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Abstract In this paper we describe learners being asked to generate examples of new
mathematical concepts, thus developing and exploring example spaces. First we elaborate
the theoretical background for learner generated examples (LGEs) in learning new
concepts. The data we then present provides evidence of the possibility of learning new
concepts through a symbiosis of induction and abduction from experience and deduction
from the relationships generated in exemplification. In other words, experience can be
organised in such a way that shifts of understanding take place as a result of learners’ own
actions. Actions, in this context, include mental acts of organisational reflection.

Keywords Conceptual learning . Examples . Learner generated examples . Mathematical
abstraction . Mathematical generalization

1 Introduction

The studies described in this paper are situated within two theoretical ideas: variation
theory, emanating from the work of Ference Marton, and theories associated with learner
generated examples, LGEs, (e.g. Watson and Mason 2005). Marton’s view is that learning
takes place through discernment of variation in near-simultaneous events, the act of
discernment itself being an aspect of learning (Marton and Booth 1997). Some of the work
of Marton and his associates (e.g. Marton, Runesson and Tsui 2004, p.4) draws our
attention to the importance of perception of variation.

This view translates easily into mathematics, since mathematical structure manifests
itself through relationships among variance/invariance and similarity/difference (e.g. Davis
and Hersh 1980, p. 198). Discernment of these relationships leads to defining classes of
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mathematical objects, understanding the effects of operations, expressing and manipulating
relationships, reification of relationships as new objects, and so on. ‘Object’ here means
something that can be thought about: a physical thing, a symbolic representation, or an
abstract idea, such as a classification or a relationship, which is represented by symbols or
physical artefacts. As mathematicians we also appreciate the importance of generating
variation. Personal control of variables contributes to perceiving, enacting and understand-
ing the relationships being exemplified. Simon, Tzur, Heinz and Kinzel describe this as a
process of reflection on the relationship between activity and its perceived effect (2004).
This suggests that if students generate examples, reflection on those examples could,
through perceiving the effects of the variations they have made, lead to awareness of
underlying mathematical structure. ‘Structure’ here means how elements and properties of
mathematical expressions are related to each other.

The idea that LGEs can be used to motivate conceptual understanding is implicit in the
writings of mathematicians urging others to create their own examples when interpreting
mathematical text (e.g. Halmos 1983; Feynman 1985). In Watson and Mason (2005) we
elaborated on this idea as a pedagogic tool. However, there are some difficulties in
understanding why it can be effective.

2 Obstacles to the claim that school learners can gain some understanding
of new-to-them ideas by generating examples

Firstly, some authors suggest that it is hard to see how a learner can construct objects
without already having an idea of what to construct. What is described as the ‘learning
paradox’ (Fodor 1980) suggests that learners cannot construct a conceptually richer system
than those they already know. However, claiming this is true for mathematics assumes that
learning is about becoming acquainted with unfamiliar ideas, whereas in mathematics the
methods of enquiry and construction themselves belong to the mathematical canon and
allow unfamiliar objects to be made from familiar ones. Indeed, Fodor’s definition of
learning (1980, p.149) seems more to do with inductive formation of conjectures than
acquisition of facts, so his claim rests on a belief that one cannot hypothesise about ‘richer’
ideas from empirical experience. However, asking learners to construct a function which is
not continuous requires knowledge of what ‘continuous’means, and the ability to break some
of the associated conditions. It does not require pre-existing knowledge of actual non-
continuous functions from which to hypothesise. Learners may have favourite non-examples
(Tsamir, Tirosh and Levenson 2008) but our claim is not that constructing non-examples is
easy, merely that it requires nothing more than the ability to manifest one of a range of
alternatives to a condition. It does not require higher-order perceptions about relationships
such as those that might be needed to make counter-examples (Zaslavsky and Peled 1996).
Exercising variation beyond perceived limitations is one way of constructing unknown
objects; another is to identify the underlying structures of mathematical representations,
foreground and background different aspects of them, and present them in new forms. For
example, learners can consider the need for ten number symbols when using powers of ten,
and then explore through construction what would happen if we used powers of two—this
does not require existing knowledge of binary systems, but does require the opportunity to
reflect on individual examples and, through abduction, conjecture about meaning, structure
and relationships (Peirce 1931).

Secondly, it is often assumed that learners cannot achieve higher-level understandings
empirically, because the actions of mathematical thought required to generate data, perform
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procedures, and observe similar examples, are not sufficient for conceptualisation. In order
to conceptualise there has to be some shift to ‘higher mental functioning’ which is
somehow structured by expert others (Vygotsky 1978 p.57). Schmittau (2003), for example,
provides a powerful critique of some current US practice in which learners are encouraged
to generate and compare examples to achieve abstract understanding. This traps learners,
she claims, into a metonymic world in which their spontaneous conceptions have to be
stretched and mangled to cope, often inadequately, with the generalisations their example-
generation has produced. However, Davydov himself, on whom Schmittau’s work depends,
claims that comparison is the way to perceive the structures, dependencies and relationships
which characterise mathematical abstraction (Davydov 1972, p.93). One way to sort this
out is to grasp that what Schmittau is pointing to is the habit of expecting learners to spot
patterns and continue them, comparing cases recursively to ‘spot’ how patterns were
generated. Watson has called this ‘going with the grain’ (2000), (a metaphor from wood-
carving in which cutting in the direction of the grain of the wood is superficially easy), to
indicate that such term-to-term generalizations may not represent structure. If, however,
learners are presented with representations of relationships and have to discern structure for
themselves (‘going across the grain’ and hence revealing the internal structure of the wood)
then we have a learning phenomenon which can be described in several traditions. For
example, in the Vygotskian tradition this could be described as providing scaffolding,
through carefully designed examples, for learners to operate at a higher mental level than
they would otherwise, bringing their spontaneous conceptualisations into contact with the
formal culture of mathematics.

A further issue is that the literature on using LGEs to engage with new ideas is mostly
concerned with advanced learners. For example, Dahlberg and Housman describe how
mathematics undergraduates learnt about ‘fine functions’ by being given a definition to
exemplify (1997). They concluded creating examples could be a powerful ‘learning event’
in which students made real progress in understanding. Hazzan and Zazkis (1997, 1999)
asked pre-service teachers to create examples of mathematical objects with various
properties and found several ways of proceeding: some used trial and error to create one
example, others constructed examples using properties, but often these were trivial or very
special cases. In both these studies, construction of examples was a novel process for the
students. Watson and Mason (2005) report phenomenological evidence from participants in
workshop sessions that exemplification is an effective way to engage with new ideas.
Literature about using such an approach with school students is scarce, so it might be
assumed that this approach is only suitable for advanced learners.

Three questions emerge:

& Is it possible for learners to create examples of classes of object they have not met
before?

& Is it possible for non-advanced students to learn about mathematical objects and
relationships by generating their own examples?

& If so, what sort of conditions might contribute to learning?

We1 use ‘example’ to mean an instance, illustration, case or element of a mathematical
idea, object, process or class (Zazkis and Leikin 2008). Obviously it is possible to create
examples while being unaware that to an expert they exemplify ideas which the novice may
not have met. The important phrase is ‘examples of’, so that the construction is directed

1 Anne Watson was the main researcher for the work reported in this paper; Steve Shipman is the teacher
involved in Studies 1 and 2, and co-author of this paper.
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towards a certain end, and in the process of meeting that end the learner will encounter
new-to-them ideas, relationships, and ways of classifying. We use the word ‘learn’ to mean
a process of becoming familiar enough with mathematical ideas to be able to use,
manipulate and adapt them, think about them and communicate about them. ‘Becoming
familiar’ includes perception of variation, and, through construction and reflection,
appreciation of relationships, and, with deliberate pedagogy, knowledge of conventional
mathematical ideas.

In this paper we offer the outcomes of some small studies towards answering the first
two questions positively, and offer some insight into the third question.

3 Classroom studies to find out how LGEs of new mathematical ideas are generated

We set up some studies in authentic classroom settings. These are not experiments but are
studies of a teacher teaching his usual students the usual topics in their usual lessons but
with the use of LGEs as a deliberate new strategy.

3.1 Study 1: LGEs as raw material for understanding structure

In our report of this study we show that shifts towards engagement with structures and
relationships can occur, unprompted by the teacher, through reflection on examples in an
appropriately supportive environment.

The class for the first study was a Year 9 (13/14 year-olds) group in an English
comprehensive school. In the UK classes are typically ‘set’ according to prior attainment
and this group was selected from the highest achieving third of the cohort. Steve had been
teaching this group for over a year. He also assisted with a parallel class taught by another
teacher.

The lesson we shall describe has to be seen in the wider context of Steve’s usual teaching
strategies with all groups. Steve usually spends about 50% of lesson time leading discussion
and exposition, with the starts and ends of lessons involving ‘thinking’ tasks—tasks which need
more adaptive reasoning than recall or fluency. The remaining time consists of 30% small group
work and 20% independent research (exploration and book/internet research). Homework is
often used as a chance to create questions: each pair of pupils sets a ‘hard’ question on the
current topic that the rest of the class has to solve for the next lesson. The setters have to be
prepared to provide their answer. This means there are 15 or 16 questions in total and the pupils
are involved in the marking and subsequent discussion.

For Steve, the purpose of competence with techniques is to think about concepts. For
this reason, during episodes of technical work, he sometimes gives directed help to learners
so that they can all take part in whole class discussions of mathematical ideas. He also
employs a ‘gossip’ approach to classroom knowledge in which ideas are allowed to spread
around the classroom during lessons.

He often talks in lessons about mathematical strategies, such as ‘using inverses’ and
‘thinking about special cases’ (ideas that will be significant in what follows). Working on
special cases and thinking hard about them contradicts a common practice in UK
mathematics lessons of generating many cases and looking for patterns so that a
generalisation ‘jumps out’. Special examples do not provide raw material for inductive
steps but offer evidence of plausible structures from which meaning can be abduced, either
because their speciality shows a degenerate relationship, or their structure offers a generic
model (Mason and Pimm 1984).
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In this study Steve introduced the Year 9 class he had been teaching longest to the idea
of irrational numbers by asking them to generate examples involving roots in ways which
brought them in direct contact with the way surds behave. They already knew that ‘√’
signifies ‘square root’ but this does not imply that they were fluent in its use or meaning.
For example, they would have been familiar with statements such as ‘√36=±6’ but might
themselves have only given the positive root. Learners were told of the existence of a ‘new
kind of number’ of the form (a+√b). They were then asked to multiply pairs of such
numbers to see if they could ‘get rid of the roots’ and get integer answers. The concept we
hoped they would begin to understand was conjugacy: that (a+√b) (a−√b) would always
be an integer when a and b are integers. However, what convinced Steve to try this
approach was the expectation that the process of choosing and trying out examples would
have intrinsic benefits for their understanding of roots and surds, and how they behave
when multiplied, even if ‘answers’ were not ‘discovered’. In other words, purposeful play
with LGEs would be worthwhile in itself.

There was no deliberate intention to use the parallel class for comparison, because this
was an opportunistic study in an authentic context, however it turned out, fortuitously, that
both classes were going to be working on examination-type questions about surds around
the same time.

With the study group Steve started by giving some examples of general “grid
multiplication” to remind them of the structure. Students were familiar with using this as
a structuring device for multiplying two multi-digit numbers and algebraic expressions. It is
commonly used in the UK to ensure that all pairs of elements are multiplied; the contents of
the cells are then added. After a numerical example he showed them the grid in Fig. 1.

Students called out the contents of the cells and he asked them what the sum of the final cell
entries would represent. The aim was to remind them that the grid is a tool to express the
product. Learners were then asked to propose grids for (7+2x)(3−4x) and then (a+b)(c+d),
both times arriving at a grid similar to that in Fig. 1, and worked through the calculations for
each cell and for the overall sum. Steve then reminded them about the meaning of the root
sign, and showing a few written examples such as (2+√5) merely to state ‘this is a new kind
of number’. Only the plus sign was used in this introduction, but a negative sign had been
used in one of the earlier algebraic examples. He asked them, as a class, to consider how to
multiply (a+√b)(c+√d). They agreed that they could use this grid method. Presenting the grid
was an invitation to ‘see’ the similarity of structure. Some of the students worked out that the
bottom right entry would then be √b√d, but there was no discussion about √b√d=√(bd). They
then were asked to choose their own values of a, b, c and d to achieve an integer solution,
without using square numbers for b or d as this would be ‘cheating’.

Students worked for about half an hour on A3 blank paper. This encouraged record
keeping that allowed many examples to be seen and compared without turning the paper.
During this episode Steve spoke with every individual student. Each conversation was

X 6 +y 

3  

+y 

Fig. 1 Grid multiplication
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different, depending on their chosen examples, with Steve asking them if anything so far
had indicated they were close to useful numbers.

We collected all the written notes learners produced during these lessons and analysed
them to see the variety of examples created. For each student the researcher identified
variation in the choice of the integers they had employed as they generated examples. The
dimensions of variation (Marton et al. 2004) focused on were: choice of integers, nature of
integers (small, large, having certain multiplicative properties); relations between chosen
integers (consecutive, related multiplicatively); signs (although no one used negative signs).
We also analysed the progression of choices to see influences of reflecting on earlier
choices. We reached agreement about interpreting the data through discussion, with Steve
providing the evidence and classroom context and Anne probing for further information
and introducing research perspectives. This led to theoretical and practical agreement on
what had happened in the classroom.

The encouragement to record work in whatever way they liked could have led to
difficulties in analysis, but our priority in class was learning rather than research. Some
students had chosen to arrange their work in one sequence so that chronology was easy to
discern; others had worked two-dimensionally, developing a particular kind of variation
horizontally and then starting a new kind below it. Others had recorded more randomly but
with small connected blocks of work where they had been pursuing a particular dimension
of variation. It was possible on nearly all sheets to see from the layout which examples had
been tried towards the beginning of the time and which towards the end. There was a
tendency to record from the top left of the sheet towards the bottom right. It is not the focus
of this paper to comment further on layout, but we were struck that most students appeared
to relate layout to organising the variation in their work.

Eighteen of the 30 students tried numbers which suggested some kind of organised
thinking, see below. The remaining 12 did not show evidence of systematic choice of
numbers that we could discern, even if layout was neat and organised, but still generated
several examples which can be seen as constituting ‘practice’ of multiplying surds. All
learners experienced such practice during the lesson: none did fewer than four examples
and some did many more than this.

The availability of calculators tempted them to change everything into truncated
decimals at first—this was no surprise as most of their previous experiences with number
had been about getting numerical answers. However, most wrote the cell entries in surd
form, and those who wrote out the sum before calculating used surd form (e.g.,
12þ 4�p

65ð Þþ 3�p
35ð Þþ p

35�p
65ð Þ). They had been given no advice on using the

calculators algebraically retaining the surd in the answer. However, there was written evidence
that for many the decimal approach gave way to an understanding that the problem was not
really about finding special numbers, but about the algebra of irrational roots. This, of course, is
our language and not what learners might say—but in much of their work shifts from ‘trying
different numbers’ to ‘trying different structures’ could clearly be seen. Abandoning the
calculator and staying with the surd notation as an algebraic object with pencil-and-paper was
one sign of this, e.g. writing

p
4
p
3 ¼ 2�p

3; choice of special examples was another, e.g.
4þp

5ð Þ 5þp
4ð Þ. Some stopped calculating the total as if they were focusing on elimination

rather than summation. It was clear that several students began to treat numbers as generic,
e.g. 8þp

8ð Þ 8þp
8ð Þ. We also believe that, even when calculation was done, many choices

of number were structural in the sense that they may have been chosen because of special
relations rather than their own value or randomness, e.g. choosing to use prime numbers only,
or choosing to use √2 and √8 in the same example. Some students tried to use letters, one of
them wrote: ‘√x√y has to be an integer; square roots to make whole numbers?’
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According to the analysis, at least ten learners made a clear shift to working with
structure during the lesson, and a few came close to understanding that the roots needed to
be the same in order to stand a chance of ‘cancelling each other out’. For example, a few
learners working together multiplied (2+√2) by itself (Fig. 2).

The appearance of an integer in the bottom right corner of the grid caused frustration
rather than pleasure; two students (who may have been sitting near each other) wrote
‘wasted integer’ next to the ‘2’ in the bottom right. Looking from an advanced perspective
of knowing how to ‘get rid of the roots’ it is hard to see why learners had wanted to cling to
them in this example. However, we recall experiencing that same sense of frustration
ourselves as learners, not realising that the key idea in the solution is that the top right and
bottom left terms have to be additive inverses. Possibly because the students had focused on
changing the numbers, and this is how the challenge had been set up, changing the sign was
not a dimension of variation which occurred to them. However, one of the powers of the
grid layout of multiplication is that when it is used regularly and creatively such changes
might come to mind more easily.

To support the claim that students shifted their understanding during their example-
generation we show some sequences of their example choices in Table 1. All of these show
evidence of systematic searching with some variables held constant. There were others in
which no such control could be observed.

In these examples it looks as if the kind of reasoning taking place is not inductive. That
is to say, it is not about generating some examples which work and inducing from them a
generality which can then be algebraically expressed—the kind of empirical reasoning
which Vygotsky claims does not aid abstraction (1986, p.107). Here, however, it looks as if
some learners have shifted themselves towards working with structure, through special
choice of numbers as generic objects, and some have even employed algebra. How can this
happen when they do not already know how irrationals behave when multiplied, and when
they have not had much experience of those special cases where the product of binomials
has only two terms? Examination of the work done and the teaching context suggests some
explanations.

In this particular lesson, ‘gossip’ seems to have helped the spread of ideas, since (2+√2)
appears in several scripts. That these ideas cropped up in a third of the class although no
one had an actual answer suggests that many of Steve’s students are genuinely interested in
exploration even if they had to get ideas about how to explore from each other.

Choosing likely integers and converting their roots into decimals appeared to become
tedious and unproductive, so learners needed more efficient ways to look at the problem,
i.e. shortcuts and curtailments, and were probably reflecting on their work with this in
mind. It is likely that fortuitous examples were found by some learners which, on reflection
in discussion with others, seemed to be more likely candidates for development than others.
Steve had given them no input about how √b√b would be the same as b, but because

2 

2 4

√2 

2√2√2 2

2√2 

Fig. 2 (2+√2)2
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students did not think of using the negative sign the explorations described above led more
readily to conjectures about √a√b than to conjugacy. About six students wrote statements
indicating that they felt they needed square numbers in order to produce integers. Three
students produced systematic lists of decimal numbers generated from a√b; two stopped
when they reached 3√4. We can speculate that this choice led them to stop this approach
because 4 is a square number. One student then went on to write, without comment: √9√1,
√9√4, √9√9, √9√16 .... This student also had written elsewhere on the sheet: 1√8 (2√2) and
2√8 (4√2).

Table 1 Examples of Steve’s students LGE generation

LGEs Interpretative comment

7þp
5ð Þ 6þp

7ð Þ
7þp

10ð Þ 6þp
6ð Þ

7þp
8ð Þ 6þp

4ð Þ
7þp

4ð Þ 6þp
3ð Þ

This sequence appears to show some
understanding of controlling variables, but
although the third example has the
potential to give useful information, the
next unhelpfully pairs √4 with √3

7þp
19ð Þ p

17þ 3ð Þ
7þp

18ð Þ p
18þ 3ð Þ

7þp
18ð Þ p

17þ 3ð Þ
7þp

17ð Þ p
17þ 3ð Þ

In earlier work with exemplification, we
have seen that certain prime numbers such
as 7 and 17 are often selected as if they are
neutral or generic. This could show
awareness that multiplicative properties
might be useful. This student used a
calculator for all four examples. This
student then stopped–maybe with some
sense of matching the roots.

4þp
4ð Þ 5þp

5ð Þ
2þp

2ð Þ 2þp
2ð Þ

8þp
8ð Þ 8þp

8ð Þ

This learner may understand that the
challenge is about structure, and is
experimenting with this in mind,
controlling variation within each example
rather than between examples. A
calculator was used. The class has not yet
discussed that √8 is the same as 2√2.

aþp
2ð Þ bþp

8ð Þ This example comes from someone who
appears to grasp that specific roots might
cancel each other out and tries to construct
generalities with them.

12þp
6ð Þ 2þp

3ð Þ
12þp

6ð Þ 12þp
3ð Þ

12þp
12ð Þ p

12þ 12ð Þ

This shows a shift to a structured approach.
The student seems to understand that
squaring the square root might be helpful.
No decimal calculations were recorded. A
few students changed the order of terms as
in this case; we do not know if
commutativity was thought about or not.

aþp
bð Þ bþp

að Þ This learner may be attempting to change
the order to effect the desired elimination.
This example followed several apparently
random examples, not of this structure.

2þp
3ð Þ p

2þp
3ð Þ

2þp
3ð Þ 3þp

2ð Þ
2þp

2ð Þ 3þp
3ð Þ

This shows a structural search for some
relationships among the chosen integers;
only the first one was worked out with a
calculator.
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Using LGEs can therefore, as we suspected, be motivating and provide an enquiry-
generated start to a new topic. The examples many students used showed a growing sense
of structure while at the same time providing practice in the basic procedure of surd
multiplication and an arena for coming to understand what surds are. Furthermore, many
students seemed to use numbers as generic objects, and saw a need for relations among
them. This analysis fitted well with the teacher’s perspective on the lesson, although his
was inevitably more class-focused. But did it help students learn in the sense given earlier?
In the lesson following the one just described, Steve showed them briefly how using the
negative sign would resolve the matter. Then typical examination questions involving
rationals, irrationals and surds were set. When working through questions as a whole class,
many students made suggestions about choices of method, such as when it is helpful to
eliminate surds (e.g. when they appear in a denominator) and when they are best left in that
form (e.g. when they are going to be multiplied by another surd). Steve reports that they
referred to ‘our’ methods and ‘our’ ideas.

The parallel group had previously been taught the same subject matter by another
teacher using a rule-based approach focusing on definition, technique, memorisation and
application in given questions. In Steve’s perception, this parallel group could cope with
familiar questions but struggled with more complicated problems. Rather than suggesting
methods based on meaning, their approach was to try to identify which method might be
useful from syntax. We claim, therefore, that the LGE process helped the first group learn
about the concepts and relationships of surds, and led students to shared ownership over
this area of mathematics.

3.1.1 Discussion of first study

This lesson confirms that generating examples can provide a good way to start
understanding a new concept, with some caveats. Firstly, there was a goal rather than a
directionless exploration, and it was a goal which could be reached with a searching
strategy structured by the grid method. Secondly, Steve’s usual teaching included attention
to structural aspects of mathematics such as inverses and generalisation from features of
special cases. We need to know more about whether and how students used these
perspectives in their exploration. There is evidence that some students constructed special
cases, but their use of inverses seems confined to squares and square roots, rather than the
inverse nature of + and −. Systematic example generation, controlling one variable and
allowing another to vary in order, was only useful if it happened to produce illuminating
examples. Algebraic structures coalesce around the concepts of inverse, identity, operation,
combination, commutativity, distributivity, function and so on. Sometimes these are
communicated by systematic example-generation and sometimes they are not.

Learners had engaged with new ideas through making their own examples. These
examples were associated not only with objects (here surds), but with relationships between
objects. Learners had to use multiplication, reflecting on its outcomes, to get a sense of the
multiplicative relationships between surds. The fact that none found the conjugate during
the lesson does not negate this. The task had drawn them into a ‘space of relations2’,
namely that they were not merely generating examples of new-to-them classes of object,
but examples which fulfilled certain relational constraints so that they were thinking about
getting something specific to happen. Thus they were not only exploring and extending
their personal experience of integers, roots, and multiplicative methods (their ‘example

2 Grateful thanks to Elaine Simmt for using this expression.
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spaces’ of numbers and actions relevant to this task (Watson and Mason 2005)) but also
exploring and extending their experience of multiplicative relationships and getting a wider
sense of what happens when two of these ‘new’ kinds of number are related by
multiplication. This extends their sense of multiplication; they are no longer in a world
where multiplication can be rephrased as ‘x lots of y’. We conjecture, therefore, that in a
space of relations the objections raised by Schmittau (2003) and described earlier do not
arise, because learners are invited to engage with relations between objects from the start, in
other words they have to objectify the relationship through generating examples which
fulfil it. They are not merely trying to provide and describe examples generated ‘with the
grain’, i.e. generated sequentially according to some repetitive rule, but have to identify and
produce relationships between elements of the examples ‘across the grain’, in relationship
to each other, and in doing so will learn more about the properties of the new class of
objects through the behaviour in this particular relation.

Davydov’s claim, (1972) that generalisation comes from comparisons between
examples, i.e. how their differences enable you to see critical common features, rather
than seeing properties, relevant or irrelevant, which they happen to have in common,
appears to be upheld. There is no smooth path from example-generation to conclusion.
The intended salient features are drawn out as ‘common’ through active comparison of
special cases rather than casual pattern-spotting. Indeed, the use of the calculator to
express roots as truncated decimals (often given to seven places) discourages a pattern-
spotting approach.

Having offered some classroom evidence which supports the claim that LGEs can be
used for learning about new mathematical ideas, we have not yet carefully addressed the
question of whether this only applies to advanced learners. Some of the students in this
class could be described as strong mathematicians, but not all, although they were relatively
high achievers in the context of that school.

3.2 Study 2: low attaining students can learn by generating examples

The literature on LGEs relates only to groups of learners with high achievement, but our
sense of adolescents is that, given a suitable environment, any learner can respond with
cognitive maturity ‘primarily as a thinking being’ (Vygotsky 1986 p.30). In this study,
which we report briefly, we explored this idea further, and also sought to learn more about
the nature of learning in such environments.

Steve asked a previously low-achieving group of 16 year olds, those who were predicted
to get the lowest grades in public examinations, to explore relationships between sides of
right-angled triangles. Steve also taught another group in the same year, again one that had
previously been taught by someone else, whose previous attainment as measured by
national tests was the highest in the school.

The first class was asked to draw ten right-angled triangles, measure the sides as
accurately as they could, and name one of their non-right angles θ each time. They had been
taught by Steve for most of a year and were by now used to such ‘playing’. The ‘gossip’
method of classroom interaction was exploited successfully during the lesson and all
learners were eventually familiar, either by finding it themselves, or by hearing it said by
peers or the teacher, with the idea that dividing the lengths of sides would lead to the same
results for the same angles. Our analysis of students’ work gives no further insights into the
process than those developed in study 1. Whole-class discussion at the end of the lesson
ensured that knowledge was collectively developed, shared and articulated. In the space of
1 hour sine, cosine and tangent had been found collaboratively to be invariant ratios for
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fixed angles in ‘different’ triangles. This finding emerged in class discussion orchestrated
by Steve. In the following lesson and homework the same class managed to work through,
correctly, 30 typical examination questions designed for higher-achieving learners who
were expected to get top grades. This process began with whole class discussion, referring
regularly to the learners’ own examples from the previous lesson and using their own
suggestions.

Steve’s other group of 16 year olds had first been taught these trigonometric ideas
2 years before, and were revising them for the upcoming high-stakes examinations. They
were unable, in a group discussion, to achieve a comparable level of competence with
unfamiliar questions and were also unable to generate their own examples and methods. We
believe this was due to earlier acculturation in more exam-focused ways of working with a
heavy emphasis on procedural acquisition and competence. In general, these students
demonstrated memory by generating formulae from a mnemonic, and rearranging equations
according to methods, but did not appear to have the underlying knowledge and intuitions
required to be sure of doing this correctly. We are, of course, not making claims about
individual learners, but teacher-reports about whole class characteristics have significant
value in raising questions for further research.

This comparison shows that classroom norms, expected ways of working, available
tools, the use of knowledge distributed in the class, and the nature of teacher input combine
with the power of LGEs to promote learning new concepts. The ways purposeful generation
is structured, and the roles of variation in exploration and generation, were central to its
success. Furthermore, learners who had ‘found’ trigonometric ratios through example
generation which shifted from fairly random trials to deliberate specialisation, claimed
ownership of what they had found in a similar way to those in the surd study. Some of them
told Steve that they were pleased that ‘their’ results could help them answer examination
questions.

3.2.1 Further teaching experiments

In the year following the successes in these studies, Steve used the same approach to
teaching surds for classes with average and below average prior achievement, this time
being careful to insert the possibility of using negatives as well as positives. We do not
report these fully here, but it is worth noting some of the outcomes. A few learners found
conjugacy; for example, one found that (2+√12) and (−2+√12) produced the desired result.
Someone wrote that (s)he had used ‘numbers which are close together’ and in the written
work had used √5 and √20, suggesting that (s)he meant ‘close in meaning’ rather than
value. They had no difficulty remembering ‘our rules’ for surds 4 weeks later. Steve also
removed the constraint that they must not use square numbers. Four students found for
themselves that √a√b=√(ab). It was evident from the quantity of rough work that both
classes were active in exploring unknown territory, even when it offered more frustration
than success, and that at the very least they all used the root symbol correctly, and practised
using it in alternative representations of whole numbers.

3.2.2 Discussion of the studies

Exploring new concepts through example generation is possible even when the generation
task is essentially constructive, as in these studies. However, it may be important that the
studies hinged on exemplifying relationships, rather than objects. Asking learners to
construct objects of which they have no knowledge might be pointless, unless it is possible
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to do so by adapting existing knowledge to fit new constraints. Also, asking learners to
exemplify the next object in a sequence whose generating action is known might not result
in learning about underlying structure. In our studies the LGEs required identifying or
creating relationships, or deducing structure, or engaging with the semantics of a
mathematical expression rather than its syntax. Generating examples does appear to have
been powerful in promoting learning, as Dahlberg and Housman conjectured in their work
with undergraduates (1997).

These studies support the ideas in Watson and Mason (2005) that LGEs are an
appropriate way to introduce new ideas in mathematics lessons, and show further that all
learners might be capable of generating examples, and that significant learning can result
from the process because learners generate and explore example spaces related to the ideas,
in particular spaces of relations between objects.

The importance of normal classroom expectations and teacher guidance cannot be
overestimated however.

4 Conclusion

What is required for learning through exemplification is not so much the observation of
numerical patterns generated in sequences of different examples, although this observation
would tell the learner something about structure, but conjecturing relationships which connect
different variables within examples. Making this shift of perception is non-trivial and very
sensitive. One way to do it is to discern critical features by comparing similar examples.
Another is to conjecture from characteristics of special cases. For example, some low-achieving
students ‘saw’ the identity √a√b=√(ab) because of the examples they had generated using
already-square numbers revealed this relationship more clearly than a calculator approach.

The data from all these lessons provide evidence that students can learn new concepts
through a symbiosis of induction and abduction from experience and deduction from the
relationships generated in particular examples. In other words, their experience can be
organised in such a way that shifts of understanding take place as a result of learners’ own
actions, including mental acts of organisational reflection on self-generated examples and
example spaces. In the classes described here, this was in part a group endeavour, in that the
example spaces generated by the whole class were available for reflection.

We have offered these studies to challenge simplistic interpretations of Vygotsky’s claim
that abstraction cannot follow from exemplification. In these studies, Steve and the learners
were not relying on inductive reasoning to learn about the underlying concepts. They
reflected on results, and on the internal structures of examples, in unfamiliar mathematical
situations, because these were the normal expectations in their lessons. Example generation
provided the raw material for mathematising, and they learnt some new ideas as a result.

We were especially heartened to find that the previously low achieving groups could also
make these shifts, because engagement in examples they have created themselves provides
‘relevance’, ‘realism’ and emotional connection.
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