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Abstract A common approach used for introducing algebra to young adolescents is an
exploration of visual growth patterns and expressing these patterns as functions and algebraic
expressions. Past research has indicated that many adolescents experience difficulties with
this approach. This paper explores teaching actions and thinking that begins to bridge many
of these difficulties at an early age. A teaching experiment was conducted with two classes of
students with an average age of eight years and six months. From the results it appears that
young students are capable not only of thinking about the relationship between two data sets,
but also of expressing this relationship in a very abstract form.
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Student thinking . Teaching actions

1 Introduction

Mathematics activity is seen as the domain of reasoning about objects and their relations,
and involves examining and investigating the truth of claims about those objects and
relations (Carpenter et al. 2003). The power of mathematics lies in relations and
transformations that give rise to patterns and generalisations. Abstracting patterns is the
basis of structural knowledge, the goal of mathematics learning in the research literature
(Johnassen et al. 1993; Sfard 1991). Thus the focus of mathematics teaching should be
directed to fostering fundamental skills in generalising, and expressing and systematically
justifying generalisations (Kaput and Blanton 2001). Traditionally, elementary schools
place little emphasis on relations and transformations as objects of study. It appears that, as
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Malara and Navarra (2003) argued, classroom activities in the early years focus on
mathematical products rather than on mathematical processes. One response to this is the
introduction of algebraic thinking in the elementary classroom. Early algebra is not the
same as algebra early. Algebraic reasoning in the early years includes a deep understanding
of the mathematical structure of arithmetic expressed by language and gestures using
concrete materials and representations. The language in particular appears to be an area in
which many elementary students experience difficulties (e.g., Warren 2006).

A common activity that occurs in many early years’ classrooms in the Australian context
is the exploration of simple repeating patterns using shapes, colours, movement, feel and
sound. Typically young students are asked to copy and continue these patterns, identify the
repeating part, and find missing elements; a focus is on single variational thinking where
the variation occurs within the pattern itself. Little activity occurs with visual growth
patterns. Yet approaches for introducing algebra to young adolescents (12–13 years) build
on early explorations of visual patterns, using these to generate algebraic expressions
(Bennett 1988).

Patterns used in formal introductory algebra experiences are predominantly visual
growth patterns. Students are asked to form the relationship between the patterns and their
position, and use this generalisation to generate steps in the patterns for other positions, that
is, they are asked to reconsider growing patterns as functions (i.e., as a relationship between
the pattern and its position) rather than as a variation of one data set (i.e., as a relationship
between successive terms within the pattern itself). Commonly this involves generating the
visual representation, recording data in a table (the position and number of elements at that
position), and from the table identifying the relationship between the two data sets. This is
distinct from pattern recognition used in mathematical induction, a prominent proof
technique in discrete mathematics (Harel 2001). The focus in the former is on ascertaining
the functional relationship between data sets and exploring the concept of a variable.

Past research has indicated that many young adolescents experience difficulties with the
transition to patterns as functions (Redden 1996; Stacey and MacGregor 1995; Warren
1996; Warren 2000). These difficulties include the lack of appropriate language needed to
describe this relationship, the propensity to use an additive strategy for describing
generalisations (i.e., a focus on a single data set), and an inability to visualise spatially or
complete patterns (Warren 2000). Students also fail to link the position number to the
pattern (MacGregor and Stacey 1996; Warren 1996), express the generalization in natural
language (Redden 1996), and converting the pattern to a table of values and searching for
relationships within the table results in increased cognitive load (Warren 1996). These
difficulties persist in higher levels of mathematics with many older students focusing on
result pattern generalization (regularity in the results) as opposed to process pattern
generalization (regularity in the process) (Harel 2001). However, young students are
believed to be capable of thinking functionally at an early age (Blanton and Kaput 2004).
The conjecture on which this research is based is that the difficulties that occur with
adolescent students stem from a lack of early experiences in the elementary school that
support such approaches. In the Australian context not only have young adolescents had
very little experience with visual growth patterns in the elementary school but also little
experience with arithmetic being more than a process used for finding answers. This
research investigates teacher actions that begin to assist young students to view and
describe visual growth patterns in terms of their positional relationships. The specific aims
of this research were to investigate instruction that begins to assist young students (1) to
create unknown steps/positions in growing patterns, and (2) to articulate the generality of
the visual growth pattern in terms of its position in the pattern.
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1.1 Theoretical perspective

The theoretical framework that guided this research was the theory of semiotics. A semiotic
perspective on mathematical activity provides an alternate lens through which to view the
teaching and learning of mathematics. It is driven by a primary focus on signs and their
construction (Ernest 2002). It is concerned with the production of signs and their use with a
particular focus on the personal appropriation of the underlying meaning embodied in the
relationship between signs. In contrast to cognitive and constructivist perspectives on the
development of learner schemas or cognitive structures, a semiotic perspective offers a
focus on socially displayed semiotic activity. In this perspective the reading of texts,
making sense of tasks, computations, language, gestures, imitation and mental imagery all
have semiotic functions. The underlying belief is that when people communicate through
all sorts of signs (both idiosyncratic and conventional) knowledge emerges, with the
individual continually interpreting and reinterpreting these signs (Peirce 1960).

The semiotic relation is inherently triadic, linking an object, a representation (called by
Peirce the representamen) and the interpreter (referred to by Peirce as the intepretant)
(Peirce 1960). Signs are concrete things, tokens or marks that by themselves have no
meaning. It is in their interpretation that meaning exists. In this definition signs and
representations are synonymous. Peirce (1960) distinguished three different types of signs,
each dependent on and differing because of one’s interpretation of their relationships with
the object. These were icons, indices and symbols. Icons possess the closest physical
resemblance to the object itself, a similarity to or an analogy of the object. Indices are
associated with a particular object but do not necessarily have the characteristics of or
provide an analogy of the object. Indices can exist without the object but it is their
relationship to the object that gives them meaning. In their simplistic form they can act as a
pointer to the object itself. Symbols are representations that fulfill their function regardless
of any similarity or analogy with their object and equally regardless of any factual
connection therewith, but solely and simply because they will be interpreted to represent the
object. Something is an index or icon only if it functions as such, and this function relies on
the interpretation of the interpreter. Both icons and indices are essential when introducing
anything new within the mathematical discourse (Otte 2006).

Within this framework, language descriptions and symbolic notation systems both are
designated as symbols. Vygotsky (1934/1986) regarded signs as tools that were capable of
influencing one’s inward behavior and the behavior of another. Semiosis involves the
process of going beyond particular signs to more and more complex representations
incorporating new signs and generalizations, an evolving process (Otte 2001). The central
notion of knowing is about semiotic activity (relating signs, objects and interpretations) and
critical awareness rather than mental representations (Otte 2006).

Knowledge emerges as a social product when students communicate about an object
through all sorts of signs that are continually interpreted and re-interpreted by the
individual. Saenz-Ludlow (2001, 2006) suggested that a semiotic view of psychological
activity straddles the belief that cognitive activity is primary to the construction of
knowledge (Piaget 1970) and the belief that social interaction mediated by symbolic tools
plays a fundamental role in the psychological activity of the individual (Vygostky 1934/
1986). Presmeg (1997) claimed that when one recognizes the structure of the system one
engages in, explains this structure to others by such means as encoding it in a diagram or
applying some overarching framework then mathematics exists. Thus signs play a dual role
in cognition. On one hand they are a means of dealing with the object of knowledge while
on the other they are social, where we find a niche for meaning. In semiotics neither the
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cognitive domain of the individual nor the social interaction is primary. Both coexist and
support the evolving construction of meaning (Radford 2001).

From this perspective the focus shifts from specifying cognitive behaviors to
characterizing mathematical experiences by taking into account the social and cultural
aspects of this activity (Ernest 2002). Thus the essence of the methodology is to encourage
student–teacher and student–student interactions to provide a range of opportunities for
students to construct, symbolize and explain their understandings. From this perspective the
teaching process has two related dimensions, namely, the instructional planning to be
carried out by the teacher, including opportunities for participants to share meaning, and the
social organization of the classroom setting so that peers contribute to each other’s learning.
Thus the teaching and learning process can be seen as a process of semiosis where the
teacher and students become both contributors and interpreters.

In this research the functional relationships represented by the visual growth patterns
were the objects of the signs. The representations (the signs) generated to assist in the
interpretation of the objects (e.g., the external representations including diagrams, drawings
and arrangements of concrete materials, and verbal argumentations about the representa-
tions and mathematical ideas) were the tools used to influence student’s behavior and the
interpreters were the students themselves and the researchers.

2 Method

The methodology adopted for the Teaching Experiments was the conjecture driven approach
of Confrey and Lachance (2000). The conjecture consists of two dimensions, mathematical
content and pedagogy linked to the content. The design aimed to produce both theoretical
analyses and instructional innovations (Cobb 2000) though with one variation; that one of
the researchers acted as teacher. In this type of research instructional design and research
are interdependent (Cobb et al. 2003). It involves attempting to support the development of
students’ learning and investigating the processes and actions that assist this learning. Thus
a hypothetical learning trajectory is postulated and conjectures are formulated about
envisaged learning processes and specific means that might support these processes. The
research occurred over a two lesson sequence. During and in between each lesson
hypotheses were conceived ‘on the fly’ (Steffe and Thompson 2000) and were responsive
to the teacher–researcher and the students. Instructional tasks were generated prior to the
commencement of each lesson. During the lessons some tasks were modified according to
the classroom discourse and interactions, with new representations being introduced in
order to challenge students’ thinking and encourage them to justify their understandings.

2.1 Sample

Two lessons were conducted in each of two classrooms from two middle socio-economic
elementary schools from an inner city suburb of a major city. The sample, therefore, was
comprised of 45 students (average age of 8 years and 6 months), a classroom teacher and 2
researchers. The lessons reported in this paper were those conducted by one of the
researchers (teacher/researcher). The lessons were each of approximately one hour’s
duration. Figure 1 presents a sample of visual growth patterns explored in the 2 lessons.

The first lesson focused on copying and continuing simple visual growth patterns,
describing the patterns in terms of positional language, and using this relationship to predict
and create the pattern for other positions. In this instance the patterns chosen were those
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where the links between the pattern and its position were visually explicit. (e.g., a pattern
where its width is its position and its height is always 2). The second lesson entailed re-
examining some of these patterns, extending young students’ language and thinking to
describe and predict the patterns for any position, reversing the thinking (i.e., identifying
the position when given the pattern). It was conjectured that these types of activity would
assist students to focus in particular on the relationship between the position number and
the pattern. Given the importance placed on describing the pattern in everyday language
and its relationship to formal symbolic notation systems, the focus of these lessons was
primarily on the development of this language. Hence it was decided not to record the data
in a table of values but to ascertain if students could link the position with the construction
of the pattern itself and describe this link in natural language. Warren (1996) found that
converting a visual pattern to a table of values increased the processing load, making the
task more difficult. In fact, recording data sequentially in a table appeared to encourage
single variational thinking, finding relationships along the sequence of numbers instead of
finding the relationship between the pairs, hence the omission of this step in this research.

2.2 Data gathering techniques and procedures

During the teaching phases, the other researcher and classroom teacher acted as participant
observers. The lessons occurred sequentially. In each instance the other researcher and
classroom teacher recorded field notes of significant events including student–teacher/
researcher interactions. Both lessons were videotaped using two video cameras, one on the
teacher and one focussing on the students who actively participated in the discussion. At the
completion of the teaching phase, the researcher, teacher/researcher, and the classroom
teacher reflected on the field notes, endeavouring to minimise the distortions inherent in
this form of data collection, and come to some common perspective of the instruction that
occurred and the thinking exhibited by the students participating in the classroom
discussions. The video-tapes were transcribed and worksheets collected. The videos and
participant observation scripts served to identify specific actions, specific use of
representations and conversations that supported this learning. In order to ascertain how
individual students were progressing along the learning trajectory pre and post-tests were
administrated before the first lesson and 2 weeks after the completion of the second lesson.
The delayed post test served to probe the robustness of the learning that occurred during the
lesson sequence. Thus the data were two tiered, the first tier relating to the classroom

Patterns with the first three steps 

(a) (c)(b)

1 2 3 1 2 3 1 2 3

Patterns with missing steps 

(d) (e)

1 3 5 1 3

Fig. 1 Typical patterns presented in the two lessons
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learning and the second tier focussing on the individual students within this classroom. The
pre and post tests were comprised of three questions as shown in Fig. 2.

Questions 1 and 2 were included to ascertain students’ understanding of visual growth
patterns while question 3 probed their ability to predict further positions in the pattern and
describe, in general terms, the relationship between the pattern and its position. These tests
mirrored the types of activities and discussions that occurred during the teaching phase. The
delayed post test served to ensure that the responses reflected student’s own thinking, rather
than simply recalling the discussions that ensued during the teaching phase or recognising
the items from the pre-test.

3 Results

The results of the pre and post-tests indicated that there was growth in students’
understanding of growing patterns and in their ability to describe in general terms the
relationship between the pattern and its position (Table 1).

As these results indicated, at the beginning of the teacher phase many students
experienced difficulties in simply continuing and creating growing patterns. Even though
after the two lessons, many more students were successful in these activities, there were still
many who exhibited some difficulties with these tasks. Responses to question 3(i) indicate
that by the completion of the two lessons significantly more students were able to correctly
draw the pattern when given differing positions.

The responses to question 3(ii), the question relating to writing the general rule for a
simple growing pattern, were categorised. The responses fell into 7 broad categories
ranging from descriptions that gave no indication of the relationship between the pattern
and its position to responses that specifically related the pattern to its position.

Table 2 illustrates the categories with some typical responses and summarises the
frequency of responses for each category for the pre-test and the post-test.

Draw the next step in these growing patterns 
1(a) 1(b) 

1(c) 2. Using these two shapes create your 
own growing pattern.  

3. 

          1st            2nd         3rd           4th                     5th                                                    10th

(i) Fill in the missing steps (ii) Write the general rule for this pattern.  

Fig. 2 Growing pattern questions on the pre and post test

Table 1 Frequency of response to growing pattern questions on the pre and post test

Pre test Post test

1a 1b 1c 2 3(i) 1a 1b 1c 2 3(i)

Incorrect 16 21 21 24 5 8 16 13 20 1
Correct 29 22 21 19 31 36 28 31 24 44
No answer 2 3 2 9 1 1 1 1 0
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The responses that refer to some interaction between the position and pattern (multiple
aspect responses: category 7 and 6) increased from 3 to 19, and the responses that focused
on single variation (single aspect responses: category 5 and 3) decreased from 28 to 15. The
results of a chi-squared test (χ2

01 =15.45 p<05) indicated that this difference was statistically
significant, that is, the differences of this magnitude are unlikely to occur by chance.

An examination of the lessons gives some insights into the teaching actions that assisted
this growth in understanding. The next section describes some teaching actions that
supported this growth and thinking that hindered the generalisation process.

3.1 Supporting processes

The use of concrete materials The use of concrete materials appeared to assist many
students to ascertain the missing steps in the pattern. A number of students, when
completing the accompanying pen and paper worksheet, recreated the pictorial pattern with
the tiles and then used the tiles to create the 5th and 10th step. They then drew a picture of
their solution on the worksheet.

The specific concrete materials utilized were tiles as iconic signs for the visual growth
patterns and small cards with position numbers as indexical signs for where each pattern
was situated within the pattern sequence (see Fig. 1, patterns a–c). Teaching entailed
enacting the relationship between these signs. Students were encouraged to create the
pattern with their tiles and to identify, then name the steps in the growing pattern, placing
under each the appropriate position card. This cycle continued until the students had placed
the cards marked with 1st, 2nd and 3rd beneath the first three steps.

& T/R: What do you think this might be? (Pointing to the first group of tiles)
& Class: 1st
& T/R: What do you think this might be? (Pointing to the second group of tiles)
& Class: 2nd

Table 2 Responses to question 4(ii): write the general rule for this pattern

Category Pre
test

Post
test

Responses that increased in
frequency in the post test
7 Relationship between position and pattern—visual description

(The top and bottom row of the stars is the same number as
the step)

1 12

6 Relationship between position and pattern—total number of
tiles (Each step number x2=number of * or It’s double the
number of the step.)

2 7

4 Relationship within the pattern itself (Always the same as
the tops as the bottom.)

0 3

2 No relationship (You do your original number.) 2 4
Responses that decreased in
frequency in the post test
3 It grows—Single variation (The patterns keep on growing

and growing.)
6 3

5 It grows in twos—Quantifying single variation (Goes up
by two. One more on each end.)

22 12

1 No response 12 4
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It was conjectured that this sequence assisted students to focus on the two different
aspects of the pattern (the steps of the pattern and their position in the pattern) and to begin
physically to link the two signs used to represent these components. The actions explicitly
focused on (a) interpreting a tile as an iconic sign for the pattern, and (b) encouraging
students to view the sign for the position as an indexical sign, that is, a sign pointing to the
position each component of the visual growth pattern holds within the overall pattern.

Patterns where the relationship between the pattern and position were explicit These types
of patterns appeared to assist students to describe verbally the relationship between the
pattern and the position, for example, it is twice the step number, it is the same as the step
number, it is one more than the step number.

These discussions consisted of four distinct stages, each assisting the children to refine their
description of the relationship between the two sign systems (the tiling pattern and the
positional cards) to ensure that the interpretation of their natural language description (the
symbolic sign) represented the object (the functional relationship represented by the visual
growth pattern). The first encouraged students to proffer explicit descriptions of the pattern
itself. The following excerpt exemplifies the types of discussion that occurred in the classroom
context that supported this thinking for the visual growth pattern exhibited in Fig. 1, pattern b:

& Kyla: Just made it taller each time.
& T/R: You made it taller each time. And how much taller?
& Kyla: 1 row
& T/R: By 1 row. What else do you know about the one row?
& Kyla: It gets bigger.
& T/R: It gets bigger by how many?
& Kyla: 2.
& T/R: By two. Excellent. It gets taller each time by one row and it gets bigger each

time by two. Did everyone have that sort of pattern?

Initially students were examining each successive step in the pattern to describe how the
pattern was changing. They were only considering the iconic sign for the pattern and
ignoring the indexical sign indicating the position of the component within the pattern
itself. In this instance their language description for the pattern considered only the
variation that existed in the pattern itself. The next section exemplifies the second phase in
the discussion, beginning to relate the two signs, the iconic and indexical signs.

Explicit questioning to link the position to the pattern For the pattern presented in Fig. 1,
pattern b when asked to describe the 4th step, one student responded that is was 9 tiles.
Explicit questions needed to be asked to ensure that the students connected the pattern’s
shape to its position. These questions were of the form—What does the pattern look like?
How many columns? How many in each column? For the 3rd step, how many on the left,
how many on the right? The questions explicitly related the position to the pattern’s visual
components.

& T/R.: What about the 4th one?
& John: It has 9.
& T/R: So can you tell me what the 9 tiles look like?
& C: Um.
& T/R: Can you describe what the 9 tiles look like. It's what?
& John: 5 on one side and 4 on the other.
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& T/R: How is this linked to the position number?
& John: This one is the same 4th (gesturing to the left), and this one is one more

(gesturing to the right).

The above excerpt exhibits how the use of questioning and justification assisted John to
begin to refine his verbal description of the pattern so that it started to bear a closer
relationship to the object. From this excerpt John initially identified the iconic sign for the
pattern in its holistic form. The teacher’s questions began to assist him to deconstruct the sign
into its parts and then relate the parts to the indexical sign pointing to its position in the
pattern. Finally, John exhibited the beginning stages of semiotic activity by expressing his
interpretation of the relationship between the iconic sign and indexical sign in everyday
language, the beginning of the emergence of a sign as a symbol. The third phase required
students to extend their thinking from small position numbers to large position numbers.

Generalising from the pattern in small position numbers, to large position numbers It was
found that to articulate the relationship between the position number and the visual pattern
in general terms, students needed to discuss the relationship for increasingly larger
positions, for example, describe the 10th step and the 20th step. Classroom observations
indicated that many students needed physically to place the signs for these positions on the
table and physically construct the patterns before they were able to contribute to the
discussion. Most students successfully completed this task. To ensure that they were linking
the pattern’s position to the pattern itself, several more discussions ensued: each time the
step number increased, for example, what would the 100th step look like? 1,000th step,
3,000th step?

& Brian: Um, we first did the—cause to work it out, cause the first one had 2 on the
one side and then 3 on the other.

& T/R: On this one 2 and 3 (pointing to second step)?
& Brian: Yeah and so we thought the 20th one would have 20 on one side and 21 on

the other.
& T/R: 20 on side and 21 on the other. Who saw that pattern? Ok so what does the

10th one look like?
& Evan: It’s got 10 on one side and 11 on the other.
& T/R: 10 on one side and 11 on the other. Everyone's got that? What about now I am

going to ask you a really tricky question, what about the 50th — what would it
look like?

& Helen: 50 on one side and 51 on the other.
& T/R: very good, what about the 100th?
& Elise: 100 on one side and 101 on the other.
& T/R: Very good! What about the 1,000th?
& Adam: 1,000 on one side and 1,001 on the other.

While most students in the classroom context appeared successful in completing this
task; on the post-test over half the sample reverted to a single variation description of the
pattern, indicating just how prevalent this thinking is.

The fourth phase involved extending this thinking to the language of generality with the
Teacher Research presenting a card with “nth” on it and asking:

& T/R: What about the nth one?
& Ben: 1 nth on one side and nth on the other.
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& Ben: No nth and one! They both have nth but this one has one more.
& T/R: How many would there be all together in the 100th step though?
& Karen: 201.
& T/R: How do you know?
& Karen: Easy, cause there is 100 and 100 on each side is 200 plus 1 is 201.
& T/R: Very good. Yes that’s another way of thinking about it. Anyone else think

about it like that?
& T/R: Another way.
& John: Each step on each side plus one more on the outside.

Many students found it difficult to distinguish between ordinal language and cardinal
language when describing the pattern for the nth position. Continual questions and discourse
focusing on differing interpretations assisted them to refine their verbal descriptions,
continually making them more in tune with the object they were endeavouring to describe.

In fact, all students when proffering their generalizations for this pattern on the
worksheet avoided the use of n altogether. Some typical responses for this pattern are
presented in Fig. 3.

Response (c) includes the student’s written description together with an accompanying
iconic sign to represent the generalization.

Using colour to represent different growing components of a pattern The use of two
different coloured tiles assisted students to consider two growing components of the pattern
and relate each to the position number (see Fig. 1, patterns c–e). In a discussion about 1(c)
Alex commented;

& Alex: Well both sides (pointing to each of the white tiles that formed the two arms
of the t shape), if you add both sides together and take off one that is the amount in
the middle (pointing to the black tiles that formed the stem of the t shape).

& Alex: Each side is equal to where it is.
& T/R: the 40th step.
& Alex: Oh 1 side would be 40 and the other side would be 40 so you add it together

(gesturing to the two arms of the t made from the white tiles) and take one off
which would be 79 that’s the middle (gesturing to the stem of the t made from the
black tiles).

The colour assisted Alex to identify the two components of the iconic sign that represented
the pattern. This process was seen as crucial in assisting him to generate a verbal description
(a symbolic sign) that represented the object. Children who did not make this distinction
experienced difficulty in reaching a description. Alex also physically separated the tiling
pattern into its two iconic components as he proffered his descriptions. The gesturing was
seen as crucial to assisting others to understand his thinking. It is conjectured that his

(a) (b) 

(c) 

Fig. 3 Reponses to write my rule for pattern c
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description which included the gesturing incorporated an iconic, an indexical and a symbolic
dimension. It was in this interplay among these dimensions that the generalization not only
began to become an object in its own right, but also allowed other students to gain insight into
how he objectified the pattern. It could be conjectured that the use of colour began to assist
Alex reach a process pattern generalization (Harel 2001).

Some other examples where colour appeared to assist students to identify the
generalization are presented in Fig. 4.

Using visual patterns that were not in sequence In the second lesson students were
encouraged to explore visual growth patterns that were not in sequence (see Fig. 1, patterns
d and e). It was conjectured that these patterns focused specific attention on the
interpretation of and relationship between the two signs for the components of the pattern
(the tiles as an iconic sign and the position number as an indexical sign) as students were
initially asked to construct the missing steps and then encouraged to engage in
conversations about how the position number was related to the pattern.

3.2 Hindering processes

Language used to describe the generalization Most students experienced difficulty in
precisely describing a visual pattern. For example, when they created a 20 by 3 array, most
described this as 60. With probing, some indicated it was 3 across, 3 rows of 20 and
eventually 3 columns of 20.

Writing the generalisation as compared with saying it orally The classroom discussions
indicated that these students found it much easier to verbalise the generalsation than to
provide a formal written response. When asked to share their written responses for the
pattern delineated in question 1(c), one child shared ‘it increases by 2 every time’ another
‘always the same number on each side with one more’ and two more said ‘Each step has
step number on each side with one more’ and ‘Just put them in groups of 2 one on each
other and add one on the top’. The range of responses indicated that even though many
could articulate the generalisation, when it came to writing many experienced difficulties,
with the tendency to give responses that focused on the single variation of the pattern.
Arzarello (1998) claimed that while some students use the same words as their teachers and
peers they may give them different meanings for representing the situation, indicating that

Fig. 4 Responses illustrating the use of colour to write generalizations for pattern d
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for them the relationship between the signs and their mathematical meaning may be
confused. This confusion is exemplified in their written responses (see response a in Fig. 3).

Completing patterns—single variation Their propensity to think of growing patterns as
adding on the growing part to the preceding step impacted on their ability to create missing
steps within the pattern and to create the step number when given the total number of tiles.
For example, we presented visual patterns giving only 1st, 2nd and 5th steps. The students
were asked to complete the missing steps. The most common strategy was to compare the
1st and 2nd step and continue adding on tiles to reach the 5th step. This single variation
thinking (additive strategy) was best exhibited in the following example where they were
given the 1st and 3rd step ( and ). Nearly all of the students gave as the
2nd step. When challenged they simply recreated the 3rd step to fit their pattern. They not
only ignored the signs for the position number but also continued the pattern by focusing on
just the one component of the sign for the pattern itself, the 1st step. This suggests that
perhaps there is a hierarchy in sign recognition, with the iconic sign being the easiest with
which to engage and to interpret hence the propensity to return to describing visual growth
patterns in terms of how the tiles change from position to position.

Reversing the thinking We also presented the total number of tiles and asked which step this
represented. Most students found this very difficult. This appeared to occur for two reasons.
First, it relied on linking the position to the step number, with which many struggled, and
second in some instances it required a sound understanding of number patterns.

Expressing the generalisation in language Many students could not express the pattern in
general language, and when using the language confusion occurred between the ordinal
language and number of tiles.

& T/R: What if I had the nth position? What would the pattern look like?
& Jill: nth on the top and nth on the bottom.
& T/R Describe the pattern in terms of the number of tiles.
& Scott: n tiles on the top and n tiles on the bottom.

This again illustrates the many difficulties students experienced in distinguishing the
ordinal aspect of the pattern and the cardinal aspect of the pattern. On the more positive
note, there were at least five students in each class that could not only describe the
generalities in correct mathematical language but also write these generalities using abstract
notation systems (e.g., for the nth step there are n blue tiles and n+1 yellow tiles).

4 Discussion and conclusion

As indicated by the results of the pre-test nearly half of the students could not complete the
next step in simple growing patterns nor create their own growing pattern. This could be for
two reasons. First, they had had limited experiences with visual growth patterns in the early
years, or second, visual growth patterns are not as easy as they first appear. An examination
of curriculum documents and commonly used classroom texts would suggest that the
predominant focus in the early years is on repeating patterns. These students certainly did
not experience the same difficulties with repeating patterns (due to space restrictions these
data cannot be reported in this paper). By the completion of the teaching phase there had
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been some improvement in their ability to complete and create growing patterns, indicating
that perhaps the difficulties did indeed stem from a lack of experience in this area. As
indicated by past research, many young adolescents experience difficulties with the
transition to patterns as functions. The inability to visualise spatially or complete patterns
(Warren 2000) is a key impediment to this aspect. The impact that earlier classroom
experiences have on this thinking requires further investigation. This research suggests that
such experiences purposely built into elementary classroom experiences may indeed
commence to address this impediment.

The results confirm the conjecture of Blanton and Kaput (2004) that young students are
capable of thinking functionally. The results also suggest that there are a variety of teaching
actions that support this thinking, namely, using concrete materials to create patterns,
specific questioning to make explicit the relationship between the pattern and its position,
and specific questioning that assists students to reach generalization in relation to unknown
positions. Young students are not only capable of thinking about the relationship between
two data sets but also of expressing this relationship in a very abstract form. Classroom
discourse that explicitly focused on the functions of each sign system also appeared to
assist, especially a focus on the position cards, as indexical signs pointing to the pattern’s
position. The results also indicate the power of semiotic activity in raising not only critical
awareness of the interplay between icons and indices but also in directing the interpretations
of the signs to assist in formulating explanatory hypotheses about the object itself. As
suggested by Otte (2006) not only is the function of signs dependent on the interpretation
by the interpreter but specific questions and actions can assist young students to reinterpret
them in ways that lead to ‘knowing’. Viewing the tiles as icons and position signs as indices
was essential in introducing the notion of co-variational thinking into the mathematical
discourse. The confusion between ordinal and cardinal language when endeavouring
verbally to use n in their descriptions about the pattern could be due to interpreting the
position sign in its iconic form rather than indexical.

While young students are capable of thinking functionally, it appears from this research,
single variational thinking is perhaps cognitively easier or so entrenched in early
experiences that a propensity to revert to this thinking is understandable. It was conjectured
that not recording the data in a table would reduce the probability of this occurring.
However, instead of looking for patterns in sequences of numbers, they appeared to look for
patterns in the sequence of tiles, that is, instead of saying we keep adding on 2 for the
sequence of numbers in the table, they said “we add on two tiles as we proceed along the
steps”. This thinking was so entrenched that some students were even willing to change
the examples given to make them fit their sequential thinking pattern.

The interaction between the oral description of patterns and putting this description in
written form also requires further investigation. While both are viewed as symbols from a
semiotic perspective, it appears that some symbol systems are easier for young students to
engage with than others. Many students exhibited an ability to express the generalisations
orally, but many of these oral descriptions lacked precision. So while their oral responses
appeared ‘correct’, one wonders how much ‘filling in’ the listener applies when hearing the
responses to questions asked. A review of the video-tapes indicated that this was indeed the
case, suggesting that the precision needed for correct written responses can be missing from
classroom conversations. In this instance, gestures and manipulation of materials add to the
conversations, elements missing from written responses. These students also appeared to
lack some of the mathematical vocabulary needed to provide precise responses, words such
as “row” and “column” and describing an array as 2 rows by 4 columns. Thus on many
occasions they could model the functional relationship with concrete materials and could
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attempt to describe this relationship using imprecise language embellished with gestures.
However, they often reverted to ‘lower level’ responses when asked to write their
generalization in a written form (e.g., “add on 2” instead of “the number of tiles is double
the step number”). This result could begin to explain the large variations in responses on
question 3(ii) on the post test, a problem that nearly all could complete and describe orally
within the context of the classroom discourse. The role of mathematical language and
mathematical understanding in the elementary classroom needs further investigation.

This research commences not only to identify teacher actions that support examining
growing patterns as functional relationships between the pattern and its position, but also to
delineate thinking that impacts on this process. Many of the difficulties these students
experienced mirror the difficulties found in past research with young adolescents. This
result suggests that perhaps these difficulties are not so much developmental as experiential,
as these early classroom experiences began to bridge many of these gaps.
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