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Abstract This paper focuses on teaching and learning the set of real numbers R and its
completeness property at the university level. It studies, in particular, the opportunities for
understanding this property that students are offered in four undergraduate correlative
courses in Calculus and Analysis. The theoretical framework used in the study draws on
concepts developed in the Anthropological Theory of Didactics, especially the notions of
praxeology and mathematical organization. The paper shows different expectations
concerning the same notion (R and its completeness) through different school levels, and
intends to bring up some reflections about the transition from Calculus to Analysis.
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1 Introduction

The research presented in this paper is focused on the undergraduate programs (“licenciatura”,
in Spanish) in Pure and Applied Mathematics at the School of Exact Sciences of the
University of Buenos Aires, Argentina. The University of Buenos Aires is a public university,
where students pay no tuition fees. The licenciatura programs offered in the School of
Exact Sciences aim at educating theoretical thinkers, and preparing them for research at the
graduate level (Master, PhD). On average, students complete their licenciatura in mathematics
in 6 1/2–7 years, which includes writing a thesis comparable with a Master of Science
thesis in the North American system.
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The first year is a preparatory one and courses are common for all students planning to
enter the School of Exact Sciences. It consists of six general courses, two of which are
mathematics courses: Calculus and Linear Algebra. After completing these courses,
students enter the School of Exact Sciences and those who want to specialize in Pure and
Applied Mathematics start taking mathematics courses only. The failure rate is high in the
first two years of the School of Exact Sciences, something that has been accepted as quite
natural by the institution. Students who fail normally retake the courses until they succeed,
but some end up changing the direction of their studies, or dropping out of the university.

In the study, I look at four correlative mathematics courses, in Calculus and in
Mathematical Analysis. One of these courses (we call it Course I) belongs to the
preparatory year of studies; the other three (Courses II, III and IV) belong to the first two
years of the mathematics program at the School of Exact Sciences proper; they are taken
during the second and third years of the licenciatura program. At the time of the study, the
failure rate in Courses II and III was usually around 40%; in Course IV, the failure rate was
about 65%. Precise data for Course I was not available, but, in my experience, students
aiming at specializing in mathematics, rarely failed this course.

The high failure rate especially in courses where a conceptual transition from Calculus to
Analysis is made, led me to study how this transition is taken into account in planning and
organizing the mathematical practices through a longitudinal study concerning the four
courses. To make the research manageable, I focused on a topic. I chose the property of
completeness1 of the set of real numbers. The set of real numbers (which I will denote here
by R) is a common topic in all the four courses and, above all, it is a concept that is at the
core of Analysis.

2 Aims of the research

The analysis of mathematical practices cannot be performed in isolation, and this is taken
into account by the Anthropologic Theory of Didactics (or ATD, Chevallard 1997, 1998,
1999, 2002a, b; see also Sierpinska 2005; Laborde and Perrin-Glorian 2005; Barbé et al.
2005), the general framework of the present study, which proposes a structure for modeling
institutional practices. In this theory the notion of institution is considered in a broad sense,
for instance Courses I to IV can be considered as different institutions. Chevallard called
“praxeology” a model of a practice, and suggested that a praxeology be composed of
descriptions of four fundamental elements of each practice (the four “Ts”): the tasks the
practice is set to accomplish; the techniques used to accomplish the tasks; the technologies
used to justify the techniques, and the theories whose aim is to provide a broader theoretical
foundation for the technologies (Chevallard 1998).

From the point of view of techniques, tasks can be grouped into types and kinds. A
solution of a task can be generalized to a “technique” if the task is seen as just an instance
of a whole class of tasks, so that the technique can be applied to solving other tasks of the
same type. For example, a task such as, “prove that this (particular) sequence converges”
can be seen as belonging to the type of tasks which ask the student to prove the

1The word “completeness” refers here to the property of R that can be stated as follows: every non-empty
and upper-bounded set of real numbers has a least upper bound that belongs to R. There are other equivalent
characterizations, which are listed in the Appendix. The word “continuity” refers to the analogous property of
the straight line.
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convergence of sequences; this type of tasks is, in turn, one of the broader kind of “prove
that” tasks.

For Chevallard, mathematical tasks, types of tasks and kinds of tasks are not something
“naturally given” by, for example, some mathematical theory to which they refer; rather they
are institutional constructs and they depend on the institution in which they are used and
practiced Their identification and description, relative to the institutional characteristics, is, indeed,
an important object of didactics of mathematics as a domain of research (Chevallard 1998) .

Given a type of task, the actions to be performed for accomplishing it receive the name
of techniques. Algorithms, for instance, are a particular kind of technique. In a given
institution, relative to a type of task, there is a limited range of techniques that are
considered acceptable. An institution may exclude certain techniques as belonging to other
institutions. The discourses that describe, explain and use some kind of rationality to justify
the accepted techniques constitute the technology. The discourses vary from institution to
institution, and they also evolve within the same institution. The arguments that rationally
justify the technology constitute the theory, which takes, with respect to technology, a
similar role that technology takes regarding the techniques. A set of types of mathematical
tasks, techniques, technologies and theories constitutes what has been called a
mathematical organization.

In terms of these notions, the aim of this paper is to present and analyze those aspects of
the mathematical organizations in Courses I–IV, which were closely related with the study
of R and its completeness property, and to examine their differences and evolution through
the courses. I assume that this analysis will allow me to grasp the different expectations
concerning the same notion through different school levels and to understand the transition
from Calculus to Analysis in the program I am studying.

3 Reference mathematical organizations for the concept of completeness of R

This section looks at some reference mathematical organizations that may have under-
pinned those of the particular educational institution I am studying here. In the first
subsection, I look at how real numbers are usually conceptualized in school curricula. In the
second, the historico-epistemological reference is briefly outlined.

3.1 Two theoretical levels in the conceptualization of R

The set of real numbers is usually conceptualized on two levels. On one of these levels, the
focus is on the necessity to introduce numbers other than ratios of integers (i.e. rational
numbers). Non-periodic expansions are studied; as well as the representation on the line of
some special irrational numbers like square roots of integers, π and e. At this level, the
existence of real numbers is not regarded as a problem to be studied. The second level
conceptualizes R as a set, endowed with arithmetic, order and completeness properties, seen
as the natural domain of Analysis. These properties become essential when real functions
and sequences are studied and not only general observations about them are made but their
systematic theoretical justification is sought. The first level of conceptualization of real
numbers is usually considered as sufficient in secondary school mathematics teaching and
in some Calculus courses. The mathematical practices developed in the university program
I am studying here are aimed at the second level.

Research in mathematics education has focused primarily on the first level. The second
level attracted a lot less attention and I haven’t found works related specifically to teaching
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and learning the concept of completeness of R. There exist, however, didactic studies
related to the more general issue of transition from Calculus to Analysis. Authors have tried
to identify the differences between the two domains that could explain students’ difficulties
in Analysis. For example, Maschietto (2002) points to the introduction of a local point of
view as a distinctive feature of Analysis: What matters is what occurs in a neighborhood of
a point, without much concern for what occurs at a global scale or at an isolated point. I
think that completeness is a sort of local property: while it is not a property of one number
but of a set of numbers; it is not an entirely global property. Artigue (1998) highlighted the
“reconstructive” aspect of Analysis, or, indeed, its concern with theoretical justification of
the techniques developed in Calculus. Teaching Calculus is often based on pre-constructed2

notions which are given sense in the context of specific tasks and techniques for solving
them. In Analysis, these notions acquire the status of objects by means of definitions.

Certainly, one can consider the notion of completeness as a product of theory-building
processes in mathematics. I would say that the straight line and its continuity function as
pre-constructed notions in Calculus courses; they are presented as self-evident and they
support several practices. The naïve idea of real numbers as “all the numbers” functions in a
similar way. A reconstruction of these notions is needed to start a further, deeper study in
Analysis, in which an explicit formulation of completeness plays a central role in proving
certain theorems.

3.2 Historico-epistemological reference

Different epistemological statuses of the property of completeness/continuity can be pointed
out if we look at the history of mathematics (Bergé and Sessa 2003):

– An implicit attribute, as it was considered in Euclid’s Elements in Proposition 1, Book
I, where the point of intersection of two circles is used. Euclid proved each step in this
proof using definitions, postulates, and common notions preceding this proposition,
except for the existence of the common point of the two circles. This is more than an
omission: without this assumption, the proposition cannot be deduced from that which
precedes it. To justify the existence of the intersection point of two circles, a circle and
a line, or two lines, a postulate that makes explicit the continuity of the line is needed.
Another example of an implicit use of continuity/completeness can be found in the works
of Girolamo Cardano (1501–1576) who deduced the existence of a solution for the
cubic equation x3+q=px2 by finding values of x such that x3+q<px2 and other values
such that x3+q>px2, and taking for granted the existence of an intermediate value of x
for which the two expressions are equal. It is believed that Rafael Bombelli (1526–
1572) went through these arguments and offered a justification using the continuity of
the line in a drawing (Zariski 1926). Continuity/completeness was implicitly used in
the development of Calculus in the 17th and 18th centuries: the kinds of problems that
were studied during this period did not require making that property explicit. In solving
the problems, mathematics was used as a tool for modeling; the aim was to compute a
height or a distance whose existence was empirically guaranteed by the phenomena
that were studied.

– An intuitively accepted, explicit attribute, in the works of Augustin-Louis Cauchy
(1789–1857) and Bernard Bolzano (1781–1848). This was the beginning of the process

2By “pre-constructed notions” Chevallard (1997) meant those whose existence is taken for granted, with a
representation that does not allow one to operate or make proofs.
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of “arithmetization” of analysis, which found its most explicit expression in the works of
Cantor and Dedekind later in the nineteenth century. Arguments based on graphical
representations were put in question, and an attempt was made to reconstruct Analysis
based only on arithmetical concepts. Particularly, results such as the Intermediate Value
Theorem were justified using argumentation that explicitly used the property of
completeness in any of its forms, namely the convergence of fundamental sequences,
the existence of a unique intersection of nested closed intervals whose lengths tend to
zero, the existence of the limit of bounded monotonic sequences or the existence of the
greatest lower bound. However, depending on the situation, one of these statements was
considered to be naturally true, and the others were deduced from it. That is, although
completeness was explicitly expressed, it was eventually accepted as a natural property.

– An explicit property that can be proved, in the works of Richard Dedekind (1831–
1916) and George Cantor (1845–1918) who recognized that, in previous expositions of
the differential calculus, some properties that were attributed to the numerical system
could not be justified based on arithmetic only. They formally constructed a numerical
system based on rational numbers – a numerical domain accepted as arithmetically
well-founded – in which these properties were provable. I recognize in this step a major
change in the status of these notions. In his introduction to Continuity and Irrational
Numbers (Dedekind 1963; first published in German in 1872 as Stetigkeit und
irrationale Zahlen, Vieweg und Sohn: Braunschweig), Dedekind described his deep
concern about finding a purely arithmetical foundation for Calculus. He explained how
dissatisfied he was with the use of geometrical interpretations in proofs, for example, in
proving that “every magnitude which increases constantly but not unboundedly,
necessarily tends to a certain limit value”. He had nothing against using such
arguments for didactic purposes. On the contrary, he was saying that such references
are useful and even necessary in introductory teaching of the differential calculus, “if
one doesn’t want to waste too much time”. But he refused to call such practices
“scientific” and considered it necessary to work on the elaboration of a “purely
arithmetic and fully rigorous foundation of the principles of infinitesimal analysis”.
Dedekind took the geometric line as a pivot for the construction of a numerical system:
he created – by means of what he named cuts – a way for accurately characterizing the
continuity of the line, and he elaborated an analogous characterization for the numbers.
This characterization offered a way for proving Analysis theorems that had never been
justified beyond their geometrical evidence, or that had been accepted as natural.
Indeed, this constituted the motivation for his work. In my view, this is a veritable
reconstruction of pre-constructed notions: he made completeness operational and
explicit, and he defined, for the first time, the continuity of the line. Cantor’s
construction, on the other hand, consisted of the creation of one numerical system such
that all fundamental (or Cauchy) sequences have a limit belonging to this system.
Cantor needed this set to prove the uniqueness of the coefficients in developing
functions in trigonometric series (Cantor 1871). That is, his goal was to obtain a well-
defined set for proving other theorems of Analysis. From the point of view of this
status, continuity and completeness are distinguished and separated as two different but
closely related notions: continuity corresponds to the line, while completeness is
formulated for the set of numbers. Continuity and completeness were conceptualized in
axioms in the works of David Hilbert (1862–1899). Hilbert created two axiomatic
systems: one for geometry that includes axioms of continuity (Hilbert 1971); and the
other for defining R, that includes axioms for completeness (Hilbert 1899). The status
of axiom comes from the necessity of defining R by means of a minimal set of
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statements. This is understandable if we keep in mind that this was happening within
the axiomatization program of Hilbert at the beginning of the twentieth century.

The definition of R and its property of completeness allowed mathematicians to work in
a numerical system having the same attributes as the points of the line (order, density and
continuity) where well-known theorems of Calculus (like the convergence of monotonic
and bounded sequences or the Intermediate Value Theorem) are provable and where every
decimal expansion corresponds to a well-defined number. Analyzing the evolution of the
notion of continuity in the history of mathematics, and how it is linked with the modern
notion of completeness, one realizes that completeness/continuity appears in multiple
forms, at various levels of explicitness, using different statements and it is given different
statuses in the theory. Indeed, rigor and precision in the definitions, and logical certitude in
proofs are at the heart of these changes of status.

4 The study: Sources of data and methodology of research

Four courses, Análisis del Ciclo Básico Común, Análisis I, Complementos de Análisis II,
Cálculo Avanzado, were studied. In this paper, as already mentioned, I will refer to them as
Courses I, II, III and IV, respectively. Each such course lasts one semester of 16 weeks, with
10 h/week of lectures and problem-solving sessions. Attendance is not mandatory for
students. To pass the problem-solving part, students have to succeed at two partial
examinations; once this is done, they take a global final examination. During the semesters
the students’ concern is to pass the problem-solving part of each course. They base their study
on solving several sets of mathematical exercises and problems (in what follows we will call
them sets of tasks) that are prepared by the instructors of the problem-solving sessions and the
professors who give lectures. These sets of tasks, arranged in the format of a course-pack, are
rather stable over the semesters. In a course, there are about 8 sets of around 18 tasks each, on
average. Students are not given marks for accomplishing these tasks. In problem-solving
sessions, instructors may solve some of these tasks on the blackboard or give some
explanations they consider suitable for helping students to solve them. Solving the tasks and
verifying the correctness of their solutions is the responsibility of the students. They can ask
for help in the problem-solving sessions and they can consult several textbooks that are
usually proposed as reference bibliography. Students know they will be required to solve tasks
of a comparable or higher difficulty in the exams, therefore solving these sets of tasks gives
them an idea of the minimal requirements for passing the course. Indeed these sets of tasks
constitute an important reference not only for students, but also for instructors of the course
and other courses. Instructors mainly prepare their problem-solving sessions taking these
tasks as a guide. Some emblematic tasks are evoked sometimes by students, professors and
instructors as examples of what was done in a course. Thus, the sets of tasks that correspond to
each course play an essential role in the courses in the university program I am studying.

The following were used as sources of my data about the mathematical organizations of
the courses:

– Course I: The syllabus, all sets of tasks, a recording of the two lectures that were
concerned with real numbers, and a report with recommendations for instructors
written by the professors in charge of this course.

– Course II: The syllabus, all sets of tasks, photocopies of students’ notebooks with hand-
written notes of the lectures and problem-solving sessions concerned with real numbers,
interviews with two instructors and my own experience as an instructor in this course.
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– Courses III and IV: The syllabus, all sets of tasks, photocopies of one student’s
notebook with hand-written notes of the lectures and problem-solving sessions and my
own experience as an instructor in these courses.

For each course, considered as an institution in the sense of the ATD framework, the
following procedures were used.

– I went through the sets of tasks, and selected, for analysis, those that, implicitly or
explicitly, involved the property of completeness of R in any of its forms (for different
forms of this property, see the Appendix), and that, in my opinion, belonged to the
second level of conceptualization of R mentioned above. For instance, the task “Prove
that

ffiffiffi
3

p
is not rational”, has not been selected. Also tasks of the type, “Find the limit

of...” were not selected (since the existence of those numbers was assumed here). But I
did choose tasks which required analyzing the existence of a limit (since the existence
of numbers under certain restrictions is, in my view, linked to completeness).

– When possible, I organized the selected tasks into types of tasks.
– For the chosen tasks or types of tasks, I analyzed possible techniques of solution and

selected those that were the most likely to be treated in each course, based on the above
mentioned available data.

– I considered the technologies as the whole set of explanations about the selected
techniques: theorems, properties or some definitions that were used and accepted in each
course, as well as the discourses justifying the techniques, based on the available data. I
included the deduced technologies whenever their elements were made explicit, whether in
the formulation of the tasks or in the discourse of the instructors or professors.

– Theories are supposed to explain, justify or give a frame of reference to technologies.
In this study, whenever technologies are given by theorems, properties or definitions,
theories are considered as a frame of reference, as if they were the titles of textbook
chapters where the presented technologies were included, when they were made
explicit. Even though they complete the description of the mathematical organizations,
their role in this study is less relevant than the role of the other “Ts” of the framework.

Cases where justifications and explanations are not made explicit, may appear as having
no technology or theory.

I present the tasks or types of tasks, techniques, technologies and theories for each
course, preceded by a brief description of how R was introduced in the course.

After studying the four courses, I was able to deduce what aspects of R and
completeness were taken into account in each course. I am not performing an analysis of
the teaching approaches here; nevertheless, some teaching approaches are briefly mentioned
for giving additional information about the courses.

5 The courses

5.1 Course I

Twelve sets of tasks were used in this course, that constituted the official set of problems
and exercises students had to solve by the time this study was carried out. Their titles were:
1. Preliminaries, 2. Real Functions, 3. Real Numbers, 4. Sequences, 5. Limits and
Continuity, 6. Derivatives, 7. Mean Value Theorems, 8. Study of Functions, 9. Taylor
theorem, 10. Integrals, 11. Applications of Integrals, and 12. Series.
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In lectures corresponding to the topic Real Numbers, the instructor first introduced the
notion of interval, represented some sets on the number line and developed methods for
solving inequalities with and without absolute value. She concluded her second lecture on
this topic by introducing the definitions of lower and upper bounds as well as of the least
upper bound (supremum) and greatest lower bound (infimum), as a means for better
describing the solutions of inequalities, usually given by intervals or unions of intervals.

I selected several tasks from the sets of tasks 3. Real Numbers, 4. Sequences and 5.
Limits and Continuity, which are described in Table 1.

Some remarks about Table 1 and Course I:
Representing numbers on the number line is a frequently used technique in this course.

In lectures and problem-solving sessions, it was considered as something natural: whether
or not each number has its representation on the line was not discussed, but assumed. In
tasks of types 1 and 2 the technique was favored by the particular sets of numbers that were
given: all the numbers the students had to find were integer numbers except for one case,
where it was 1/2. The task presented in row 3 seems to be unique in its type, I cannot
generalize it to a type of tasks.

In tasks of types 4 and 5 there was no reference to completeness; the stress was laid on the
characteristics of the sequence and the function. Nevertheless the Intermediate Value Theorem
would not be valid if the function, even if continuous, was not defined on a complete domain,

Table 1 Praxeologies related to completeness of R in course I

Tasks or type of tasks Techniques accepted
by the institution

Associated technologies Theories

1 To decide whether several
subsets of R are or not upper
or lower bounded.

To represent the set by
extension, or in a drawing,
and to find the answer by
inspection.

The definition of upper or
lower bounded subset of
real numbers.

Real
numbers.

2 To determine upper and l
ower bounds, and
supremum, infimum and
maximum and minimum of
some subsets
of R.

To represent the set by
extension, or in a drawing,
or in a mental image, and to
find supremum and infimum
by observation. To see
whether or not these
numbers belong to the set.

The definition of supremum
as least upper bound and
infimum as greatest lower
bound.

Real
numbers.

3 To order the numbers sup a,
sup B, inf A, inf B, where A
and B are non-empty and
bounded sets such that A⊂B.

To represent two sets on the
number line (typically two
intervals) one included in
the other and to obtain the
answer by inspection.

The definition of supremum
as least upper bound and
infimum as greatest lower
bound.

Real
numbers.

4 To find and justify the
existence of the limit of a
monotonic and bounded
sequence or a squeezed
sequence.

To check the hypothesis and
to use the theorems that
assures the existence of limit
of such sequences.

The theorem that assures the
existence of limit of a
monotonic and bounded
sequence, the Squeezing
Theorem.

Sequences.

5 To prove that an equation has
a solution in an interval.

To check the hypothesis and
to use the Intermediate
Value Theorem.

The Intermediate Value
Theorem.

Limits and
continuity.
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and the existence of limits of monotonic and bounded sequences would not be assured in a
non-complete domain. This condition usually remains implicit and consequently the meaning
of these theorems (especially the Intermediate Value Theorem) is sometimes reduced.

The slots in the column of theories consist of Real numbers, Sequences and Limits and
Continuity, as they were written in the titles of the sets of tasks. In this course completeness
does not appear explicitly, it functions mostly as an implicit tool; its explicit mention is
neither required nor used in accomplishing the tasks. Making completeness explicit was
necessary for instructors (as stated in the written recommendations for instructors, for proving
the Intermediate Value Theorem), but not for students. This is a first course of Calculus,
which is intended, essentially, to impart technical knowledge on new objects more than to
validate these properties and theorems. Accordingly, this course awards an important role to
graphic representations, considering that they allow the lecturers to go quickly over several
topics. In view of this, the inclusion of the concepts of supremum and infimum in this course
is not quite justified: both notions are meaningful only in the context of proofs. Supremum
and infimum are introduced in the set of problems for this course before studying continuous
functions or limits; they appear as a goal in themselves. The instructor was trying to give these
notions a meaning (even if it is an artificial one: to better describe the solutions to inequalities)
for lack of situations where these notions would indeed be mathematically relevant.

5.2 Course II

Course II required Course I as a prerequisite. Seven sets of tasks were used in this course,
that constituted the official set of problems and exercises students had to solve at the time
this study was carried out. Their titles are: 1. Sequences and Series, 2. Limits and Continuous
Functions, 3. Differential Calculus, 4. Power Series, 5. Functions from Rn to Rm, 6.
Differential Calculus in Several Variables, 7. Optimization of Functions from Rn to R.

In the first lecture of Course II the axiom of supremum was presented, and it was used
for proving that every non-decreasing and upper-bounded real sequence converges to the
supremum. The Archimedean property was presented and obtained as a consequence of this
axiom. The style of this lecture was mostly formal: definitions of upper bound, maximum,
least upper bound; uniqueness of the least upper bound, axiom of existence of the least
upper bound for an upper-bounded non-empty subset of R; definition of lower bound and
greatest lower bound, and the first theorem: the existence of the greatest lower bound of a
lower-bounded non-empty subset of R.

Several tasks of set 1 (Sequences and Series) involved completeness in one form or
another. I present them in the first five types of tasks in Table 2. Set 2 (Limits and Continuous
Functions) contained several other forms of completeness, they are presented in the last two
types in Table 2.

Some remarks about Table 2 and Course II:
There is a similar task of type 1 in Course I, but, while in Course I students are asked “to

decide”, in Course II the instruction is to prove, that is, an explicit justification is required.
In Course II, the task is: “Show that the set A ¼ n 2 N : 9m 2 N ; n ¼ m2

� �
is not

bounded from above.” In Course I, an answer based on the fact that the set of natural
numbers is not bounded from above and taking for granted the inequality n2≥n, would be
considered acceptable. In Course II, students are expected to produce a more explicit proof,
using the Archimedean property, as stated by the two instructors I interviewed. This
constitutes a change in justification standards.

Tasks of type 2 occurred also in courses I and III, and I will compare the forms in which
they appear in the three courses later on, after having described Course III.
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Some of the types of tasks in Table 2 ask for a justification – that will involve explicitly
any aspect of completeness – and others can be answered by a direct application of a
theorem or by observing graphic representations. That is, there are two different standards
of validation mixed in the same list of tasks assigned to students. For instance, tasks of

Table 2 Praxeologies related to completeness of R in course II

Tasks or type of tasks Techniques accepted
by the institution

Associated technologies Theories

1 To prove that certain subsets
of R are unbounded.

To propose any general
number M, and to show
that there are elements of
the sets greater than M.

Archimedean property. Real
numbers,
axiom of
supremum.

2 To find maxima, minima,
supremum and infimum of
several subsets of IR,
justifying the answers
(most of the subsets were
given by the values taken
by different sequences).

Most of the questions can be
answered by analyzing the
existence of limits and the
existence of lower and
upper bounds that may
belong to the set.

The definition of supremum
as the least upper bound
and infimum as the greatest
lower bound. Monotonic
and bounded sequences
converge to the supremum
or the infimum. Maxima
and minima are supremum
and infimum that belong to
the subset.

Real
numbers,
axiom of
supremum,
real
sequences.

3 Prove that the set
A ¼ a 2 Q : a2 < 2

� �
has

no maximum nor
supremum in Q.

There are several different
techniques accepted by this
course, they are described
in the section on Course II.

The associate technologies
are presented below
together with the different
techniques.

Real
numbers,
axiom of
supremum.

4 To determine supremum,
infimum, maximum and
minimum of some subsets
of R and to represent them
on the real line (the sets are
the solutions of inequalities
and equations).

To solve the inequalities and
equations, to represent the
solutions and to conjecture
the required values from
the representation of the
sets.

The definition of supremum
as least upper bound and
infimum as greatest lower
bound. Maxima and
minima are supremum and
infimum that belong to the
subset.

Real
numbers.

5 To analyze the convergence
of several sequences.

To check whether or not the
sequences are monotonic
and bounded, or to squeeze
them between two
convergent sequences.

Every monotonic and
bounded sequence of real
numbers has a limit in R,
the Squeeze Theorem.

Real
sequences.

6 To prove that some
functions are surjective
using the Intermediate
Value Theorem.

To use the definition of limit
and the Intermediate Value
Theorem for claiming the
existence of a preimage for
a given value in the
codomain.

Definition of limit,
continuity, the Intermediate
Value Theorem.

Continuous
functions.

7 To prove that an equation
(polynomial,
trigonometric) has any
solution in a given interval
or in R.

To check the hypothesis of
the Intermediate Value
Theorem and to use it.

The Intermediate Value
Theorem.

Continuous
functions.
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types 2 and 4, both ask the students to find the maximum, minimum, supremum and
infimum of sets, the difference being that type 2 tasks require justification, and type 4 tasks
do not. There is a risk, therefore, that students will have trouble understanding the
mathematical culture of this course: Are proofs always necessary? Sometimes? When?
What does this depend on? If this depends on whether or not the question explicitly asks for
a proof or justification, proofs could be perceived as something irrelevant from the
mathematical point of view; a result only of the teacher’s whim3.

The task in row 3, which I cannot generalize into a type of task, demands: “Prove that the
set A ¼ a 2 Q : a2 < 2

� �
has no maximum nor supremum in Q.” The students know that

R contains other numbers than Q; now this problem is useful to distinguish Q from R from
the point of view of their properties, and not only from the point of view that R contains
also the irrationals. There are two main possibilities in proving what is asked. One is to
consider only rational numbers. Then to prove A has no maximum, we take an element of A
and prove there is a bigger one; to prove A has no supremum we take the set of positive
rational numbers whose square is bigger than two and prove it has no minimum. The set A
does not have supremum, even though it is non-empty and upper-bounded, that is, the
axiom of supremum does not hold for Q, and consequently results depending on this axiom
do not hold either. For instance, continuous functions taking values of different sign in a
closed interval may have no zeroes. Students could perceive thus the differences between
having and not having this axiom. Another possibility for proving what is asked is to
consider A as a subset of R, to find the supremum (

ffiffiffi
2

p
) and to prove that it does not belong

to Q. Proving only with rational numbers could facilitate perceiving the relevance of the
axiom, which is not the case for the second proof.

One of the interviewed instructors said about this problem: “I solved this exercise on the
blackboard. In the next class many students came to me asking questions about the details
of the proof. In doing it, I assumed that we knew almost nothing [...] I did it all (manually).
I only required that it be possible to choose a positive rational number between zero and
another rational number, for instance, by dividing the number by two. In the next class
students were asking: ‘could you please tell me what I am supposed to prove, and what not?
In this exercise, what can we assume [as known]? That

ffiffiffi
2

p
is irrational? It seems that we

cannot, but why? We have already learned that...’ ” (My translation from Spanish).
This instructor used only rational numbers in his proof, and this was confusing for the

students who had already used irrational numbers in other exercises. Every proof assumes
certain things as known, or already proved. But the choice of those things may appear quite
arbitrary to the students – a part of the didactic contract with a particular teacher – and not
depending on the mathematical organization alone.

In tasks of types 5, 6 and 7 the property of completeness passes mostly implicitly, hidden
in the hypothesis of the Intermediate Value Theorem and the property of convergence of a
monotonic and bounded sequence.

Finally, most of the tasks that ask for a justification have one common feature: the results
that are to be justified are not “counter-intuitive”; they can all be “seen” as obvious from the

3For the expert or for an advanced student this would not pose a problem. In fact, there are situations in
mathematics where the experts or advanced students just compute something or are convinced by a graph
without worrying about proofs. When they have doubts about something or they have to communicate to
others they stop and think about the assumptions and how well they are founded. Such situations happen
naturally side by side and this does not shake mathematicians’ understanding of the relevance of proofs in
mathematics, because they have control over what they do. For a novice, there is the risk of perceiving
validation as something external, that depends arbitrarily on the formulation of the tasks, instead of
perceiving it as an internal need, a characteristic of the mathematical work at a certain level.

Completeness property 227



perspective of geometric representations. But their theoretical justification always requires
completeness or some of the statements that can be deduced from it. The purpose of the
justifications is not to convince, but rather to explain, to understand the mathematical
reasons beyond the obvious, and to make explicit the coherence of a mathematical theory.
As stated by the instructors, students often feel uneasy with these tasks; they not only have
to learn how to make proofs; they also have to accept that writing a proof is a legitimate
task they can be assigned in the course.

This students’ uneasiness may be reinforced by the formal style of presentation in
the lectures. In the course we observed, the axiomatic presentation of R did not give
reasons why the axiom of completeness was included. These reasons are, indeed, of the
same order as those that may lead someone to accept making proofs of intuitively obvious
theorems.

5.3 Course III

Course II was a prerequisite for Course III, which included topics such as Real Numbers,
Norms in Rn, Series, Topology of Rn, Limits of functions, Riemann–Stieltjes Integral. There
were several tasks involving completeness, described in Table 3. In the lectures of Course
III, R was officially defined as a set of rational cuts, and it was shown that every non-empty
upper-bounded subset has a supremum; that every nested sequence of closed intervals with
lengths tending to zero has an element in its intersection; and that every Cauchy sequence is
convergent.

There was a distance between the contents of the lectures and the tasks for students. In
the exercises for the students there was no mention of cuts or Cauchy sequences. These
theoretical aspects were manipulated only by the instructor in Course III. It is only in
Course IV that they would become also the students’ responsibility.

Some remarks about Table 3 and Course III:
Let’s consider the task in row 1:
Let A⊂R be a non-empty and upper-bounded set.
Prove that the following statements are equivalent :

1. s satisfies the conditions:
(a) 8a 2 A : s � a
(b) if t≥a for all a∈A, then t≥s

2. s satisfies the conditions:
(a) 8a 2 A : s � a
(b) 8" > 0 9a" 2 A : s� " < a"

3. s satisfies the conditions:
(a) 8a 2 A : s � a
(b) there exists a sequence anð Þn2N in A such that lim an

n!1
¼ s

This task can be considered as belonging to the type “to prove the equivalence of two
or more statements”. This is a new type of task relative to the previous two courses; now
the goal is to prove two (or more) conditional statements. It is not a statement 1 or a
statement 2 that have to be proved, but the conditional statement that 1 implies 2 and vice
versa. The instructor solved on the blackboard 1 implies 2 by a direct proof and 2 implies 1
by contradiction and he left the equivalence with 3 as an exercise for students, suggesting
them to prove 3 equivalent to 2 rather than 3 equivalent to 1. One technique for obtaining 3
from 2 accepted by this course is to construct a sequence, considering the hypothesis 2 and
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taking successively decreasing ", for instance " ¼ 1=n. For proving 3 implies 2 it is
necessary to use the definition of limit of a sequence. The explanations instructors usually
give concerning this type of task tend to justify the task by the advantage of having
equivalent characterizations, rather than justifying the used techniques, that is why the
technology slot for this task in Table 3 is empty.

Solving the tasks in rows 2 and 3 (which I cannot generalize into types of tasks)
certainly helps to develop some abilities in proving and manipulating definitions, and this is
may be the reason why they are there, and not because they help in understanding R and
completeness. Discourses and explanations of instructors are mostly based on the argument
that proofs are important, and as in tasks of type 1, they tend more to justify the tasks
themselves rather than the techniques.

The task in row 2 was also in Course I, but in Course III a proof is required. Also tasks of
type 4 were in courses I and II, an example in the next section will highlight the difference.

5.4 A common type of tasks in Courses I, II and III

Tasks of type 2 in the courses I and II, and tasks of type 4 in Course III are essentially the
same, except for the fact that in courses II and III students are asked to justify their answers.
It maybe useful to illustrate this analysis by choosing one task and comparing the
techniques that each course would consider acceptable for accomplishing it. Let us
consider, for example, the set A ¼ 1

n : n 2 N
� �

. Representing this set on a number line and
inferring, “by inspection”, that inf A=0 and sup A=1, is a technique that would be accepted
in Course I, but not in II and III, where the student is expected to reason more explicitly
and formally. For instance: A is a bounded set; its elements satisfy 0 < 1

n ; because
1
n is a ratio

of two positive numbers; 1
n � 1 as every natural number satisfies n≥1. Thus the set A is

shown to be lower-bounded by 0 and upper-bounded by 1. Since 1∈A, the number 1 is the
maximum. For proving that 0 is the infimum, the following arguments can be used:

1. showing that no positive real number can be a lower bound: given ">0, it is enough to
take n > 1

" for
1
n to be less than ". In this case, the Archimedean Property is used, even if

it remains implicit. This technique would be acceptable in Course II. In Course III, an
explicit reference to the Archimedean Property would be required.

2. As the elements of the set form a decreasing and lower bounded sequence, then it
converges to the infimum: therefore the infimum is 0. This argument would be
accepted in both, Course II and Course III.

3. 0 is a lower bound, and there exists a sequence, included in the set, that converges to 0,
therefore 0 is the infimum. This argument would be acceptable in Course III where this
characterization of supremum was introduced.

Thus, the courses differ in the techniques and technologies that are considered
acceptable for solving the same type of task; the differences reflect increasing justification
standards.

5.5 Course IV

Course III is a prerequisite for Course IV. Topics included in this course are Real Numbers,
Infinite Sets, Metric Spaces, Rudiments of the Theory of Banach Spaces, Sequences and
Series in the Complex Field, Differentiation in Euclidean Spaces and Concept of
Differential Equation. Students in this course will study more general spaces, and will
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know other complete spaces than R. In the lectures, the axioms of a complete ordered field
were presented and it was shown that the set of rational cuts satisfies these axioms. That is,
Dedekind cuts do not play the role of a construction, but that of a model in showing the
consistency of a theory.

There are several problems on completeness in the official sets of tasks students have to
accomplish. Kinds of tasks are mostly to prove, to conjecture and prove, to analyze, to give
examples, to prove the equivalence of two or more statements. Problems regarding real
numbers are in the first set of tasks, from where I selected one which would correspond to
the type to prove the equivalence of two or more statements:

Show that in an ordered Archimedean field the following statements are equivalent4:

1. Every bounded sequence has a convergent subsequence.
2. Every Cauchy sequence is convergent.
3. If (In)n=1 is a nested sequence of closed intervals whose lengths tend to zero, then there

exists a unique element x 2 \1
n¼1In.

4. Every non-empty and upper-bounded subset has a least upper bound.
5. Every monotonic and bounded sequence is convergent.

This task shows different aspects of completeness of R that, at first sight, do not seem to
be linked. Starting from each of the statements, it is necessary to build an object that
satisfies certain conditions. The proof of equivalence of several statements is a type of task
that has already been introduced in Course III. Students must generate conditions in order
to use the hypotheses. For instance, starting from 1 leads to building suitable sequences and
subsequences from a nested sequence of closed intervals, or from a bounded set, or leads to
wondering whether a Cauchy sequence is or is not bounded in order to be able to use the
hypothesis. As well, starting from 2 leads to building a Cauchy sequence or subsequence
from a bounded one, or from a nested sequence of closed intervals, or from a bounded set,
or from a bounded and monotonic sequence again in order to use the hypothesis, and
so on5.

The instructor proved two of the conditional statements and left the others to students,
suggesting an order to make the proofs. Potentially this problem facilitates the study of
completeness, and the interpretation of each statement as an expression of this property.
Reflections on these aspects won’t come automatically from making the proofs, and
opening the door to discuss them would help students to evolve in their conceptualizations.
The study of complete metric spaces in this course may also facilitate seeing completeness
of R from a more general perspective, observing that some of the expressions of
completeness can be generalized while some others require specific properties of R, namely,
its order properties.

6 Synthesis and discussion of the results

An analysis of practices was performed. What is its scope? What can be said about the
mathematical organization in the different courses? And what does this analysis allow us to
see regarding the transition from Calculus to Analysis? I address these questions in this
final section of the paper.

5Proofs available in Bergé (2004) (go to Anexos al capitulo 3.doc).

4Remark: an ordered field K that satisfies one of the statements 1, 4 or 5 is necessarily Archimedean.
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In the introduction, I assumed that analyzing the mathematical content of the courses in
terms of “praxeologies”, i.e. by identifying the types of mathematical tasks studied in the
courses, and the accepted techniques, technologies and theories for solving them, will
provide elements for modeling the mathematical organizations relative to completeness of
R, specific for these courses. In short, I may say that, at the most elementary stage,
justification based on observation or geometric intuition is considered sufficient; later on,
students are required to prove things that may be obvious for them; finally, students are
asked to prove relations that may be quite unobvious. I elaborate on this point:

Graphic representations and what can be inferred from them occupy an important place
in Course I. This allows students and instructors to make quick progress in solving certain
tasks in Calculus. The related techniques consist of representing sets on the number line,
and producing answers to questions about their boundedness based on such representations
and, occasionally, a direct application of some unquestioned theorems. The existence of
numbers under certain conditions is not an object of study in this course; consequently,
completeness is used only implicitly here. It remains hidden behind the obvious
“continuity” of the graphic representation of the number line, and theorems such as the
Intermediate Value Theorem – that assure the existence of some numbers. Course II raises
the standards of validation, taking into account the fact that using the information obtained
from a graphic representation can sometimes be insufficient. These standards of validation –
sometimes regarding the same type of task that students had already solved by observation in
Course I – seem to be raised mostly as a matter of changes in the didactic contract rather than
by showing that geometric intuition and graphical representations can be misleading.

Tasks in Course III are less varied: they stabilize around the “Prove that” type.
Moreover, the concepts of supremum and infimum change their status. In the previous
courses they were numbers to be computed. In Course III, they are objects that can be
manipulated, theoretically compared, added or multiplied, and are useful conceptual tools in
defining the notion of distance or later on, the Riemann–Stieltjes integral. However, I
surmise that the arithmetic of supremum presented in this type of tasks (see for instance
rows 2 and 3 of Course III) does not make completeness any more meaningful or
significant for the students, even though it does contribute to develop some new techniques.
It does not make the notion of completeness any clearer, and provides little additional clues
as to where this property can be used or is useful. In Course IV supremum and infimum are
one more way of expressing completeness and their utilization in proofs is more conceptual
than in Course III.

A global look at the Tasks or Types of Tasks columns in the tables, suggests that tasks
evolve from computational and other technical exercises (“find”, “decide”, “determine”) in
Course I, to tasks requiring more and more sophisticated forms of justification: “justify” in
Course II; “prove”, “give a formal proof” in Courses III and IV. This forces the evolution
the techniques in the same direction, from applications to more creative proofs.

Finding types of tasks was not always possible for me, as it was pointed out in several
tasks through the study of the courses. The higher the theoretical level of the mathematics
courses increased, the less I could generalize the tasks into types of tasks without falling
into broad categories of tasks such as “to prove”.

Technologies in courses I and II are described generally by properties, theorems and
definitions that support computational and technical exercises; meanwhile in courses III and
IV justifications and discourses of instructors tend to justify the tasks rather than the
techniques, and no technology or theory is described in the strict sense considered
by ADT.
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I end this discussion with a brief parenthesis. The approach to completeness in courses II
and III is done by means of the axiom of supremum. The supremum has the advantage that,
once it is known, its use in proofs is versatile, taking into account the different ways of
characterizing it. The disadvantage is that it must be defined as a new object of study for
that purpose, something that is hardly understood at the beginning. It could be interesting to
study the effects of introducing completeness by the statement that every monotonic and
bounded sequence of elements of R is convergent in R: I hypothesize that since students
have already work with sequences and limits, the emphasis would be located in the new
subject, namely, the axiom guarantees the existence of a limit in the set.

7 Conclusions

Mygoal in this research was to find some clues for understanding the increase of failure rate as
students went on from studying Calculus to studying Analysis. I now present some reflections
that would not have arisen without the analysis of praxeologies of the courses.

In the historical development of mathematics as a research domain, completeness came
into being as a tool for the construction of proofs in a context where the existence of
numbers is no longer taken for granted. This genesis distinguishes completeness from other
concepts in analysis. From this points of view, there is no reason to include completeness as
a topic of study in an introductory Calculus course such as Course I, which awards little
attention to theoretical justification. This concept acquires meaning and significance only
when the validation of the mathematical work is at the centre of attention. Asking students
to prove results that are obvious for them, as in Course II, may trigger an activity of
validation in the classroom, but in this situation it may not be very easy to make students
engage with the activity as mathematicians rather than just students accomplishing an
arbitrary and meaningless school task. Still, looking at the practice from the institutional
point of view, a positive aspect of the process can be acknowledged: In accomplishing the
task of proving the obvious, one kind of unknown is eliminated: students, now conscious of
the work to be performed, already know the result they are to prove, and can concentrate on
constructing the proof. This is why I think that Course II has a privileged position in that it
is preceded by Course I: the content of the statements to prove is not new for the students.
There is the advantage of now being able to reflect and discuss, among others, such things
as what to prove and what not to prove; what is assumed in proving, and what is not; of
having an axiomatic system as a departure point for proving; and of taking a distance from
intuition, to mention but a few. In the course of such discussions, there is a possibility of
making a more conscious reference to questions such as what the axioms are, and why it is
necessary to include the axiom of completeness. If the axioms are shown as the necessary
departure point in order to prove some theorems, the students can understand more – not
only about completeness, but also about how an axiomatic theory functions in mathematics,
in general.

In Course III accomplishing the selected tasks requires training in making proofs in a
methodic formal style, mostly regarding supremum. Formal style continues in Course IV,
where different aspects of completeness previously studied are generalized and put in relation
with some new others. In this course the notion of completeness can be identified as what has
been called by Robert and Robinet (1996) a Formalizing, Unifying and Generalizing concept.
The use of a meta level in teaching and learning such concepts has been discussed in several
papers (Robert and Robinet (1996), see also Dorier 1995).
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The notion of completeness of R inhabits both, Calculus and Analysis courses, but it
takes more or less explicit forms with regard to theoretical justification. Understanding
the changes of status that this property undergoes in passing from Calculus to Analysis
requires a perspective that learners do not spontaneously take in accomplishing the tasks.
Students are not naturally inclined to take this perspective, and this fact is not sufficiently
seriously taken into account in the mathematical organization of the courses. Maybe the
increase of the failure rate in the transition from Calculus to Analysis could be explained by
the lack of this perspective in both students and course designers and teachers. Yet, I
surmise, my analysis gives enough evidence that the sequencing of the courses and their
content offer an advantageous institutional basis which could privilege a better organization
of the transition.

Appendix

Different ways of defining completeness

There are several ways of thinking about and defining the property of completeness of R.
We present a – non-exhaustive – list of different equivalent ways of characterizing it5:

1. Every bounded sequence of elements of R has a subsequence convergent in R.
2. Every Cauchy sequence is convergent in R.
3. If (In)n=1 is a nested sequence of closed intervals of R whose lengths tend to zero, then

there exists an unique element x in R, x∈∩∞
n=1In.

4. Every bounded infinite subset of R has an accumulation point in R.
5. Every non-empty and upper-bounded subset of R has a least upper bound that belongs

to R.
6. Every monotonic and bounded sequence of elements of R is convergent in R.
7. R is connected.
8. Every continuous function defined in R that takes values of different sign in a closed

interval takes the zero value at an element of this interval.
9. Every cut of elements of R has a unique element of separation that belongs to R.
10. Every covering by open sets of a closed and bounded subset ofR has a finite sub-covering.
11. Every decimal expansion is a number that belongs to R.

Each of these statements shows different aspects of the completeness of R. If they are
thought of as hypotheses for proving theorems, each one involves different images, tools
and ways of operating, that make us think of them as different conceptions (Artigue 1990)
of completeness. Beyond the study of R, these properties reflect more general principles
that go through all of mathematics: the construction of objects by approximation of others
of a particular type; the completion of metric spaces, the individualization of an element by
means of a nested sequence of closed sets, the attainment of extremes, etc.
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