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Abstract One of the great strengths of Jim Kaput’s research program was his relentless drive
towards scaling up his innovative approach to teaching the mathematics of change and
variation. The SimCalc mission, “democratizing access to the mathematics of change,” was
enacted by deliberate efforts to reach an increasing number of teachers and students each year.
Further, Kaput asked: What can we learn from research at the next level of scale (e.g., beyond
a few classrooms at a time) that we cannot learn from other sources? In this article, we
develop an argument that scaling up research can contribute important new knowledge by
focusing researchers’ attention on the robustness of an innovation when used by varied
students, teachers, classrooms, schools, and regions. The concept of robustness requires
additional discipline both in the design process and in the conduct of valid research. By
examining a progression of three studies in the Scaling Up SimCalc program, we articulate
how scaling up research can contribute to designing for and evaluating robustness.

Keywords Democratization of access to mathematics . Educational technology .

Mathematics education . Randomized experiments . Scaling up

1 Introduction

Mathematics education research has an uncertain relationship to the issue of scaling up
innovations to widespread use. Researchers design innovations to improve mathematics
teaching and learning; these innovations can include new teaching practices, new
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curriculum materials and new applications of technology. The design of innovations can be
in the service of developing or refining theory (Cobb et al. 2003). We suspect that many
researchers want to go beyond innovation as theory-building; researchers want to see their
innovations in use at a scale beyond the few settings in which they conducted their initial
research (Fullan and Earl 2002). Yet, few mathematics education researchers participate in
research about the challenges, demands, and outcomes of implementing innovations at scale
(e.g., Elmore 1996), and thus are not focused on designing explicitly with these factors in
mind. For example, an international review by Lagrange et al. (2003) found that only 5% of
the papers on the selected topic of “computer algebra systems” addressed the issue of
integrating Information and Communication Technologies (ICT) into everyday school
conditions.

Kaput’s scaling up challenge James J. Kaput was an exemplary researcher in this regard.
His vision in the SimCalc research program, described in more detail below, encompassed
both theory-building (Kaput and Roschelle 1998; Kaput and Shaffer 2002) and large-scale
impact (Roschelle and Kaput 1996). Most researchers move on to the next problem but stay
at the same level of analysis. In contrast, Kaput stayed with the central problem, deepening
his understanding of its ramifications. He moved from analysis of a few students to analysis
of a few teachers to analysis in multiple schools in multiple states. He progressed from
microanalyses (Roschelle et al. 2000) to large classroom-based studies (Tatar et al. 2008).
At the same time, he strategically added colleagues to the SimCalc circle who embodied
and integrated the multidisciplinary perspective required for each new challenge. He
pursued engagement with school districts, policy makers, and companies who could
influence mathematics education. Finally, he worked diligently to move the core technology
out of computer labs and into student hands by porting the software from expensive desktop
computers to inexpensive and widely available graphing calculators (Kaput 2000) and to
structure the software with an open architecture so that others might add their ideas to it
(Roschelle and Kaput 1996). He did not treat scaling up as mere “dissemination” (usually a
code word for publications and presentations in the researcher’s preferred venues) but as a
mode of action in the world involving moving an innovation out of the mathematics
education research community and into large scale use (Roschelle and Jackiw 2000).
Scaling up was a core component of the research program (Roschelle et al. 1998; Roschelle
et al. 2008).

Despite his strong drive towards scaling up, Kaput never provided a definition of
“Scaling Up Research.” He did, however, engage in lengthy discussions with one of the
authors of this paper (Roschelle). A theme of those discussions can be summarized in a
question about research with more than a few classrooms at a time: What can we learn from
research at the next level of scale that we cannot learn from other sources?

This question has been at the heart of our research program for at least 5 years. It has not
been an easy question to answer. The question does not allow one to justify scaling up
research merely in terms of its most obvious feature, a larger population. If we go to a larger
population but learn nothing new, the question is unanswered. Indeed, other researchers
have argued against defining scaling up merely in terms of n (Coburn 2003). It is also
tempting to define scaling up research in terms of methodological features of the research
design, e.g., random assignment of teachers to condition (Reichardt 2007). Kaput was quick
to point to his prior experience with psychologists in which they could design an
experiment to reproduce an effect he already knew about; if nothing new was learned, he
felt this was a trivial and wasteful exercise. Another possible definition of scaling up
research is in terms of audience, that is, the claim that scaling up research supplies the
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information that policy-makers want (Schneider and McDonald 2007). Kaput also had
ample experience with policy makers—locally, at the state level, and in the United States
Senate. He’d say, “And do you know how many times they asked me for a randomized
controlled experiment? None!” Kaput’s question focused our attention away from simple
features of the design or the audience and towards the view that scaling up research must
measure its worth in terms of the uniqueness of its contributions to knowledge.

Instrumental vs. institutional relationships view of scaling up A specifically mathematical
analysis of questions of scaling up has distinguished two broad views in the research
literature of ICT integration in mathematics education (Lagrange et al. 2003). An
“instrumental” view focuses on a technology itself and what students learn from use of
that technology. In a complex process called “instrumental genesis,” student learning is
mediated by how the student cognitively generates and uses the affordances of the tool
(Assude and Gelis 2003). In contrast, an “institutional” view focuses on the influences of
institutional context on how students use and learn with a technology. We see both views as
necessary and complementary. For example, in the “integrating research teams” approach
being undertaken in Europe, research teams in different countries cross-experiment with
each others’ technologies (Cerrulli et al. 2007). Early results from this work suggest that a
team’s theoretical frame neither specifies the process and intended outcomes of learning
with a given tool adequately (a challenge under the instrumental view) or make suitably
clear and explicit descriptions of classroom experiments in different institutional settings (a
challenge under the institutional view). By addressing these challenges via an expanded
research methodology, researchers can make progress on issues that are core to the eventual
integration of new innovations into large-scale, everyday use.

In this article, we focus on a potentially unique contribution with a new emphasis on
experimental research, a style of scaling up research that is gaining attention in the
United States. Our experimental research involves large scale experiments in which many
teachers are assigned at random to either use a new combination of ICT and curriculum
or to continue with their business-as-usual approach. In this research, we answer Kaput’s
question with respect to both instrumental and institutional views. We examine the
instrumental genesis that occurs for various different types of students as they take up the
new technology and curriculum, employing the tools for deep conceptual learning. We
also examine technology use across different settings, such as classrooms, schools,
districts, and regions.

Modeling variation and the concept of robustness This research investigates institutional
processes by engaging in statistical modeling of the variation in the data. Attributions of
variation can help us understand the prospects of the innovation. In particular, innovations
that show a lot of variation in implementation when implemented in different settings may
require different strategies for scaling. Even within a single Scaling Up study, we can begin
to characterize how an innovation holds up as it spreads beyond the original trial
classrooms (Baker 2007). In general, by starting where more traditional research ends—
with accounts of the impact of the new approach in a small number of trial classrooms—
scaling up research allows us to distinguish more from less robust innovations and examine
sources of variation between implementations of an innovation in different settings (Hedges
2007). By robustness, we mean the consistency of the innovation’s benefits for student
learning when deployed consistently to a wide variety of students, teachers, and settings.
This focus is the answer to Kaput’s challenge. The assessment of robustness is one unique
key contribution of scaling up research.
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Ultimately, we will engage in hierarchical linear modeling (HLM). HLM (Raudenbush
and Bryk 2002) is a method of statistical modeling that improves on regression analysis by
analyzing and attributing variance to measures in the data at different levels of nesting. In
particular, this approach can take into account the variation of student level variables, such
as learning gains, nested within classrooms nested within schools nested within districts,
and so forth. Although subject to the same (and additional) threats to validity as any other
attribution of variance, including vulnerability to the reliability of the underlying measures,
HLM allows us to make more detailed and accurate attributions than previously available.

Implications outside the United States Although we readily admit that this style of research
carries with it many idiosyncrasies that may be seen as valuable only in United States’
political context, we believe it is valuable for a wider audience to consider what this style of
scaling up research may be able to contribute to mathematics education internationally. On
the one hand, we note that scaling up directly relates to the “institutional” view cited in
international mathematics education research; robustness is a property of an innovation
across institutional settings. On the other hand, we argue that the “instrumental” view need
not be lost in this style of study (although it may be difficult to carry out to the same level
of refinement as in other study designs). Under the instrumental view, different integrations
of a technology into teaching and learning may produce different learning results for
students. For example, findings of the TIMSS video studies (Hiebert et al. 2003) show that
teachers in different countries enact the same curricular tasks in very different ways, often
significantly modulating the aspects of mathematics (e.g., more procedural or conceptual)
that students learn. Given an integration of curriculum and technology that aims for a
targeted learning outcome, it becomes interesting to investigate the robustness of
instrumental genesis towards that outcome. Do teachers (as they do in the TIMSS video
studies) significantly modulate this process, changing what their students learn?

The importance of robustness While noting the relationship of this emerging style of
research to previous mathematics education instrumental and institutional views, we also
wish to avoid merely reducing experimental research to existing views. “Robustness” that
can be designed for and evaluated through experimental research is a valuable concept in its
own right. We need to be able to answer questions like these: How do we design integrated
ICT systems that can have impact across various subgroups of students, teachers, or
schools? Does the innovation actually have impact across various subgroups of students,
teachers, or schools? Of the many ways in which teachers vary (e.g., their philosophy,
expectations, experience with technology, practices, etc.), which have the most conse-
quence for student learning with our integrated approach? Are there populations of students
(e.g., rich or poor, girls or boys, Hispanic or white) for which our integration has
undesirable or less desirable effects? Are there school conditions (e.g., availability of
computers in the classroom or in a lab) that mediate student learning outcomes, and if so, in
what direction?

These benefits can be characterized not only in terms of what is learned but also in terms
of the sources of variability in how much is learned. Thinking about sources of variability
for differences in ICT integration is important because teachers, students and schools are
highly variable and this variability can dilute or distort the mechanism (and hence the
benefits) of innovations. As Dede (2006) points out, one approach to this variability has
been to wrap each innovation in increasingly complex systemic reforms. These reforms try
to control more and more of the context of teaching and learning so as to make the
environment suitable for the core innovation. (There is an unfortunate irony in
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constructivist educators deciding that they need to control many complex aspects of an
educational system so that their situated and local innovation might work.) The alternative
is to design innovations to be more robust, which can best be done if we understand why
results vary.

The overall purpose of this article is to make a case that experimental scaling up research
can contribute to mathematics education by providing evidence of the robustness of the
innovations developed by researchers in mathematics education. After a short introduction
to the SimCalc approach, we make our argument that experimental scaling up research can
contribute to mathematics education. We do this by examining what we learned in three
phases of research with SimCalc. The first phase involved design experiments and case
studies in different locations. Although useful things about scaling up can be learned
through comparative case studies, we argue that ultimately each of these “design
experiments” has too much freedom to change “the innovation”—complicating the process
of making a valid claim about robustness. In the second phase, we carried out an
experiment with over 20 teachers. We argue that this level of experiment was sufficient to
reveal the degree to which, what, and how much students learn is modulated, but not to
understand the sources of variability. Without being able to quantify sources of variability,
it is unclear how to improve the student learning experience. For example, if most of the
variability is at the student-level, we might improve the learning experience by customizing
it for different student populations (e.g., ethnic groups, ability levels). On the other hand, if
most of the variability is at the teacher-level, we might improve the learning experience
through teacher professional development. If so, what should the professional development
focus on? More comfort with technology? Deeper mathematical understanding? A shift to a
constructivist pedagogy? We argue that a well-designed program of experimental scaling up
research can allow researchers to make valid claims about the answers to such questions.
Such a program structures a design process that emphasizes robustness at all levels of
variation and enables measurement of the sensitivity of the innovation to variation in
implementation conditions. The measurement process in scaling up research seeks (a) to
measure the overall effectiveness of an approach in varied settings, (b) to measure similar or
differential impacts across subpopulations, and (c) to model the relationships between
variability in implementation conditions and student outcomes. We complete our argument
that experimental scaling up research can help mathematics educators understand the
important concept of “robustness” by examining the kinds of robustness claims we were
able to make in our large-scale experiment with 95 teachers.

2 The heart of the scaling up SimCalc program

It is always tempting to begin describing the heart of the Scaling Up SimCalc program by
describing software. We have become concerned that this rhetorical approach leads to a
pervasive misconception. We use “misconception” in the technical sense of a belief that is
hard to dislodge (Smith et al. 1993)—readers tend to see the term “SimCalc” and think
“software.” In contrast, our research examines the integration of three elements—
professional development, curriculum and software. There is an obvious reason to look at
integration in scaling up research: research has repeatedly found that merely injecting
software into classrooms does nothing of particular value; researchers repeatedly call for
alignment and integration of a combination of program elements, usually including
curriculum and teacher professional development (National Research Council 2001). Thus
in the remainder of this article, we will use “SimCalc” to refer to an integrated approach to
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teacher training, paper curriculum and software. When we wish to refer to software alone,
we will refer to the software by its name, “SimCalc MathWorlds®.”

We are, of course, not working with an arbitrary integration but rather one that
specifically follows the mission and vision that Kaput laid out. The SimCalc mission is to
democratize access to the mathematics of change and variation starting in middle school.
The vision is to utilize the representational qualities of technology to do this (Kaput 1992).
As other researchers have noted, one explanation for the disappointing status of technology
use in schools is the overall lack of vision and clarity of goals with regard to technology’s
role (O’Neil 1995). SimCalc, in contrast, started from a clear mission and vision of
technology’s role. That mission and vision imply scale and require robustness, especially to
include disadvantaged populations (Kaput 1994, 1997).

Throughout the history of SimCalc, Kaput articulated his approach in a set of slides that
slowly evolved but never strayed from a few key messages. In reading the points below, notice
how Kaput focused on teaching important mathematics with software in a infrastructural
role. Hallmarks of the SimCalc approach to the mathematics of change and variation are:

1. Anchoring students’ efforts to make sense of complex mathematics in their experience
of familiar motions, which are portrayed as computer animations.

2. Engaging students in activities in which they make and analyze graphs that control
animations.

3. Introducing piecewise linear functions as models of everyday situations with changing
rates.

4. Connecting students’ mathematical understanding of rate and proportionality across
key mathematical representations (algebraic expressions, tables, graphs) and familiar
representations (narrative stories and animations of motion).

5. Structuring pedagogy around a cycle that asks students to make predictions, compare
their predictions to mathematical reality, and explain any differences.

6. Integrating curriculum, software, and teacher professional development as mutually
supporting elements of implementation.

We see Kaput’s work as embodying three messages through this approach. First, Kaput
demystified the mathematics of change and variation (Kaput 1994). In the United States,
this content is usually taught in an end-of-high school Calculus course to only an elite
population. Consequently, many citizens find Calculus to be mysterious and unapproach-
able. Kaput argued forcefully that this view is both destructive and unnecessary (Kaput
1994). It is destructive because of the many everyday situations in which citizens needed to
reason more carefully about change as well as the general loss to society when people fail
to understand deep mathematics. It is unnecessary because it is possible to have a curricular
strand across many grade levels that results in deep learning; he conceptualized a learning
progression for the mathematics of change and variation that would begin in the primary
grades and continue through university education. He invoked historical analogies to other
literacies, showing that in other ages knowledge that had been held to be elite and mysterious
was eventually democratized and made available to all citizens. And he highlighted evidence
showing that ordinary children could achieve extraordinary depth of understanding of the
mathematics of change and variation with the right resources.

Second, Kaput articulated not just the vague notion that representations are important, but an
entire representational view of how to transform teaching and learning of the mathematics of
change and variation (Kaput 1992; Kaput and Roschelle 1998). Along with many in the ESM
community, he saw deep links between representation and epistemology; inclusion of new
representational media could enable new avenues to the foundational roots of the mathematics
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of change and variation, for example, the Fundamental Theorem of Calculus. When thinking
about representational infrastructure, Kaput would often first start with what he called the
“Big Three”—algebra, tables, and graphs—and emphasize the advantages of making graphs
more prominent. An overly simplified version of his argument for graphs is “children are
more insightful about big ideas in the mathematics of change and variation when reasoning
with graphs.” Next Kaput would insist that these three representations are insufficient and
argue for putting motion phenomena at the center. He would argue that the representations
need to be about something and that, historically, the mathematics of change and variation is
about motion. When conceptualizing motion representations, Kaput included both kinesthetic
and visual experiences—students should re-experience both the movement of their own
bodies and the motion of things they can see. Finally, Kaput strongly pushed for considering
narrative stories to be a primary representation, where the stories developed to precisely
describe motions in terms that enable mathematical analysis.

Third, Kaput integrated curriculum and technology. He was always simultaneously
working to improve both. A favorite slogan was “new technology without new curriculum
is not worth the silicon it’s written in.” When talking about scaling beyond his own design
experiments, Kaput was quick to include teacher professional development into his
integration and, in fact, offered workshops to teachers throughout his region and nationally.
Per the paragraph above, Kaput viewed technology as useful for its representational features
(and later, its connectivity features, but these have not yet been part of our scaling up
research program). SimCalc MathWorlds® software capitalizes on new technological
capabilities to enable students to learn complex mathematical concepts through multiple,
dynamic representations (Kaput 1992; Roschelle et al. 2000). In particular, SimCalc
MathWorlds® software enables students to visualize the concepts behind change and
motion by connecting and contrasting narrative, symbolic, graphical, and table-based
representations and by linking graphs to simulated motions.

To summarize, the innovation in Kaput’s approach was the demystification of the
mathematics of change and variation, the elaboration of representational resources that
could strengthen teaching and learning, and the integration of curriculum, technology, and
teacher professional development in the service of transforming school learning.

Preparing SimCalc for rigorous scale-up research was a multi-phase process spanning nearly
a decade (Roschelle et al. 2008). Because the effectiveness of any classroom intervention is
mediated by teaching practices and contextual conditions, it was important to determine that
the complex underlying concept was strong and adaptable to a wide variety of teachers and
settings. Thus, early stages of research focused on replicated classroom design experiments,
each with varied curriculum and professional development components. The design research
was conducted primarily in disadvantaged urban schools, in order to support the idea that the
innovation could be successful anywhere, even without vast resources and “boutique”
settings. Knowing that innovations too distant from the reality of existing curricula and
teacher practices will not advance to widespread adoption, the research also examined the
compatibility of SimCalc materials with the existing curriculum. The design research yielded
positive pre-test/post-test results for students in many different settings, thus providing
evidence that the core concept of SimCalc could potentially succeed at scale.

3 Scaling up research and the diffusion of innovation tradition

In this section, we review a powerful research tradition, diffusion of innovation, that can
inform the choices we make in envisioning successful scaling up. Theory about diffusion of
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innovation helps us understand how SimCalc is positioned, where its strengths are, and where
its weaknesses are. Additionally, by thinking in these terms, we have arrived the notion of
robustness, introduced above as a central contribution of scaling up educational research.

In summarizing the diffusion of innovation tradition, Rogers (2003) proposes that five
factors influence rate of adoption: observability, trialability, compatibility, complexity, and
relative advantage. Rogers further highlights the importance of re-invention, a capability
that increases adoption by allowing users to make an innovation fit their local needs. He
also stresses the importance of forging an alliance between change agents and opinion
leaders in order to facilitate the transition of an innovation into the realm of practice.

SimCalc MathWorlds® software has always been strong in observability: after a short
demonstration of the software, most teachers express the feeling that their students could
benefit from the graphic and animated representations that SimCalc provides. (We note
however, that when using SimCalc MathWorlds® teachers do not always observe how their
students are learning by interacting with software; some teachers subsequently decide to use
the software only in demonstration mode, which is a “lethal mutation” of Kaput’s intent.)
Furthermore, SimCalc was designed to be highly adaptable by users, a quality that aligns
with Rogers’ notion of re-invention and bodes well for scalability.

SimCalc research has been organized throughout with relative advantage in mind.
Throughout the SimCalc development trajectory, the team accumulated evidence about the
relative advantage of the innovation. First, the team was able to show ordinary students
learning more complex mathematics; the team was also able to articulate the potential
advantage of using new representational capabilities to draw upon learner’s strengths and to
re-organize the curricular content to be more learnable. Shifting to controlled design
experiments with carefully defined outcome measures, the team was able to show a causal
relationship between SimCalc and enhanced student learning.

As we approached the Scaling Up study, trialability posed a challenge. However, by
defining the initial unit of adoption in the Scaling Up study as a replacement unit with a
very clear scope, situated at a specific place within the curriculum, we substantially
increased the trialability of the intervention and facilitated the recruitment of teachers to
experiment with the software compared to more diffuse presentations of its possibilities.

Additionally, Kaput, an external change agent who has sought to influence the use of
innovations in local schools, built an alliance with Bill Hopkins at the University of Texas
at Austin, and the Texas Educational Service Centers (ESCs)1. Hopkins, the University of
Texas and the ESCs have been opinion leaders in the adoption of innovations in
mathematics education in Texas. This alliance set the stage for a study of a large-scale
implementation of the SimCalc innovation.

The last of Rogers’ factors, compatibility and complexity, became major foci for the
Scaling Up research. Because SimCalc focuses on a topic, the mathematics of change and
variation, that is important but not focal within current US mathematics standards, SimCalc
is weak in compatibility. Additionally, SimCalc has traditionally been somewhat difficult
for teachers in terms of complexity because it requires extensive use of technology and a
new approach to complex mathematics concepts. The diffusion of innovation tradition drew
our attention to the need to connect SimCalc more closely with the mathematics topics,
standards, and curriculum considered important by most mathematics educators and to
make the curricular materials and training workshops as clear and simple as possible.

1 Educational Service Centers are public regional organizations that offer educational support programs,
ranging from financial or personnel support to innovative professional and curriculum, to districts throughout
the state of Texas.
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Although Rogers’ work is influential in our thinking, in the end, we characterize our
questions about the adoptability and impact of SimCalc in terms of a factor not investigated
by Rogers: robustness. The broad diffusion literature is based upon settings that are
considerably less variable than American schools, especially American agriculture. In
agriculture, the most important variations in implementation conditions can be easily
predicted and reproduced under the control of university researchers, without the
participation of ordinary farmers. Thus the robustness of the benefits of a new fertilizer
can be established without involving everyday farmers and then the new fertilizer can be
diffused to everyday farmers. In education, we cannot establish robustness without
involving ordinary teachers and students—we do not know enough about which variations
in implementation conditions are most important or how to produce them without involving
ordinary teachers and students. Hence, scaling up research in education cannot simply be
diffusion of innovation research; it must also allow us to understand and quantify
robustness of an innovation through research with teachers and students. In the diffusion of
innovation research tradition, robustness of the candidate innovation is a given; in
educational scaling up research it is not.

We will now turn to our sequence of three research phases in the scaling up SimCalc
program to show how valid research on robustness of innovations in mathematics education
can take the form of a large-scale field experiment. In doing so, we have two purposes. The
first is of course to design a study that can investigate robustness. However, the second is
that, in so doing, we have the opportunity to make the innovation more robust.

4 Research phase 1: distributed field trials

Roschelle et al. (2008) provide the primary discussion of our experience with distributed
field trials. Here we recap the highlights of that phase of research with an eye to what we
can learn about robustness from them.

Within the overarching SimCalc Project, our first distributed design experiments served
as precursor work to designing for robustness. The very earliest work with SimCalc’s
integration of professional development, curriculum, and software occurred near Kaput’s
University of Massachusetts, Dartmouth location. In this phase, investigators in Newark, NJ
(Roberta Schorr); Syracuse, NY (Helen Doerr) and San Diego, CA (Janet Bowers and Susan
Nickerson) engaged in their own design experiments using the SimCalc MathWorlds®
software, aligned with the SimCalc vision and mission. Each investigator produced their own
form of professional development and their own curriculum to accompany the software. Each
targeted different grade levels and student populations. Some worked after-class, and some
worked during class. Some focused on pre-service teachers; others focused on in-service
teachers. One important thing we learned from these design experiments was the breadth of
the curricular goals for which SimCalc MathWorlds® could be useful. For example, a
potentially powerful approach to periodic functions emerged in which the properties of
periodic functions under integration and differentiation are explored by examining simpler
piecewise linear approximations to a continuously varying periodic function. Likewise, we
learned that the software could be applied to enable students to make sense of simultaneous
linear equations. Understanding the scope of applicability can be a useful goal in scaling up
representational software across settings.

The strategy of distributed design experiments has a precedent in the work of Hawkins
(1997). As Hawkins argued, the strategy has the advantage of rapidly probing a fairly wide
sample of the possibility space for a visionary approach. Much mathematics innovation is
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created in the context of design experimentation (Cohen et al. 2003). In a design
experiment, the researcher can characterize the exciting new content from evidence that
emerges in the classroom or in a post hoc analysis. For example, the researcher can focus
on the critical moment as manifested in the behavior of a small number of students—
without previously anticipating the critical moment or the mathematics within it. Thus, even
though the innovation may ostensibly be addressed to teaching the mathematics of change
and variation, an incident which reveals that a given student had an insight about fractions
can become part of the mix of potential seen in the innovation. The potential for
appropriation for different learner needs is arguably an important aspect of an innovation
and may lead to a change of emphasis for the innovation or the associated pedagogy
(Brown 1991). Indeed, this was the case. This work established the plausibility of Kaput’s
vision of a set of curricular modules that together make up a learning progression for the
mathematics of change that stretch from middle school through university education.

While we accumulated curricular innovations and empirical evidence of the effective-
ness of these innovations across various groups, more work would be required to reach
valid conclusions about the robustness of the SimCalc integration of teacher professional
development, curriculum, and software. Every investigator chose different learning
outcomes and produced their own unique integration. This makes it very difficult to make
claims about the integration. Interpretations could be made to an overly general level (that
any integration is robust) or an overly specific level (that use of the software is what
matters). We did not believe either of these. Kaput also did not think just any curricular
integration or any professional development would do. Nor did he think the only necessary
common element was the SimCalc MathWorlds® software. More generally, although such
comparative case studies are crucial in informing our view of instrumental genesis and
institutional integration, by themselves, they are too weak to lead to valid conclusions about
the robustness of research-based approaches to mathematics education.

5 Research phase 2: pilot experiment

Tatar et al. (2008) provide the primary discussion of our first scaling up experiment. Here
we recap the highlights of that study with an eye to what we can learn about robustness
from it. At the time we began this work, very strong arguments were being made in the
United States policy context about validity. Cook (1999) and others (e.g., Torgerson 2001)
were arguing that only randomized experiments were valid for causal inferences about the
effect of an intervention. We had not yet articulated our focus on robustness, but did have
the above-mentioned concerns about validity of design experiments. We decided that our
intervention was mature enough to test its causal influence on student learning and decided
to embark on the journey of conducting a randomized experiment.

In this second phase, we began with an experiment involving a small sample of teachers.
While this experiment served a strong purpose in its own right, we also conducted it with an
eye toward developing the materials, instruments, implementation infrastructure, and initial
findings necessary to eventually take the study to large scale. Thus, it was a pilot study.

This phase was an important turning point, because shifting to a question of scale forced
the research design process to focus specifically on creating a unitary robust intervention. In
order to do an experiment, we had to have a reasonably uniform integration of teacher
professional development, curriculum, and software. Our testable integration, further, had
to adequately represent Kaput’s vision with enough specificity to demonstrate appeal to
local decision makers and to be easily usable by a wide variety of teachers. Along with
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Cerulli (Cerulli et al. 2007), we found the drive to scale to be a valuable forcing function for
making the theory and practical details of our program more explicit.

Interestingly, this shift to an experimental perspective drove specifically mathematical
aspects of our research. The goal of many mathematics education innovations is to enable
teachers to provide opportunities for students to learn more mathematics. But if the teachers
are unclear about additional concepts or skills they are to cover, it is unlikely they will be
effective in helping students learn those additional concepts or skills. Again, consider
SimCalc. Our mission is to “democratize access to mathematics of change and variation.”
What exactly might this mean to the average 7th grade teacher? What is the chance that if
we give 7th grade teachers our software and curriculum and arm them with this slogan that
they will understand what new mathematics we seek to provide to students? We must
describe the intended instrumental genesis, if teachers and classrooms are to achieve it. In
this way, our approach follows upon and aligns to earlier work with Cabri-Géomètre, which
found that integrating ICT into the everyday life of the classroom requires finding a balance
between the old and the new (Assude and Gelis 2003).

Achieving the appropriate integration of old and new turned out to be a complex and
subtle problem in our 7th grade experiment. Our preferred target grade level was 8th grade;
we ended up working in 7th grade because our Texas partners felt that 8th grade was too
sensitive due to high stakes accountability measures in that grade level—few schools would
allow experimentation in the 8th grade. Further, we planned for a two to three week long
replacement unit, because again, this is all we could expect schools to sign up for as a
“trial” of a new innovation. Given the grade level and the short time available, we could not
target the signature “opportunity to learn” of the SimCalc MathWorlds® software
environment—the relationship between velocity and position graphs. What would be a
reasonable goal for SimCalc curriculum and technology in the 7th grade? What could we
expect to measure under these constraints?

Answering these questions required extended and concerted effort from a team of
mathematicians, curriculum and teacher professional development experts, and measure-
ment experts. We quickly identified “proportionality” as the Texas curriculum standard
most related to our innovation. Further analysis revealed that the existing curricula treated
proportionality only with the formula “a/b=c /d.” In a SimCalc approach, we would
introduce the idea of a constant of proportionality, e.g., “k” in y=kx. This constant
represents rate of change, a key SimCalc goal. However, as we worked on the issue, we
came to the realization that the goal of SimCalc was not simply to shift teachers from a
formula with four symbols to a formula with three symbols. Indeed, we realized that the
existing Texas curriculum only presented students with proportionality tasks in which they
were given three numbers and asked to find a fourth. If we simply taught students to use a
formula with three slots instead of a formula with four slots, we would have accomplished
nothing.

Instead we came to focus on two differences. First, we wanted to create an opportunity
for students to learn a function interpretation of proportionality, in contrast to a formula
interpretation. Synergistic with this goal, we wanted students to reason with proportional
functions across representations, including narratives, equations, graphs, and tables. A key
distinction was reasoning with a small set of numbers (e.g., given three numbers, find the
fourth) vs. reasoning about the linear, multiplicative mapping from a domain to range.
Graphs are useful for presenting tasks that require the latter, function-oriented reasoning.
For example, in a graph it is possible to ask (without any numbers or indeed without a
precise scale defined on the Cartesian axes), which of these two graphed functions has a
larger value for “k” in the function f(x)=kx? With this distinction in hand, we could both
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articulate to teachers what students already learn and what new learning opportunities we
were trying to create. Further, we could define a measurement that would contain two
scales, one sensitive to the formula aspects of proportionality and another sensitive to the
function and multiple representation aspects.

It is beyond the scope of this paper to describe our complete assessment development
process. A more limited point is that mathematicians were required at multiple stages in that
process: to define the assessment blueprint precisely, to generate candidate test items, to
align the items to standards, and to analyze student protocols (for the purpose of seeing if
students were in fact invoking the target concept or solving the problem by some “trick”).
The bottom line is that the process of describing target mathematics with enough specificity
and building an assessment to measure it is a challenging and important problem for any
innovation that aims to go to scale.

There was also much specifically mathematical work in defining our pilot SimCalc
intervention. This was an integration that consisted of a curriculum unit and fifteen SimCalc
MathWorlds files, along with 5 days of teacher training. As discussed above, we chose a
topic—proportionality as represented by linear functions of the form y=kx—at the heart of
Texas’ 7th grade curriculum. The Managing the Soccer Team unit developed the
proportionality concept through ten lessons, keyed to specific software files. Lessons were
built around problems related to soccer team management tasks such as timing runners and
purchasing new uniforms. Guiding questions for each problem led teachers and students
through common SimCalc instructional routines such as predicting the outcome of an
animation based on a graph and using the software to check and modify their predictions. A
5-day training workshop had two parts. The first 2 days used a high-quality Texas
professional development workshop, called TEXTEAMS, that gave teachers adult-level
foundational mathematical knowledge of the y=kx approach to proportionality. The last
3 days focused on teaching the SimCalc unit. Teachers experienced the unit as learners,
with additional focus on practical implementation issues. Teachers wrote day-by-day lesson
plans for using the materials in their particular classroom contexts. Details of unit
formatting were designed to facilitate ease of use: We provided individual student
workbooks with color illustrations and space in which to write answers and show work. In
addition to SimCalc-specific instructional routines, we included approaches familiar to
Texas teachers. In these ways, we balanced the competing design constraints of fidelity to
the innovative characteristics of SimCalc while maintaining familiarity and ease of use for
teachers who were used to using textbooks with a less interactive approach and with little or
no technology integration.

In this 2-year randomized experiment, we sought to answer the primary research
question: Can a wide variety of teachers use innovative technology to create new
opportunities for students to learn complex and conceptually difficult mathematics? We
used a pre-test/post-test control group design in Year 1, and a delayed treatment for control
teachers in Year 2. Teachers were randomly assigned to either the Treatment or Control
group. In Year 1, teachers in the Treatment group received the SimCalc intervention as
outlined above, and were asked to teach the SimCalc replacement unit in place of their
usual rate and proportionality unit. In designing an appropriate control condition, important
considerations were that teachers across both groups were comparable in their experience of
the usefulness of the intervention, belief that they were part of a new and special project,
amount of work required for participation, compensation for work, opportunity for teachers
to interact with colleagues around intervention topics, and support from the research team.
Thus we offered Control teachers the same high-quality 2-day TEXTEAMS training as we
did in the SimCalc intervention and promised Control teachers they would receive the

160 J. Roschelle et al.



SimCalc intervention in Year 2. During the first school year, we asked Control teachers to
teach rate and proportionality as usual, with the option of supplementing with TEXTEAMS
materials.

Our main outcome measure was student gains on an assessment of knowledge of rate
and proportionality. Students took the pre-test just before the proportionality unit was
taught and the post-test just after. We compared the growth in student knowledge between
the Treatment group (using the SimCalc replacement unit) and the Control group (teaching
rate and proportionality as usual).

Complete discussion of the pilot results with our sample of 21 teachers will soon be
published (Tatar et al. 2008). Within the scope of this article, we focus on what we learned
about robustness. The pilot demonstrated that we could measure the impact of SimCalc’s
integrated approach versus the best available alternative. In particular, we found that
students in the Treatment group learned considerably more than students in the Control
group—particularly mathematical concepts that went beyond the Texas standards emphasis
on simple proportional relationships (e.g., that can be described with the formula a /b=c /d)
to an understanding of proportionality as a function over a domain across multiple
representations (graphs, tables, formulas).

Measuring the impact is important, because if there is no measurable impact then one
cannot possibly investigate its robustness. However, measuring overall impact is not
enough to assert robustness; we need to measure impact across different subpopulations, as
well as model variability. By measuring impact across different subpopulations, we can
gather empirical evidence to support whether or not our intervention is truly robust. By
modeling how different sources of variation contribute to student outcomes, we can learn
about ways that the intervention may vary in robustness or may require modification to
strengthen its robustness.

The pilot revealed variability across contexts. As we worked with the results, one
particular representation became the focus of our attention. Figure 1 shows the mean gain
on the student assessment by classroom. It makes clear that there was a lot of variation,
with some classrooms realizing student learning gains that were twice as large as the others.
Further, we came to understand how little we knew about the key factors underlying that
variability. Despite a substantial literature, we realized that we knew too little to isolate just
a few variables, and we had too few participating teachers to reach any valid conclusions
about any variables.

Fig. 1 Graph shows the mean
gain on the student assessment by
classroom, in the pilot. The
assessment had 30 items total
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As we observed growth in all of our Treatment classrooms, we had some strong
evidence to suggest that the intervention was robust across varying contexts. However, with
this limited sample size, we were still limited in the generalizations that we could make
about robustness across the multitude of subpopulations within the state. We would need to
collect more information to be able to make stronger claims of generalization and external
validity.

6 Research phase 3: full scale experiment

Given the success of our pilot study, we decided to use the same SimCalc intervention and
basic experimental design. Building on the development and findings, we also improved
three things in the full-scale experiment. First, we improved the measures. We revised the
assessment of knowledge and increased precision and number of measures of variability in
the context of implementation (e.g., teacher daily logs of implementation). Since we were
not sure that any single factor would dominate robustness, we decided to collect data on
many possible factors. Second, we moved to a more naturalistic recruitment method; one
aligned to one way in which new materials ordinarily go to scale in Texas. Texas is divided
into 20 educational service regions, each of which has an Educational Service Center (ESC)
that provides professional development to teachers. Working with ESCs gave us a region
model, which in the end allowed us to contrast robustness by region. Regions in Texas
differ in important ways: urbanicity, ethnic distribution, and socioeconomic status (for
example, we recruited in both metropolitan Austin and the very poor region along the
Mexican border). Third, we increased the number of participating teachers to attain enough
power to test complicated models.

With the increase in number of teachers, we determined also to measure relevant
characteristics associated with the teachers. This in turn led us to the work of Deborah Ball
and colleagues (Ball et al. 2005) on Mathematical Knowledge for Teaching (MKT). We
hypothesized that how much mathematics a teacher knows would relate to students learning
(and instrumental genesis). A team that included mathematicians and mathematics
educators set out to create an assessment for teachers that reflects the kinds of mathematical
knowledge needed in classroom teaching with SimCalc. For example, we have observed
that students in SimCalc classrooms often generate unusual conjectures (e.g., “a shorter line
means a faster motion”). We wanted to know if teachers could evaluate these conjectures.
Again, we see that going to scale was an important forcing function for becoming more
specific about our mathematics. In this case, we had to become more specific about what
mathematics teachers should know in order to best support student learning.

Roschelle et al. (2007) provide the primary discussion of our full scale experiment. Here
we focus on a few outcomes relevant to the discussion of robustness. The results of the full
experiment revealed important characteristics of the robustness of SimCalc’s integrated
approach. As in the pilot experiment, we found a main effect of student learning (e.g.,
students learned more about the y=kx approach to proportionality in the Treatment
condition). This established the validity of our claim that the SimCalc integration is
responsible for the outcomes we observed. Also as with the pilot, a similar picture emerged
as in Fig. 1—the mean gain varied by classroom. Now we have enough data to begin
modeling which dimensions matter.

Previously, we discussed the TIMSS finding that teachers in different countries modulate
the use of curricular materials, for example by emphasizing routine procedures or
conceptual understanding. One way we measured this in the full-scale experiment was by
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asking teachers to complete a daily log. On the daily log, teachers responded to the question
“To what extent did you focus on the following performance goals for your students?” Five
goals were listed. After the fact, we grouped these goals into two categories. We considered
“memorizing facts definitions and formulas,” as well as “perform procedures/solve routine
problems” to be “simple” goals. We considered “communicate understanding of concepts,”
“solve non-routine problems/make connections,” and “conjecture, generalize, or prove” to
be “complex” goals. We condensed our data for analysis by aggregating the frequency and
intensity with which each teacher emphasized complex goals over all days of teaching the
rate and proportionality unit.

Recall also that we sought to measure student learning of both the “formula” and
“function” views of proportionality. In the formula view, students find a missing value. In
the function view, students must consider co-variation between two variables (e.g., position
and time). We determined to look at the relationship between teacher report of “complex”
teaching goals and student learning of the “function” view. Figure 2 shows the results.

Our main effect can be seen in this figure by comparing the data points for the treatment
condition (SimCalc) vs. the data points for the control condition (the existing curriculum).
Most of the treatment data points are higher than most of the control data points,
corresponding to our main finding that students who used SimCalc learned more. One can
also see considerable variability in the complexity of teachers’ reported goals. Given the
very short (but realistic) amount of time available for teacher professional development, we
did not try to get all teachers to have the same teaching goals, and clearly they didn’t
choose the same goals. Yet teachers who used SimCalc were more likely to report more
complex teaching goals [ p<0.05]; this can be seen in Fig. 2 in the clustering of treatment
teachers’ data points further to the right. Most interestingly, the two measures correlate
strongly [r(95)=0.40; p<0.01]. In classrooms where teachers reported more complex
teaching goals, students learned more with respect to the function view of proportionality.

In further analysis, we plan to investigate this variable along with others in a hierarchical
linear model (HLM). A hierarchical model is needed because we will be looking at the
impact of variables at the teacher level (in this case, teacher goals) upon outcomes at the
student level. HLM modeling will be able to help us understand the sources of variability.
How much of the variability in outcomes relates to what students bring to the classroom vs.
how teachers teach? We may be able to rank different factors, such as the importance of the
level of experience of the teacher, their comfort with technology, the depth of their
mathematics knowledge, the amount of time they allowed students to use the technology,

Fig. 2 In the full scale experiment,
student learning gains on the more
advanced “function” view of
proportionality were higher when
teachers reported more “complex”
teaching goals. The line represents
the regression of gains onto
complexity
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etc. Knowing which variables have the most impact would allow us to target efforts to
further improve SimCalc to the most powerful factors.

It is worth noting that while individual teachers may have modulated the impact of
SimCalc, as a group, students learned more with SimCalc regardless of what their teachers
did. While the findings related to this claim will be reported in more detail elsewhere, here
we give a brief look at major subpopulations at different levels of our research design.

In terms of students, we disaggregated the data and looked at girls and boys. Both have
equivalent gains. We also looked at Hispanic versus white students. Both have similar
gains, although the Hispanic students, on average, start with a lower incoming score. As
Hispanic ethnicity is highly correlated with poverty in the study’s regions of Texas, the
same results apply to students in schools that are of lower versus higher socioeconomic
status.

Across classrooms, we also saw robustness. One important dimension of variation was
the average pre-test score of the classroom. We found that the SimCalc integration produced
gains both for classrooms that start out with a low average pre-test score and for classrooms
in which students know more about rate and proportionality at the onset. This is, of course,
very important, because it is hard to target educational materials only to students with
particular levels of incoming knowledge. Conversely, it is good to know that the materials
produce benefits in classrooms throughout the range of possible incoming knowledge.

Finally across regions, we also found robustness. The Rio Grande Valley region (near the
Mexican border) is a very different place than suburban Austin (the state capital) or suburban
Fort Worth (a major metropolis). Likewise, the very rural region of western Texas is also quite
distinctive. Yet, the pattern of results looks remarkably similar in all these places.

7 Discussion: the challenge of designing robust interventions

The overall purpose of this article is to make a case that experimental scaling up research
can contribute to mathematics education by providing evidence of the robustness of the
innovations developed by researchers in mathematics education. We have made that case by
examining three phases in the SimCalc research program. In the first phase, we performed
design experiments in different locations. While much was learned, incommensurate
analyses made it difficult to address robustness. In the second phase, we undertook a pilot
experiment with two dozen teachers. Although this allowed us to demonstrate a main effect,
we also found considerable variation in the classroom learning gains attained by different
teachers. Given the small sample, we were unable to understand the sources for this
variability. In the third phase, we executed a large randomized experiment with 95 teachers.
Not only were we able to directly establish robustness across varied institutional settings
(classrooms, schools, regions), we have been and will continue to be able to identify
sources of variability in the results. For example, we found that the complexity of the goals
reported by a teacher correlated to student gains in learning the function view of
proportionality. In forthcoming work, we plan to engage in hierarchical linear modeling to
more fully explicate how variations in what teachers think, know, and do relate to
variability in the learning of their students. We note that only the full scale experimental
research was able to satisfactorily address the question of robustness.

Although we do not think that experimental scaling up research reduces to previously
discussed “instrumental” and “institutional” views of research on ICT integration, it does
relate to these views. As in the institutional view, robustness enables us to compare what
happens in different institutional settings. But it also goes beyond comparing institutions by
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integrating data at the individual, classroom, and contextual levels in one hierarchical linear
model. As in the instrumental view, within experimental scaling up research we can look at
the degree to which students develop different cognitive outcomes using the same
mediating tools and materials. In this paper, we highlighted one factor in varied cognitive
outcomes with SimCalc—the degree to which a teacher reports having the goal of going
beyond memorizing facts and performing simple procedures. As we examine the detailed
case studies that have been embedded in selected classrooms in the full scale experiment,
we may be able to root an account of “instrumental genesis” with SimCalc MathWorlds® in
a broader picture of varying teacher practice and student outcomes. In addition,
experimental scaling up research may cause us to rethink aspects of instrumental genesis.
For example, it is clear that less economically advantaged children come into a SimCalc
experience with less preparation for all it can offer than do more economically advantaged
children, even though both populations learn more with SimCalc than with their existing
materials. This draws our attention to the need both to understand instrumental genesis and
to work to achieve it with different populations.

A secondary theme throughout the three phases addresses increasing the robustness of
the innovation by more fully specifying the theory and intended implementation of an
innovation. As Cerulli et al. (2007) reported, when a mathematics education approach goes
from its site of origin to additional sites, one often finds what once seemed to be a clearly
specified approach now seems in dire need of further clarification. In this drive to more
systematically define the approach, much research of a particularly mathematical character
occurs. For example, across our phases, we noted the need to re-engage mathematicians
with SimCalc to achieve greater clarity in specifying the mathematics we wanted students
to learn and the mathematics that we thought their teachers would have to know. Scaling up
brings benefits back to mathematics education by creating a pressure for clarity.

Additionally, the process of doing scaling up research foregrounds the warrants for
making valid claims about robustness. In our case, it focused our attention on the challenge
of recruiting a wide variety of teachers and also on learning how previous curricular
innovations had achieved scale in Texas. These two considerations led us to engage Texas
Educational Service Centers as recruitment and teacher professional development partners.
Assessment is another issue that comes to the fore in scaling up research as validity is
considered. Valid claims about robustness require careful specification of the target content
and the means for measuring students’ achievements. Finally, a concern for the warrants for
making valid claims about robustness draws attention to experimental design.

The drive towards robustness leads to secondary consequences that may be as important
as the primary ones. Cohen et al. (2003) have made a compelling case that researchers
should think of the clarity of their innovations in terms of the levels of ambition and
specificity. An innovation that is ambitious is harder for schools to adopt and positive
results are less likely. An innovation that is nonspecific is easy to implement but prone to
undesirable mutations. Some of these mutant variations may be acceptable to the innovators
and have a small impact on the usefulness of the innovation. Others may be “lethal
mutations” which undermine or negate the intended impact of the innovation (Romberg and
Kaput 1999). For example, when the first author first entered this field, he observed a
classroom using Logo as a tool for teacher-led typing instruction. This is obviously a lethal
mutation from which one would expect none of Logo’s purported benefits.

As our team considered SimCalc initially, we saw an ambitious, nonspecific innovation.
The ambition is clear in Kaput’s slogans, such as “democratizing access to the mathematics
of change.” That slogan carries the spirit of Kaput’s vision, but, as we specified, we had to
consider what elements were of primary importance and what elements could be deferred.
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Examples include the scope of the curriculum, the nature of associated professional
development, and the meaning of the enacted curriculum.

In reality, it would take an inordinately large commitment from schools to test Kaput’s
vision completely. Pragmatically, schools were unlikely to allow us to occupy more than a
few weeks of the curriculum. This raised the dilemma: what could we expect students to
learn in 2 to 3 weeks?

Furthermore, while SimCalc’s ambition is to provide a new representational infrastruc-
ture that provides teachers with open-ended (and thus non-specific) opportunities for
students to learn a wide range of more and better mathematics (Fishman et al. 2003), the
need for more specification focused us on details that were actually quite important.
Specification is required for teacher professional development (Elmore 1996). Our
ambitious, non-specific mission was to “democratize access to mathematics of change
and variation.” Scaling brought us face to face with the realization that this was not
something we could say in a meaningful way to a roomful of 7th grade teachers, at least not
without substantial elaboration. Even when we become more concrete, specifying “Teach
y =kx, not just a/b=c/d”, a substantial question remained about interpreting the meaning of
that new mathematics. We argue that, even in this more concrete case, the odds of teachers
understanding the goals and purpose of the intervention from this statement alone are low.

The huge range of possible interpretations made it likely that the “enacted curriculum”
would differ significantly from the “intended curriculum” (Porter 2002). Not only would
this would make it hard to measure the impact of the innovation at scale but it would
arguably make it ineffective as an innovation. An early and important argument about
scaling up is that innovations require intentional processes that reproduce their success in
new settings and allow for incremental growth as teachers become more familiar with the
innovation (Kaput and Roschelle 2000). Our theory of change calls for teachers to have a
supported pathway for innovation.

In our scale up research, we tackled the issue of ambition by more precisely defining the
mathematics to be covered, as discussed in the prior section, and confining ourselves to a
two to three week intervention. Specificity, however, turned out to be a difficult challenge.
One approach would have been to transform the SimCalc MathWorlds® software from an
open-ended tool to a very tightly scripted series of applets. We decided against this because
it would undermine the core character of the innovation as a “representational
infrastructure.” Instead, the team decided to carefully contextualize the software with a
well-specified paper curriculum.

8 Conclusion: towards robustness in design and evaluation

One of the great strengths of the Kaput’s research program was his relentless drive towards
scale. The slogan “democratizing access to the mathematics of change” was enacted by
deliberate efforts to reach an increasing number of teachers and students each year. Further,
Kaput asked:

What can we learn from research at the next level of scale (e.g. beyond a few
classrooms at a time) that we cannot learn from other sources?

The answer developed in this article is:

We can learn about the robustness of our innovations for teaching and learning
mathematics.
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Additionally, research at scale promotes robustness through two mechanisms: providing
evidence about variance in implementation and performance and by driving the innovators
to think systematically about and develop pragmatic programs of action that reflect the
nature of their hopes and expectations.

The intention to go to scale is a good forcing function for surfacing implicit curricular
structure and demanding clear choices about how specific an innovation must be for a wide
variety of teachers to have a reasonable chance at implementing it well. The designers of
each innovation, of course, must make their own choices about how ambitious a change
they will try to make in classrooms and how elaborate their materials and services that
support that change will be. We think the overall strategy, however, of being more specific
and less ambitious in first implementations but relaxing these constraints as teachers gain
experience makes sense. Further, we found that the process forced consideration of
potential lethal mutations and what to do about them. In design experiment research, lethal
mutations are often not considered because careful choice of participants and close
monitoring of implementation rules them out. Yet at scale, designers have much less control
over what will happen. It is important to the potential success of an innovation to make the
decisions about ambition and specificity more explicit.

While we do not wish to argue that scaling research or our path in it is the only valid
route to this knowledge, we note some particular advantages to engaging in a large-scale
randomized, controlled experiment with hierarchical linear modeling when the goal is to
evaluate robustness. Carrying out a comparison with a control group ensures that we are
evaluating the robustness of our intervention and not simply gains due to some other
component of students’ experience. Assigning teachers randomly increases our confidence
that the groups were equal at the onset of the experiment; again it strengthens our claim that
we are measuring the robustness of the innovation and not a preexisting difference in two
different sets of classrooms. Conducting a large-scale experiment allows us to consider the
performance of important subgroups, not just an overall average effect. Further, hierarchical
linear modeling allows us to account for the fact that variability in teaching and learning
occurs at multiple levels, for example, a student-level, a classroom- or teacher-level, a
school-level, and a regional-level. By modeling, we can begin to learn which factors matter
most as an innovation goes to scale. Ultimately, this can allow us to target designs and
resources to mitigate important disadvantages found in certain settings, while avoiding
wasting resources to address differences with less important impact on outcomes.

Our findings about robustness should have a number of important implications related to
bringing educational innovations to scale. Generally speaking, researchers have tended to
position more ambitious technologies such as SimCalc, The Geometer’s Sketchpad®,
Cabri-Géomètre or Fathom as tools that make sense as part of a broad, comprehensive
approach to improving instruction—one that includes expansive curricular reform coupled
with long-term, integrated teacher professional development. Our pilot results may suggest
that with careful attention to curricular integration, educators who wish to introduce
students to richer mathematics can proceed to incorporate lessons that use innovative
representational technologies into their classrooms and schools without waiting for
comprehensive reform. Further, when extensive ongoing support is not possible, a limited
training-to-use-materials approach still appears to support teacher learning and enhance
students’ opportunities to learn in the classroom. Indeed, starting small with a replacement
unit and modest teacher training may be an effective strategy for scaling up. A replacement
unit gives teachers a well-defined, safe, bounded experience with new curriculum and new
technology. Success in the small may transfer to broader and more profound changes later
in a teacher’s career.
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There is much more to do within our program. As Kaput pointed out, no single integration
could possibly evaluate his vision and representational infrastructure approach. We are also
conducting a parallel experiment in 8th grade, in this case implementing a train-the-trainers
model, which is an additional component of scale. Further, we are studying the impact of a
second year of teaching with these materials and additional professional development on
performance in 7th grade. In the future, we would like to expand to studies that follow
students as they make the transition frommiddle school (6th to 8th grade in the United States)
into high school and track implications for both science and further mathematics courses.
Eventually, we would like to examine the cumulative, longitudinal benefits for students who
experience the SimCalc approach as Kaput intended it, as a portion of the curriculum in each
year of instruction from middle school through high school.

At the core of all these directions and all this potential lies Kaput’s vision. It was a vision
in which the mathematics in mathematics education was central. It has been important to us
to have the continued support of mathematicians and mathematics educators at the core of
our team as the team proceeded through the additional work of scaling up. As we continue
to strive for impact and growth, the allegiance to Kaput’s profoundly mathematical vision
of what students could learn with new representational infrastructure remains at the core of
our thoughts.
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