (38) 29

46 36 (44) 82

Included are the results of chi square tests (probabilities in brackets) indicating the extent to which
distributions are influenced by nationality, and Mann–Whitney U-tests where numerical superscripts refer to
significant pair-wise differences and alphabetic superscripts refer to significant project level differences.
1 z=3.53, p<0.0005
2 z=3.25, p=0.001
3 z=2.80, p=0.005
a z=2.89, p=0.004
b z=2.29, p=0.022
c z=4.75, p<0.0005
d z=3.14, p=0.002
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concerns the potential contribution of such an instrument to comparative mathematics
education research.

6.1 Instrument reliability

In respect of the first issue, the analyses, particularly the inter-coder reliability calculations,
indicated that project colleagues, irrespective of their country of origin, were able not only
to agree on the entry and exit points of lesson episodes but also the learning outcomes
observed within them. This, following the difficulty experienced during the first year of the
project, was a satisfactory outcome and suggests that the descriptors of both generic
episodes and generic codes were straightforward to make operational. The analyses
indicated, also, unsurprising similarities and, as we show below, explicable differences in
teachers’ subject-related emphases. Thus, the METE project’s objectives appear to have
been satisfactorily addressed.

Table 9 Below are the frequencies, with percentages in parentheses, of each learning outcome in relation to
episodes coded for reasoning

Conceptual knowledge (p=0.001)
0 1

Flanders 6 30 (83) 36
England1, a 0 31 (100) 31
Hungary1, 2, b 12 26 (68) 38
Spain2 0 19 (100) 19

18 106 (85) 124
Structural knowledge (p<0.0005)

0 1
Flanders3, 4 27 9 (25) 36
England3, 5, c 31 0 (0) 31
Hungary4, 5, 6, d 14 24 (63) 38
Spain6 16 3 (16) 19

88 36 (29) 124
Mathematical efficiency (p<0.0005)

0 1
Flanders7 29 7 (19) 36
England8, e 27 4 (13) 31
Hungary7, 8, f 17 21 (55) 38
Spain 15 4 (21) 19

88 36 (29) 124
Derived knowledge (p=0.197)

0 1
Flanders 36 0 (0) 36
England 30 1 (3) 31
Hungary 34 4 (11) 38
Spain 18 1 (5) 19

118 6 (5) 124
Procedural knowledge (p=0.483)

0 1
Flanders 17 19 (53) 36
England 19 12 (39) 31
Hungary 17 21 (55) 38
Spain 11 8 (42) 19

64 60 (48) 124
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6.2 Instrument validity and the teaching of percentages

In terms of the second issue, one approach to construct validation is to assess the extent to
which the outcomes yielded by the instrument resonate with those derived from both other
forms of project data (triangulation) and earlier studies. Thus, in the following we compare
our analyses for each country against both the available literature and brief summaries of
the qualitative analyses of the early lessons in each sequence on percentages. To facilitate
this process we first consider the goals of percentage teaching. In relation to the Dutch
tradition of realistic mathematics education, Van den Heuvel-Panhuizen (1994, p. 356)
writes that “what percentages are should emerge in how the students are using them”… and
“percentages are always related to something and that they therefore cannot be compared
without taking into account to what they refer”. More generally, Depaepe et al.’s (2005)
review of the literature concluded that the teaching of percentages should attend to
procedural knowledge, conceptual knowledge and adaptive expertise. Hatano and Inagaki
(1986) contrast routine expertise—knowledge and skills learnt with little understanding,

Problem-solving (p<0.0005)
0 1

Flanders9, 10, g 34 2 (6) 36
England11 25 6 (16) 31
Hungary9, h 21 17 (45) 38
Spain10, 11, j 8 11 (58) 19

88 36 (29) 124

Included are the results of chi square tests (probabilities in brackets) indicating the extent to which
distributions are influenced by nationality, and Mann–Whitney U-tests where numerical superscripts refer to
significant pair-wise differences and alphabetic superscripts refer to significant project level differences.
1 z=3.42, p=0.001
2 z=2.72, p=0.006
3 z=2.97, p=0.003
4 z=3.28, p=0.001
5 z=5.44, p<0.0005
6 z=3.35, p=0.001
7 z=3.15, p=0.002
8 z=3.62, p<0.0005
9 z=3.83, p<0.0005
10 z=4.31, p<0.0005
11 z=2.76, p=0.006
a z=2.64, p=0.008
b z=3.57, p<0.0005
c z=4.10, p<0.0005
d z=5.54, p<0.0005
e z=2.28, p=0.023
f z=4.26, p=0.0005
g z=3.67, p<0.0005
h z=2.55, p=0.011
j z=3.00, p=0.003

Table 9 (continued)
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frequently by rote, and applied to familiar problems—with adaptive expertise—knowledge
and skills which have sufficient and connected underlying understanding for the solution of
non-familiar problems. Adaptive expertise, or the flexible application of knowledge, is an
increasingly important objective in mathematics education (Baroody 2003; Kilpatrick et al.
2001) and requires an integrated and connected set of concepts and procedures. In respect
of framing our discussion and acknowledging the high proportions of conceptual
knowledge and procedural knowledge observed in project classrooms, the extent to which
adaptive expertise is acknowledged will lie in the ways teachers promote, for example,
structural knowledge and mathematical efficiency.

Also, by way of framing our discussion we introduce two concepts which emerged from
our analyses and wider reading. The first concerns the cognitive complexity of the
mathematics presented to learners and the second the didactic coherence of the manner of
its delivery. Drawing on Schmidt et al.’s (1996) work, cognitive complexity reflects the
different cognitive demands of different problem types (Hiebert & Wearne 1993; Stein,
Grover & Henningsen 1996; Andrews 2003). Indeed, the “cognitive demands placed on a
student—that is, the thinking a student is required to do, can be quite different depending
on the type of question asked” (Schmidt et al. 1996, p. 81). However, cognitive complexity
alone is insufficient to explain the ways in which teachers, or systems, structure
opportunities for learning. The logic implicit in the sequencing of concepts, and the extent
to which learners are offered a connected and integrated experience of mathematics, reflect
some sense of the didactic coherence of the learner experience (Jennings & Dunne 1996;
Kaiser, Hino & Knipping 2006).

6.2.1 Flanders

Flemish students appeared to experience fewer opportunities for problem-solving and
mathematical efficiency than students elsewhere. These findings, in the light of earlier
studies highlighting the difficulties faced by many Flemish students’ when exposed to non-
standard problems (Verschaffel, De Corte & Lasure 1994; De Bock, Verschaffel, Janssens,
Van Dooren & Claes 2003; Van Dooren, De Bock, Depaepe, Janssens & Verschaffel 2003),
are probably not surprising. However, Flemish students experienced conceptual knowledge,
structural knowledge, procedural knowledge and reasoning in frequencies commensurate, at
both levels of analysis, with project norms. Such emphases, when viewed alongside the
figures of Table 2 showing Flemish episodes attracting significantly fewer codes than the
project norm, point towards a tightly and consistently defined Platonist conception of
mathematics as a static but unified body of knowledge (Ernest 1989) or a coherent set of
inter-related concepts (Thompson 1984). Thus, in respect of adaptive expertise, Flemish
students appear to be presented with ample opportunities to acquire connected conceptual
knowledge, but relatively few opportunities to exploit that knowledge.

This conclusion finds support in the qualitative analyses of the percentage lessons. The
teacher, having invited students to bring to school any household items with some reference
to the word percentage, began the first lesson by discussing what they thought the term
meant and establishing a collective understanding concerning parts per hundred. This was
followed, with the aid of base 10 number blocks that were gradually withdrawn over
several lessons, by a series of problems which were solved collectively and which, through
initially highlighting repeated addition, led her students to see the calculation of percentages
as a process most effectively managed multiplicatively. Throughout a clear emphasis was
maintained on learners’ conceptual knowledge, focused on an emergent insistence that
calculations were to entail “dividing the given amount by (one) hundred to calculate 1% of
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that amount; and multiplying the result by the percentage” (Depaepe et al. 2005: 165). In so
doing the teacher not only foregrounded the structural properties of percentages but also
demonstrated a clear understanding of the logical sequencing of ideas embedded within the
topic. However, despite her introductory activity, she did not return to notions of the real
world use of percentages in any regular or systematic manner. Thus, it could be argued that
two objectives of percentage teaching—the need to highlight the reference to something
and the development of adaptive expertise—were essentially missing. In summary, the
episodes of the Flemish project teachers present a moderate cognitive complexity supported
by a moderately high didactic coherence.

6.2.2 England

English students experienced conceptual knowledge, procedural knowledge, problem-
solving and reasoning in frequencies commensurate, at all levels, with project norms. Taken
together, and in the light of the significantly fewer codes per episode than the project norm,
these allude to episodes which are both similarly and tightly structured. In addition, the
effective absence of both structural knowledge and mathematical efficiency lend weight to
earlier descriptions of English mathematics as pragmatically rather than theoretically
oriented (Kaiser et al. 2006), concerned with functionality (Andrews 2007b), a technique-
oriented subject (Leung 1995) and, in comparison with the French and German traditions,
located in content simplification (Haggarty & Pepin 2002; Jennings & Dunne 1996; Kaiser
et al. 2006). Furthermore, our findings suggest a learning experience in which adaptive
expertise seems an unlikely outcome not least because problem solving, when it was
observed, was only rarely alongside mathematical efficiency and almost never with
structural knowledge. This tends to indicate that problem solving—the use of non routine
problems—almost always exploited only knowledge and skills related to the topic being
taught and was not used to forge links between topics. Such outcomes resonate closely with
a recent schools’ inspectors’ report on the quality of mathematics teaching in England,
which found a high proportion of English lessons “characterised by the teacher doing most
of the talking, emphasising rules and procedures rather than concepts or links with other
parts of mathematics” (Office for Standards in Education 2008, p. 20). Moreover,
“practising only one method at a time… had the effect of fragmenting the subject, because
it was presented as a collection of apparently arbitrary rules that had to be memorised”.

In respect of the teaching of percentages, the qualitative analysis confirmed much of the
above. For example, the teacher made strong links between fractions and percentages by
encouraging students to convert easy percentages into fractions in their lowest form
(Depaepe et al. 2005). However, this sense of conceptual linking was largely undermined
by an emergent emphasis on relating percentage calculations to an initial calculation of 10%
which the teacher presented procedurally, by means of demonstrations and tightly focused
closed questions, as dividing by ten. In the following lesson, to her surprise, several
students, when asked how they would calculate 20% of something, suggested they would
divide by 20. Such approaches, reflecting a systemic encouragement of informal strategies,
appear not only to encourage learner acquisition of misconceptions but also fail to
acknowledge important mathematical generalities. Indeed, Depaepe et al. (2005) noted that
the English students were never expected to work with the conceptually more general
process of dividing by 100 to find 1% of an amount. Lastly, the tasks presented to students
were routine and rarely related to anything other than simple contrived contexts.

The above reflects, in the presentation of mathematics as a largely unconnected and
particularised collection of facts, rules and skills, Ernest’s (1989) instrumentalist tradition.
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Moreover, in respect of the particularities of percentage teaching, conceptual simplification,
no contextual reference and no encouragement of adaptive expertise collude in supporting
our interpretation that the episodes of English project teachers present a low cognitive
complexity and barely moderate didactic coherence.

6.2.3 Hungary

In respect of their observable learning outcomes, and despite proportions of procedural and
conceptual knowledge commensurate with project norms, the evidence suggests that the
higher order outcomes of reasoning, structural knowledge, problem-solving and efficiency,
particularly in the regular juxtaposition implied by the second level analysis, were a
significantly more frequent element of Hungarian episodes than elsewhere. These findings
accord with earlier accounts in which the intended (Sutherland 2000) and implemented
(Andrews 2003, 2007b; Graham, Rowland, Jennings & English 1999) mathematics
curricula are “focused on … the skills of logical reasoning, which are developed through
the solution of non-routine problems that allow for multiple solution-strategies and
encourage higher-level thinking” (Andrews 2007b, p. 330).

This sense of mathematical complexity was supported by the qualitative analysis of the
teaching of percentages. Depaepe et al. (2005, p. 167) commented that Hungarian students
were engaged at a much higher conceptual level than students elsewhere, being “strongly
encouraged to apply known procedures flexibly and meaningfully to new and unfamiliar
tasks”. For example, they were expected to solve problems with different conditions
prevailing, as on the occasions they were asked to find the original amount having been
given the outcome and percentage rate. On another occasion Hungarian students were asked
to consider the effect of taking 120% of 80% of something. The class discussed the problem
in a general sense before examining the particular case of 100 to confirm not only their
prediction of a reduction but also that the order was immaterial. Moreover, “Hungarian
students learned that percentages are always related to ‘something’ and that they have no
meaning without taking into account to what they refer” (Depaepe et al. 2005, p.167) with
many of the problems posed to them located in analyses of global issues concerning
poverty, health and illiteracy. Thus, in terms of the learning objectives associated with
percentages, it would seem that Hungarian teaching encourages both conceptual and
procedural knowledge and that these are managed in ways that facilitate adaptive expertise
and an understanding of percentages as being of the real rather mathematical world.

In summary, the high levels of structural knowledge and mathematical efficiency, when
viewed alongside the significantly higher proportions of reasoning, tend to reflect a Platonist
perspective on the subject.Moreover, the frequency of problem solving, while not entirely distinct
from Ernest’s (1989) problem-solving conception of mathematics as “a dynamic, continually
expanding field of human creation and invention, a cultural product” underpins a systemic view
that mathematics is there to be discovered through the use of judiciously selected problems
(Andrews 2003; Szalontai 2000). Thus, in conclusion, the episodes of the Hungarian teachers of
this study, when considered against the higher than project norm number of codes per episode,
present a high cognitive complexity supported by high levels of didactic coherence.

6.2.4 Spain

Spanish episodes attracted significantly more codes than the project norm. They also
yielded stronger emphases on procedural knowledge and problem-solving than elsewhere
and although the remaining outcomes were observed in proportions commensurate with
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project norms their distributions were not. For example, mathematical efficiency was
usually associated with conceptual knowledge, procedural knowledge or both but rarely
with problem solving. This indicates limited expectations in respect of how non-
routine problems are used and may reflect Blanco’s (2003) observation that Spanish
teachers have idiosyncratic views about the nature of mathematics and its teaching. Also, a
relative lack of structural knowledge with either procedural knowledge or problem solving
indicate that non-routine problems rarely, if ever, cross topic boundaries. Thus Spanish
episodes appear focused on narrow applications of mathematical knowledge. However,
such applications are not necessarily real world. Indeed, in none of the 214 Spanish
videotaped lessons did we see “teachers’ consistent linking of principles studied with
practical, everyday applications” as found by the survey of mathematics and science
opportunities (SMSO) team (Schmidt et al. 1996, p. 99). An explanation for this
discrepancy might lie in the autonomy of the Spanish regions whereby each is free to
adapt centrally determined curriculum goals to local needs (Alsina & Richard 2001) and the
fact that the METE lessons all took place in south-west Andalucía, a region of Spain with
strong local traditions.

In respect of the percentage lessons the above finds resonance with Depaepe et al’s
(2005) comment that the Spanish teacher placed a “strong emphasis on computational
goals” alongside low level procedures like converting “percentages into equivalent fractions
in order to calculate the percentage” (Depaepe et al. 2005, p. 166). That said, students were
gradually guided into calculating percentages “by multiplying the given percentage by 1%
of the given amount”. However, “adaptive expertise was not aimed at, since students were
always asked to apply the same procedure to familiar tasks” and, while the teacher
introduced the topic through a discussion focused on children’s understanding of the real-
world use of percentages, notions of real-world relevance were not revisited during the
same or subsequent lessons. Thus, in terms of the goals of percentage teaching, both
adaptive expertise and contextual reference were lacking in the lessons observed.

The unusually high levels of problem solving allude less to Ernest’s (1989) problem
solving conception than, in its narrow focus and juxtaposition with procedural knowledge,
to his instrumentalist. This, linked to the lack of structural knowledge and mathematical
efficiency suggest that mathematics is viewed as having little intrinsic value. Indeed, it
could be argued that the Spanish tradition is one of application with no other objective but
application. Thus, the episodes of the Spanish project teachers comprise low cognitive
complexity allied to low didactic coherence.

6.3 Instrument potential

In terms of the third issue, establishing the potential of METE-like instruments for
comparative mathematics education research in general and, by implication, examination of
the national teaching script in particular, we feel we have been successful. The generic
learning outcomes discussed above have shown, apart from their ease of use and potential
for reliable coding, similarities and differences in the ways in which teachers from different
countries present mathematics that resonate with the earlier studies available to us.
Moreover, the significance levels reported above, and the measures taken to prevent both
type I and type II errors, allow for some interpretive latitude and support a conjecture that
differences identified by the analyses were unlikely to have been due to chance. In short,

4 The project team videotaped five lessons during the Spanish observation week and 16 during the formal
round of topic-based data collection.
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the seven generic learning outcomes and the emergent constructs of cognitive complexity
and didactic coherence have enabled the development of tentative models of nationally
located expectations of mathematics teaching.

7 Concluding thoughts

Our objective in this paper was to validate the project’s instrument. In this respect, at least
in terms of teachers’ observable learning objectives, we believe we have been successful.
Firstly, the manner of the instrument’s development and the involvement of a multinational
team working in the bottom-up manner described above, imparted considerable content
validity. Secondly, despite relatively little in respect of Flanders and Spain, the available
literature accords well with the findings yielded by project data and offers further support
for the construct validity of the coding schedule. Thirdly, despite the small samples, the
statistical analyses warranted the instruments as a potentially powerful tool for comparative
mathematics education research. Also, the limited evidence yielded by the project data
confirms an initial conjecture that even culturally near-neighbours develop significantly
different educational traditions. That said; a more complete account of teachers’ actions
necessitates complementary research that goes beyond the sort of quantification presented
here. Generic codes can tell us, in ways that allow for meaningful comparison, what is
happening in a country’s classrooms but offer little in respect of explanation. Therefore,
attention should be paid not only to socio-cultural and politico-historical analyses of
educational systems and traditions but also to studies that privilege the voice of individuals.
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