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ABSTRACT. This paper summarizes our analysis of the complexity of ratio problems

at Grades 6 and 7, and reports a two-year experiment related to the teaching and learning

of rational numbers and proportionality in these grades. Two classes were followed and

observed. Part of the teaching material was common to both classes, mainly the objectives

and the corpus of ratio problems in a physical context. But in one class, here called “Partial-

experiment”, the learning environment was exclusively a paper-pencil one and the teacher

followed his usual method in designing and conducting teaching sequences. In the other

class, here called “Full-experiment”, the teaching was based on a framework, emerging from

our analysis of complexity of ratio problems, involving precise guidelines and a specific

computer environment. Using a pre-test and a post-test, we observed clear progress in both

classes compared to a sample of “standard” pupils. Our comparative pupil-oriented study

indicates more complete improvement in the “full-experiment” class, i.e., a better acquisition

of fractions and their use for solving usual proportionality problems. The average pupil’s

progress is greater in the “full experiment”, with the pupils who were initially high- or

low-level attainers benefiting the most from the “full-experiment”.

KEY WORDS: learning/teaching in secondary school, magnitude, quantity, ratio, propor-

tionality, rational number, fraction, number line, double scale

1. ANTECEDENTS

It is well known that teaching and learning fractions, ratio, and proportional-
ity in the middle grades are very complex processes. Given their importance
in mathematics, it is essential to study these concepts as carefully as possi-
ble. There is an enormous amount of research and resources related to the
domain. Mathematics curricula in many countries have taken account of
the related research. The French curriculum for grades 6 and 7 includes all
sorts of problems involving ratios. However, their objectives lead teachers
to believe that proportionality should be acquired by the end of grade 7,
activities for grades 8 and 9 being only applications and extensions, such
as the linear function.

Full achievement in this field at the end of grade 7 seems ambitious:
As early as 1976, the CSMS assessment of 15-year-old pupils showed less
than 42% success rate in solving simple problems of enlargement. Hart
(1984, p. 5) noted a percentage of additive errors between 25% and 40%,
depending on the presented figures and the involved data. In 1981, Hart
and the CSMS Mathematics Team, after the chapters of their testing and
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evaluation programme related to fractions, ratio, and proportion (pp. 66–
81; pp. 88–101) concluded that: “all children [from 11–16] make some
progress but it is very slow” (1981, p. 217). It is therefore not surprising
that the French results at PISA 2003 show an important failure in the 15-
year-old population in solving common proportionality problems.

With “modern mathematics”, the question arose: Is it better to learn
numbers and operations before applying them to magnitudes, or to study
magnitudes first in order to construct numerical concepts? Nowadays math-
ematics education gives magnitudes a central place in learning, particularly
in the domain of ratio. But during the 70’s, magnitudes were dropped from
many curricula, with regrettable consequences (Rouche, 1997, pp. 41–43;
Brousseau, 1986, pp. 75–95).

The question remains how precisely to deal with magnitudes, and, be-
yond them, with the physical (in the sense of “stemming from the real
world”) aspects involved in ratio problems. Many classifications are based
on Kieren’s five sub-constructs (1980, pp. 134–136): Part-whole relation,
Quotient, Measures, Ratio, and Operator. Therefore, physical as well as
mathematical aspects are present in these classifications. See for instance
the classification reported by Alatorre and Figueras (2005, p. 1): “One of
the issues is the context; a possible classification according to it is in rate
(extensive quantities), part-part-whole, and geometrical problems; in turn,
part-part-whole problems can be mixture [. . .] or probability problems.”
Here “context” refers either to a physical sub-construct as “Part-whole”,
or to a physical experience as “Mixture”, or to a mathematical domain as
geometry. Thus, the notion of context includes, but does not differentiate
explicitly physical and mathematical aspects.

Vergnaud (1983, pp. 128–140) carefully identified three different types
of problems according to their mathematical structure: “isomorphism of
measures, product of measures, and multiple proportion”. For solving the
former, he mainly distinguished two correct procedures, also from a math-
ematical standpoint: Scalar procedure, and Function procedure.1 On the
other hand, he emphasizes that: “Most procedures used by students. . . had
a physical meaning” (1983, p. 142) or that “these procedures cannot be
explained by pure numerical properties. Numbers are magnitudes.” (1983,
p. 146).

All authors, particularly those quoted above, generally agree that the
“build-up” strategy (e.g. 300g sugar for 4 people, 600g sugar for 8 people,
another 2 people is half of 4 people, so that we need 750g sugar for 10
people), very often used by pupils, “is a relatively weak indicator of pro-
portional reasoning” (Lesh et al., 1988, pp. 104–105). Piaget et al. (1968)
referred to this stage as “pre-proportionality”, and describe “the true under-
standing of proportion as a formal operation task” (Hart and CSM team,
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1981, p. 90). So that “students should be encouraged to move from build-
ing up, [..] to more sophisticated forms of proportional reasoning based on
between- and within-relationships (Karplus et al., 1983) as they progress
through middle school and prepare for algebra courses” (Clark, 2005, p. 2).
What could be the step from interwoven physical and mathematical con-
siderations, present in the build-up strategy, to relevant formal thinking?

Along with the physical and mathematical, there is a third component.
This would be the way of representing rational numbers. For instance, ex-
pressing and processing ratios may lead to using either fractions or decimal
numbers. Lesh et al. (1988, pp. 95–96) specify seven types of proportion-
related problems. The seventh type is presented as follows: “A ratio [..]
is given in one representation system, and the goal is to portray the same
relationship using another representation system.”

Authors like Duval go so far as to put representation at the core of
conceptualisation (1995, p. 61). He describes the mathematical activity
in terms of processing within and between semiotic systems or “settings”
(Bloch, 2003), which he terms “semiotic registers”. Duval (2000, pp. 61–
63) writes: “we do not have any perceptive or instrumental access to math-
ematical objects. . . as for any other object or phenomenon of the external
world. . .”, “. . .the only way of gaining access to them is using signs, words,
or symbols. . .”. It does not mean that we can do without real-world exper-
iments for teaching mathematics. It only means that, at a certain point of
learning, pure mathematical objects must be considered and processed,
if only because they can be dissociated from a particular context (e.g.,
sharing) and applied in many contexts (e.g., mixture, enlargement. . .).

2. OUR ANALYSIS OF THE COMPLEXITY OF RATIO PROBLEMS IN THE

MIDDLE GRADES

For us, a wide variety of physical-empirical situations and representations
of mathematical objects are needed to learn ratio and proportionality.2 We
think it is important to give a specific place to each, and thus to figure them
separately. And then, the question of articulations arises. Consequently, we
obtain the configuration illustrated by Schema 1.

The upper part of this schema deals with physical situations. Only two
examples are given, but others are presented further. The lower part of
Schema 1 deals, in the mathematical domain, with diverse representations
of rational numbers and processing. As Duval (2000, pp. 58–59), we dis-
tinguish mathematical objects from their representations. For this reason,
there are two different frames for numerical expressions: fractional writing
and decimal writing. A fractional writing or a fraction a

b (a and b being
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integers, b �= 0), is one representation of a rational number. A decimal
writing, finite or infinite and periodic, could be another representation of
the same rational number.

Schema 1. Physical and semiotic diversities around a rational number.

We distinguish two kinds of articulation: articulation within a frame,
and articulation between frames. Double bold arrows represent the
latter.

Within the frames of physical-empirical situations, there is no room for
showing an example of processing. A processing for the mixture situation
could be: 3 parts concentrate and 2 parts water have the same flavour as
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6 parts concentrate and 4 parts water. Level-1 articulation is related to
work on physical quantities of different types. It mainly consists in the
determination of common and distinctive characteristics.

Between the physical and the mathematical domains, Level-2 articu-
lation can be connected with “the type of multiplicative relations which
exist between the problem quantities” (Harel et al., 1991, p. 127). These
relations can be expressed by using relevant representations of rational
numbers.

Within the frames of the mathematical domain, an equality corresponds
to a “treatment” in Duval’s sense (2000, pp 63–64), e.g. 3

5
= 6

10
, or 0.6 =

0.60. More generally, the transformation of an object within a given register
is a treatment, as shown by the dotted arrow in the frame of the linear
scale. The bold double arrows, in the lower part of Schema 1, are Level-
3 articulations and represent “conversions” in Duval’s sense (ibid). They
transform the representation of a mathematical object into a representation
of the same object in another register, e.g., 3

5
= 0.6.

This schema emerges from our analysis of complexity, reported in a
previous paper (Adjiage, 2005), which we summarize in four points below.

1. We, as others, draw all possible conclusions from Vergnaud’s work
(1983–1988): “Vergnaud coined the term “Multiplicative Conceptual
Field” (MCF) to refer to a web of multiplicatively related concepts,
such as multiplication, division, fractions, ratio and proportions, lin-
earity, and multilinearity” (Post et al., 1998). Thus, we consider rational
numbers, ratios, proportionality to be strongly articulated notions to be
integrated in a unique teaching schema.

2. But, in order to articulate them later, we must first separate the physical
or empirical component from the pure mathematical component.

3. We use Duval’s theory (1995, pp. 75–81; 2000, p. 61–64) to describe
the mathematical domain. According to this theory (1995, pp. 75–81),
the teaching would take into account different “semiotic registers”, each
of them revealing specific aspects of the same object. We have retained
three rational registers: linear scale (a number line with resources such
as subdividing, sliding along the line, zooming. . . – see e.g., 3.3.2.2),
fractional writing, and decimal writing.

4. The articulations within and between the physical and the mathematical
components are the privileged means for conceptualising the involved
objects.

Having pointed out the physical component, it is necessary to describe it
precisely. Three parameters: the number of magnitudes involved, the num-
ber of underlying objects, and the states in which the objects are examined
(Adjiage, 2005, pp. 100–102), produce the following six physical-empirical
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ratio situations: “ratio of two heterogeneous quantities” (e.g., speed, flow,
production. . .); “measurement”; “mixture”; “frequency”; “enlargement”
(or “dilation”); “change of unit”.3 Hereafter, what we call “context” or
“variable of context” will refer to these situations. In agreement with Tour-
niaire and Pulos (1985, p. 190), a survey conducted by Adjiage (2005)
concluded the pertinence of this variable.

These situations could remind the reader of some of the five sub-
constructs of Kieren (1980, pp. 134–136). Actually, our categories: “ratio
of two heterogeneous quantities”, “measurement”, and “enlargement”
can refer to those of Kieren: “Ratio”, “Measure”, and “Operator”, while
others like “Mixture” or “Frequency” can refer to a “Part-whole relation”
(3 baskets made for 5 attempts) or a “Ratio” (3 baskets made for 2 failed),
or even an “Operator” (The success ratio of a basketball player is 3

5
.

How many baskets will he probably make with 25 attempts?). The main
difference between the two approaches is that we refer to six physical
experiences whereas Kieren refers to “five ideas of fractional numbers. . .
as a basis for a rational number construct” (1980, p. 134), disregarding
whether those “ideas” are related to the mathematical or to the physical
domain.

The linear scale register is central in the mathematical domain. We
established (Adjiage and Pluvinage, 2000, pp. 52–61 and pp. 78–81) that
it allows to:

• Consider a rational number, from the outset, as one number together with
the first numbers encountered, i.e., whole numbers,4

• Highlight the link between the two needed integers that express a rational
number in any system rather than these two integers separately;4 this link
is represented by the position, invariable in a scale change, of a point
related to a coordinate system,

• Operate the three levels of separations/articulations presented in
Schema 1.

Considering the mathematical domain separately from the physical,
we would like to point out that we stand out from previous research. For
instance Lesh et al. (1988, p. 112) state that: “Fractions are special kinds
of extensive quantities; they tell the size of a single object, for example, 3/4
pizza”. For us, 3

4
is one of the thinkable expressions of a rational number,

useful for interpreting a real-world problem, for instance sharing equally 3
pizzas among 4 guests. The pizza problem may be converted into a measure
problem after a processing in the physical domain e.g.: cut each pizza into
4 pieces, put three of them together. Taking the whole pizza as a unit, one
can easily recognise in 3

4
a relevant numerical expression to give the final

response: 3/4 pizza.
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We think that pupils would be well-advised to identify the physical
context, its objects, and the specific means of investigating it, separately
from the underlying pure mathematical model. This separation might allow
them to better articulate the physical characteristics of the problem, and
the pertinent mathematical objects and procedures required to solve it. This
leads us to the point 4.

Duval (1995, pp. 36–44; 2000, pp. 63–64) distinguishes “treatment”
and “conversion” because the latter, unlike the former, entails a break in
the means of representing and processing, and thus in thinking. Conversion
between semiotic registers is a cognitive operation essential for accessing
a unique mathematical object beyond its diverse expressions. While Duval
only considers the mathematical component, we consider the physical one
in terms of within- and between-processing.

3. GENERAL FRAME OF THE EXPERIMENT AND METHODOLOGY

In order to test our framework, we designed a teaching experiment in which
no change related to the content and objectives of the current French cur-
riculum for grades 6 and 7 would be introduced, while the activities were
specified by an explicit determination of goals, situations, and learning
environment, either paper-pencil or computer sessions. We were interested
in the learning progress, in both the results and the methods, we can expect
from this teaching.

Two classes, often referenced hereafter as “the followed classes”, were
involved in this experiment. The two followed classes belong to a public
secondary school located in a small town, 30 km to the north of Strasbourg.
The results obtained by these pupils at national mathematics achievement
tests allow us to consider this group, at the beginning of the observation
period, as a standard sample of French 6th-graders.

The same experienced mathematics teacher5 conducted the two classes
during the two years of the experiment. He was an active participant in
the experiment, particularly involved in the choice of the activities. For all
other mathematical topics than ratios and rational numbers, he conducted
his classes in the usual way.
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The teaching relied on a common base of objectives and ratio situations,
but it differed from one class to the other in environment and method. In
one class, hereafter termed “partial experiment” (PEx), the experimentation
was led by the teacher in his usual method and environment (blackboard
and paper-pencil). In the second class, hereafter termed “full experiment”
(FEx), a specific method accorded to Schema 1 was designed, and the
environment included computer sessions.

Our main research questions are: Are the common elements introduced
in both classes sufficient to generate clear progress in using rational num-
bers and proportionality? If a gap remains, is it the result of the dissim-
ilarities in the two learning environments? Do the specific choices and
implementation that we made in the full experiment have an observable
qualitative impact?

Our main hypotheses are:

1. Varying the ratio situation contexts according to a systematic classifi-
cation allows pupils to perform relevant proportionality procedures and
thus obtain better results.

2. Working systematically within and between the physical and the math-
ematical domains involved in ratio problems, according to Schema 1,
helps pupils to better process rational numbers, identify common un-
derlying features in ratio problems, build up a model of proportionality,
and perform advanced strategies.

3.1. Common features to PEx and FEx

Four general objectives, in accordance with the French curriculum, were
established before the experiment started. At the end of the experiment, the
pupil is expected to be able to:

1. Express a rational number using one of the three registers: fractional
writing, decimal writing, and linear scale. Convert the expression of a
rational number from one register to another.

2. Resort to appropriate registers to interpret and then solve a ratio problem,
falling or not within proportionality, whatever the context and numerical
data.

3. Compare rational numbers, insert a given rational number between two
others, and locate it between two decimal numbers.

4. Decide if a rational number can be written as an integer, as a decimal
number.

Both classes were supposed to investigate the mathematical and physical
world of ratio through appropriate working sessions. They were submitted
the same corpus of physical-empirical ratio problems, based on the six
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types of situations mentioned in 2. We also resorted to the variables which
“influence the type of proportional strategy likely to be used” (Tourniaire
and Pulos, 1985, p. 190): numerical complexity of the data (Tourniaire and
Pulos, 1985, p. 188); relationships within the data – the involved ratios may
be whole numbers, rational numbers, the latter being smaller than 1 or not
(Noelting, 1980, pp. 227–228); the nature of the question – working out a
fourth proportional, a scale factor, comparing ratios (Harel et al., 1991, pp.
125–126).

3.2. Teaching in PEx

In the partial-experiment class, the teacher proceeded in his usual way,
mainly a constructivist approach. Mathematical concepts are built up in
a “tool-object dialectic”6 (Douady, 1984, pp. 14–17). This means that an
already-studied mathematical being is regarded and used as a tool for solv-
ing a problem. During the solving session, it becomes apparent that this tool
is insufficient for finishing the task. It must then be regarded as an object to
be analysed and improved, and possibly be replaced. Now, this new object
can be mobilised as a new tool, useful to solve a class of problems. . . until
one reaches its limits and starts a new “tool-object” cycle. A moment of in-
stitutionalisation follows, and then, problems for training and applying are
proposed to the pupils. Let us point out, first, when solving a ratio problem,
these pupils worked in an exclusive paper-pencil environment, second, the
physical and the mathematical domains were not systematically separated
and articulated as in the full-experiment class, and third, as usual, fractional
and decimal writing were introduced before the number line.

3.3. Teaching in FEx

In FEx, Schema 1 was implemented. The articulations between and within
the mathematical and the physical domains were systematically investi-
gated through specific sessions. The linear scale was the first register to
be introduced for representing and processing rational numbers and it was
considered as a privileged tool for interpreting and processing ratio prob-
lems. In order to lead the pupils to test the resources of such a register, it was
necessary to provide them with the possibility of investigating it by trial and
error. A computer environment was then desirable, so that the involved op-
erations, e.g., subdividing or erasing would not be too taxing. Therefore, we
designed and developed the software series ORATIO and NewOra (Adjiage
and Heideier, 1998). Note that these series are not only devoted to the linear
scale, but also to the fractional and decimal registers, so that FEx could
investigate mainly the mathematical domain in this computer environment.
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3.3.1. The software series ORATIO and NewOra
ORATIO is designed for introducing rational numbers. It is composed
of twenty computer-programmes in two sets, and a database. The first
set is made up of fourteen programmes, proposing “treatment” tasks. It
allows pupils to investigate the three retained registers separately. When
investigating the second set, made up of six “conversion” programmes,
pupils are invited through specific tasks to connect the three registers with
one another. Thus, they may acquire flexibility by choosing an expression
that fits the interpretation of a ratio problem and possibly change it for
greater convenience during the processing.

NewOra is about quotients and proportionality in the linear scale
register. It is presented after ORATIO, when pupils have been trained to
“treatment” and “conversion” tasks.

3.3.2. The linear scale
As this register is central in our framework, it seems useful to specify some
of its features.

3.3.2.1. The linear scale in ORATIO. In this series, the number line is
equipped with a single regular scale. The coordinate system may be the in-
terval [0, 1] or any unit (or not) interval. The programmes submit two kinds
of task: placing a rational number, and comparing rational numbers. The
coordinate system is initially segmented into n sub-intervals. The number
n is called the fractioner.7 It appears above the lower bound, on a black
background. In this register, a rational number is expressed by an arrow,
pointing to a graduation of a coordinate system (see Examples 1, 2, and
3). The main resources are: re-subdividing, zooming, moving, if the case
requires, beyond the initial screen limits. The only way of modifying the
current subdivision is to change the fractioner, so that the user cannot con-
tent himself with observation: processing with whole numbers is the only
path to success (see Examples 1 and 2).

3.3.2.2. The linear scale in NewOra. In this series, the number line is mostly
equipped with a double regular scale, but under certain circumstances, it
may be a single scale. In addition to those of ORATIO, the main resource
is marking the graduations corresponding to integers.

• In the case of single scale, the user is invited to work out the fractional
expression of a rational number A. The fractioner, here 4, indicates the
initial subdivision of the coordinate system [0, 7].

• In the case of double scale, the user is invited to work out images and
pre-images, the general form (not given to the pupils) being a linear map
y = ax, (x, y, a being rational). In Example 2, values of x are represented
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Example 1. Using the single scale in NewOra.

Example 2. Using the double scale in NewOra.

on the upper scale, values of y on the lower. Given 4 and its image 7,
and thus the images of 8, 12 and so on (initial line), the user is invited to
work out the image of 5 (and, possibly, e.g. the reverse image of e.g. 8).

In our example, the user has re-subdivided each sub-interval of the initial
line into 7 in order to locate first the unity, and then any integer, on the lower
scale. The fractioner has turned to 28 on the final line. Now, it is easier to
locate the image of 5, first between 8 and 9, and then give the following
fractional expressions: 8 + 3

4
= 35

4

3.3.3. Specific sessions in the full experiment
We have now presented the specific environment that makes it possible to
implement our teaching framework in FEx. We can therefore describe five
moments, staggered over a few days, of an instructional sequence in FEx.
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Moment 1. Solving a pure mathematical problem by using ORATIO
software. In Example 3, pupils are invited to experience the pure nu-
merical potential of the linear scale register apart from the fractional
and decimal registers. Note that, once mastered, the latter provide an
interesting, easier, alternative to the linear scale.

Example 3. Comparing A, B, C, according to Gradu4 in ORATIO. The three-segmented

lines are not presented on the same scale. Pupils cannot base their reasoning on measure-

ments, but on relative thought and calculation.

Moment 2. Solving a pure mathematical problem, similar to the previous
ORATIO-NewOra-problem, in a paper-pencil environment.

Moment 3. Solving a physical ratio problem (Example 4), structurally
and numerically similar to that of Moment 2. The means of solving are
the pupil’s choice. Some of them spontaneously recognise, in this new
statement, a different expression of the Moment 2-problem. Others do
not.

Example 4. Solving a mixture problem: We are preparing a chocolate drink, a mixture of

chocolate8 and milk. Recipe A uses 3 parts chocolate for 2 parts milk. Recipe B uses 2 parts

chocolate for 1 part milk. Which mixture will be more chocolaty?

Moment 4. The impulse to convergence: The teacher reiterates, at the
beginning of the lesson, the terms of the scientific debate (Legrand,
2000): “How are Moment 2-and-Moment 3-problems different, how are
they similar”? Thus the pupils are asked to make explicit the connections
between given mathematical representations on one hand, and given
quantities and their relationship on the other hand. Resources of Gradu4
can be helpful to solve the mixture problem, as shown in Example 5.



AN EXPERIMENT IN TEACHING RATIO AND PROPORTION 161

Example 5. One interpretation of the mixture-problem, using the linear scale register.

Moment 5. Institutionalisation in the sense of Douady (1984, p.16).
For instance results such as: “7 divided by 4 is equal to seven fourths
(7 ÷ 4 = 7

4
)”; “Given an enlargement in which a 4cm length becomes

a 7cm length, then any length to be enlarged has to be multiplied by
7
4
.” Note: this enlargement situation was actually submitted to FEx in

another Moment 3-session. The double scale problem shown in Example
2 was the mathematical problem of the related Moment 1-session.

3.4. Pre-test, post-test and control test

In order to assess our experiment, we elaborated three different tests: a pre-
and a post-test, each one composed of 35 items, given to both FEx and
PEx, as well as a shorter control test of 6 items given to 121 representative
7th-graders (not including the two followed classes) and 110 prospective
school-teachers. The latter are not specialists in mathematics, but, as they
are recruited after the first university diploma (three-year study), they can
be regarded as a sample of educated adults and their performance can be
considered as reference results. The control test required the solving of six
items, referring to the six types of proportionality problems that we have
distinguished, and sharing the following common characteristics:

• in each item the data are whole numbers
• processing them requires proportionality

The control test was submitted to the 7th-graders and the prospective
teachers during the school year. To both followed classes, we gave the
pre-test in September 2001 at the beginning of the experiment, and the
post-test in April 2003 about one month after the end of the experiment. A
condensed form of these tests is presented in the Appendix.

4. GENERAL RESULTS

4.1. The control test

We present here only a brief survey of this study, which is related in Adjiage
(2005). The average observed results were:



162 ROBERT ADJIAGE AND FRANÇOIS PLUVINAGE

• Teacher-trainees, success rate: more than 5 out of 6 (success rate: 86%)
• 7th-graders: less than 1 success out of 6 (success rate: 15%).

Concerning the 7th-graders, the precise average success rate was 0.90
out of 6, and the standard deviation was: 1.31. We will use these values in
the comparison of the general results (see Table I).

Furthermore, the findings show an important variation between the pro-
cedures used by the two tested populations. In the pupil population, changes
are frequent from one item to the other, and they are very rare in the teacher-
trainee group.

4.2. The general results of the followed classes taken as a whole

The pre-test and the post-test, given to the followed classes, contain
a subset of six items (framed labels in Appendix) having the same
characteristics as the six items of the control test. Thus, comparisons
between the three tests are possible. Those items are in Pre-test (grade
6): PW21, PW22, DIL3, HET1, MIX1, FREQ1, and in Post-test (grade
7): CV09, PW02, PW04, DIL2, FREQ1, HET1. All items could not be
exactly the same in the pre-test and in the post-test, and consequently not
exactly the same in the control test, so, we will only consider the results
as rough indicators of the attained level.

In this section, we take account of the results of FEx and PEx together.
There were pupil arrivals and departures within the two school years, but
the total remained 47. We have verified that the results of the pupils present
throughout the two years do not differ significantly from those reported
here. These results are in Table I together with those of the control test
given to 7th-graders. For each pupil, the score is the number of items
successfully completed among the six considered.

These results are quite impressive, and the z-test we used for comparing
the results of the control test and the post-test is obviously significant. This
argues in favour of Hypothesis 1 (see Section 3). Nevertheless, we could
not consider that we had completed the study at this point. Although the
followed pupils obtain a better score than the standard pupils, they remain
far from reaching the level of “educated” adults, whose mean is slightly

TABLE I

Comparing general results, followed classes vs. control group

Date Scores out of 6 items Mean Range Standard deviation

2001 Pre-test (47 pupils at grade 6) 0.77 [0, 2] 0.53

2003 Control group (121 pupils at grade 7) 0.90 [0, 6] 1.31

2003 Post-test (47 pupils at grade 7) 2.36 [0, 6] 1.72
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more than 5 out of 6. Even if we use a less severe criterion, similar for
instance to the 75% success rate used in the national French 6th grade-
evaluation (Dupé et al., 1998, p. 6: Méthodologie), we cannot be satisfied:
only 13 pupils out of 47 reach a score superior or equal to 4/6. Let us
examine now the specific outcomes of the full experiment.

5. COMPARATIVE STUDY OF THE RESULTS, FEX VS. PEX

In this section, we consider a study of individual results limited to the pupils
who took both pre-test and post-test, i.e. 20 pupils in the full experiment
class and 15 in the partial experiment. In the analysis, a first step consists in
considering the success scores. In a second step, we consider the procedures
used by the pupils.

5.1. Analysis of success and failure

All items have the same (unit) weight: each success is labelled with the
value 1, and failure with 0. We present here two analyses:

• The statistical comparison of means of the difference in scores obtained
by each pupil in the pre-test and the post-test (FEx: mean 10.85, variance
47.8; PEx: mean 6.6, variance 48.5)

Fisher’s test of equality of variances is not significant; therefore the
comparison of the observed means in FEx and PEx by Student’s law is
relevant. And the value of the observed centred reduced deviation is 1.794,
which has a level of significance α(s) ≈ 0.04 < 5%. So that we are allowed
to conclude that FEx-pupils reached significantly better results than PEx-
pupils.

• The simple regression of Post-test score (y) on Pre-test score (x), sepa-
rately in PEx and FEx. Although there were 35 items in Pre- and Post-
tests, the highest scores reached by the pupils were 22 in Pre-test, and
34 in Post-test (Graph a).

In Graph a, when two individuals have the same coordinates, a number
2 lies near the corresponding point: two pupils in FEx obtained (8, 14), two
pupils in PEx obtained (11, 17), two pupils in FEx obtained (16, 30).

In PEx, the regression equation is: y = 1.389x + 1.986
In FEx it is: y = 2.170x − 1.081
The simple regression of y on x leads in each case to a significant linear

relationship between the two scores. Residuals are independent for each
class, and only one pupil (pre-test score: 9, post-test score: 31) produces a
lack of normality in FEx.



164 ROBERT ADJIAGE AND FRANÇOIS PLUVINAGE

Graph a. Pre-test and post-test scores.

The gap between the coefficients of x in the two equations indicates
more efficient learning in FEx. The FEx points generally lie above the
PEx points. More precisely, if we put aside 4 low points of FEx: (8, 8),
(9, 14), (10, 16), and (11, 14), and 3 high points of PEx: (8, 23), (8, 24),
and (13, 32), the remaining points satisfy the following property: Each
post-test score in FEx is higher than all post-test scores obtained by PEx
pupils whose pre-test score was lower or equal. We suggest the following
interpretations:

• A strong majority of FEx pupils made clear progress, but is it possible
that the experimental environment, particularly its computer component,
did not suit a few FEx pupils?

• In a class with a more standard educational environment such as PEx,
the majority achieves slow, regular progress (Hart, 1981, p. 217), and a
few pupils reach a higher level.

Our experiment did not include separate interviews of the pupils, so that
we cannot state more precisely the preceding interpretations. That would
be of interest in a later experiment.

5.2. Analysis of procedures at Pre-test and Post-test, FEx vs. PEx

First of all, we needed to select a sample of items from each test (Pre-
and Post-). Each item of one sample may be matched to one item of the
other sample. All items require explicit processing and explanation, cover
different values of the diverse variables considered, may be compared to
those of the control test, and open the field of possible procedures. Taking
into account these criteria led us to retain five items in pre-test: DIL3,
MIX1, FREQ1, DIL4, HET3, and five items in post-test: DIL2, MIX1,
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TABLE II

Code for observed procedures

Code Description Examples out of the post-test items

INT Using whole numbers to

express a ratio

MIX1: 18 = 3 × 6; 20 = 2 × 10, then the

proportion of girls is higher in class A.

DIL2: enlarging the hat, 21→30. Now, 21 ÷ 7
= 3 and 3 × 10 = 30. Then the base of the

enlarged hat measures in cm: 14 ÷ 7 × 10
= 20.

DEC Using a decimal to

express a ratio

HET1: 3 ÷ 5 = 0.6; 4 ÷ 7 = 0.571. . . Then,

liquid A is heavier than liquid B.

FRAC Using a fraction to express

a ratio

FREQ1: 2
6

× 10
10

= 20
60

, 3
10

× 6
6

= 18
60

, then

player A is better than player B.

REF Finding a common

reference to compare

FREQ2: player B wins 18 matches out of 60;

player C wins 24 matches out of 60. So,

player C is the best.

XPRO “Cross-multiplying” DIL2: 21 × ? = 14 × 30, therefore the base of

the enlarged hat measures in mm:
14×30

21
= 20.

ADDER Adding the difference DIL2: the height of the hat is enlarged by 9
mm (30–21), so the enlarged base measures

in mm: 14 + 9 = 23.

ABS Comparing only the first

terms of ratios

MIX1: 20 > 18, so, in classroom B, there are

more girls than in A.

QUALIT Qualitative reasoning HET1: There are more litres of liquid B than

liquid A, but also more kg. So, the two

liquids weigh the same.

ALEA Combination of data

without apparent logic

0 No response

ELSE Other wrong responses

FREQ1, FREQ2, HET1 (Appendix). Table II shows a classification of the
observed procedures taken from the test papers.

This classification takes up results from the previous research. First of
all in distinguishing, among the correct procedures, those that explicitly
mobilise ratios (INT, DEC, FRAC) from those that only implicitly refer to
ratios (REF, XPRO). Secondly, in considering two usual wrong strategies:
ADDER (Adding the difference) and ABS (Comparing only the first terms
of ratios). This classification differs from the previous research in declin-
ing the “explicit ratio” strategy into three modalities, which are different
ways of expressing and processing ratios: INT9 (use of whole numbers),
DEC10 (use of decimal numbers), and FRAC (use of fractional expressions).
For us, these modalities are not equivalent as indicators of “sophisticated
forms of proportional reasoning” (Karplus et al., 1983). For instance, when
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comparing the success rates of players A and B in FREQ1 (post-test), a
pupil writes: 2

6
= 20

60
, 3

10
= 18

60
, so 2

6
> 3

10
, thus Player A is better than player

B, he indicates that he manages to go beyond the given numbers 2, 6, 3, 10,
accessing the implicit links (between 2 and 6, 3 and 10) and their invariabil-
ity in a scale change, and then comparing these links. If another pupil uses
2 ÷ 6 = 0.333. . . and 3 ÷ 10 = 0.3 and comes to the same conclusion, he
only indicates that he takes into account the given numbers, uses a relevant
operation (division), performs it properly, and knows how to compare two
decimal numbers. As for INT, we consider it as an advanced form of a
build-up strategy. We do not claim that using fractions is better than using
whole or decimal numbers to solve a ratio problem. We state that the former
appears as a better indicator of an advanced form of proportional reasoning.

The analysis of procedures at Post-test reveals important differences
between FEx and PEx. These differences were not present at Pre-test. The
Pre-test graphs (Graphs 1 and 2) are very similar. Particularly, both classes
largely use wrong procedures (from ADDER to ELSE). A rapid survey
of Post-test graphs (Graphs 3 and 4) shows two major phenomena. First,
a positive global evolution of both classes toward the use of correct pro-
cedures (according to Hypothesis 1), second a strong dissimilarity. This
dissimilarity is that the pupils in FEx are grouped around procedures mo-
bilising fractions (acquisition of a powerful and privileged tool), whereas
the pupils in PEx are dispersed over all the procedures Graphs 1, 2, 3, and
4 (no privileged tool performed).

The study based on the control test (4.1) included an analysis of the
procedures used, which shows the same type of opposition: regrouping of

Graph 1. (Pre-test, FEx) frequency (%) of use of the observed procedures, item by item.



AN EXPERIMENT IN TEACHING RATIO AND PROPORTION 167

Graph 2. (Pre-test, PEx) frequency (%) of use of the observed procedures, item by item.

Graph 3. (Post-test, FEx) frequency (%) of use of the observed procedures, item by item.

the teacher-trainees, dispersion of the 7th-graders. But a clear difference
exists between the “educated population” and FEx: For the former, the
regrouping is around XPRO while it is around FRAC for the latter.

So, on one hand, FEx tends to approach an “educated population”,
whereas PEx remains nearer the general 7th-grader population. Pupils in
FEx tend to use a unique procedure for solving different ratio and propor-
tionality problems. This leads us to state that they are able to recognise a
unique underlying mathematical structure, effacing the diversity of those
problems, particularly the diversity related to the variable of context. On
the other hand, knowledge of algebra can explain the difference between
the “educated population” and FEx. Teacher-trainees master elements of
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Graph 4. (Post-test, PEx) frequency (%) of use of the observed procedures, item by item.

algebra that allow them to use XPRO, but not as a blind procedure. Most of
them do it in a clear-sighted way, as the precise examination of their papers
showed: They first interpret the problem in terms of ratios and proportions.

The dispersion of PEx pupils over all the procedures does not allow us to
state that they have recognised an underlying common mathematical model.
This dispersion may be explained by more sensitivity to the command
variables, particularly the variable of context. In this sense, these pupils
seem to behave in accordance with what Vergnaud (1983, p. 142, 146, 149)
reported about standard 14-year-old pupils: “Children do not think of b,
c, and a as pure numbers. They see them as magnitudes. . .”, so that their
reasoning remains close to the physical-empirical context of the problem
they are processing.

5.2.1. Mastering ratios and proportions?
Up to this point, we have not taken into account the possible errors of
the FEx pupils in the use of FRAC. We have only pointed out that they
massively resorted to this procedure whether right or wrong. In Table III, S
and F are respectively the success and failure rates among the FEx pupils
who used FRAC.

It is obvious that the use of FRAC, which we consider, let us recall, as an
advanced procedure, is strongly linked to success, except in HET1. How can
we interpret this lone shortfall? In examining the papers of the 8 pupils who
failed in HET1 using FRAC, we observe that they all made the same mis-
take: they compared 5

3
and 7

4
instead of 3

5
and 4

7
, following the order of ap-

pearance of the involved numbers (5, 3, 7, 4) in the problem statement. Note
that all of them succeeded in this non-pertinent comparison. They know
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TABLE III

Success and failure among the FEx pupils who used FRAC

DIL2 MIX1 FREQ1 FREQ2 HET1

S F S F S F S F S F

10 2 7 0 15 0 13 1 3 8

Together 12 7 15 14 11

that ratios expressed by fractions are pertinent to interpret this problem,
they know how to compare fractions, and these are important steps on the
path to success. We must however admit that we have only partly succeeded
in separating and articulating the physical and the mathematical domains,
while our goals for processing rational numbers (Hypothesis 1) seem to be
better reached. The bad result in HET1 proves that FEx pupils still lacked
elements of modelling. Learning algebra the following year should help
them to better apprehend the links between magnitudes and computation,
and thus, lead them to correct this kind of misunderstanding. But, using for
instance XPRO as a blind algebraic procedure, without solid references to
ratios and fractions, could be an illusion as Comin (2000, p. 180) reported.
Up to this point, our hypothesis concerning the FEx pupils is: learning alge-
bra should complete their mastery of FRAC, in its calculating and modelling
facets, and they should quickly attain the level of an educated population.

6. CONCLUSION

Let us point out what our work may bring to our subject. First of all, it
provides a “compact” analysis of the complexity of ratio problems, relying
on others’ research (considering: both rational numbers and proportional-
ity as a whole, variables involved in proportional reasoning, analyses of
pupils’ works), and differing from it in a few points (separate and articu-
late the mathematical and the physical domains, between and within them,
consider the specificity of diverse expressions of rational numbers, and the
difficulty of moving from one expression to the other). Second, it furnishes
teachers at grades 6 and 7 with: a corpus of six types of ratio situations,
necessary and sufficient at this scholastic level; a corpus of three registers
for expressing and processing rational numbers; a tool for working within
the articulations between and within the mathematical and the physical-
empirical environment, i.e. the linear (single or a double) scale; a software
series for facilitating the systematic study of the three registers, particularly
the linear scale. Third, it furnishes an experimental test of our framework,
which we summarize below.
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The two classes involved in the reported experiment make progress and
tend to perform relevant procedures (see 5.2). Are the common elements
introduced in both classes sufficient to explain this clear progress, as asked
in our first question research and stated in Hypothesis 1? The comparison
with a representative sample of 7th-graders shows results strongly in favour
of the followed classes (see Table I). This leads us to admit that these
elements had a positive impact on the results, even if other elements (as
particular attention paid to the learners during any experiment) may be of
some influence as well.

According to the results of Section 5.1, the learning in FEx appears to
be more efficient than in PEx. The comparative analysis of the procedures
used furnishes some indicators of a better achievement in FEx than in PEx.
FEx-pupils give most obvious signs of recognising proportionality as a
mathematical structure underlying the different ratio problems in context.
They perform advanced scaling strategies around the FRAC procedure.
These two facts argue in favour of Hypothesis 2: systematically working
the separations and the articulations between and within the physical and
the mathematical domains involved in ratios helps pupils to discern invari-
ants and access the proportionality model. The systematic work within the
different rational registers helps them to secure their fractional processing
and thus leads them to resort to it more willingly. In return, processing
fractions is well accorded to the valid treatments in proportionality, so that
pupils that master fractions should better master proportionality. Briefly
said:

• FEx approaches an “educated” adult population, both concerning the
success rates and the procedures, more than PEx does. To use an image,
we will say that during the observed period the average pupil in both
classes learned how to swim in the “ocean of ratios”, but the swimming
styles are more efficient and similar in the full experimental class.

• FEx pupils, in spite of substantial acquisitions, have not yet finished
learning. Another step, which could be learning algebra, seems necessary
to reach the level of a reference “educated” adult population.

Some questions are still open after this experiment. Have we reached
an optimum? Some pupils in the full experiment remained at a low level.
But they departed from a point located rather far from what is expected at
the beginning of secondary school (see: Pluvinage and Mallier, 1998, the
proportion of pupils in this age group, whose literacy remains uncertain).
Is it only a matter of time or will they, on the contrary, not get beyond
“numeracy” and reach a situation which we could call “ratio illiteracy”?
The next important step in the curriculum is algebra. It is known that
learning algebra increases the ability to use fractions. But that is under the
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constraint of a sufficient initial level of acquisition. Will the knowledge of
the linear scale help the pupils in this new learning process? We believe it
to be the case, but our observations here do not yet allow us to affirm it.

APPENDIX: CONDENSED PRESENTATION OF PRE-TEST AND POST-TEST
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NOTES

1 If (Fi, Gi) is a sequence of ordered pairs of two proportional variable quantities Fi and

Gi, so that Gi = f(Fi), where f is a linear function, a procedure using a ratio as Fi
Fj

or Gi
G j

, without unity of measure, is termed “scalar procedure” or “between strategy”

(Noelting, 1980, p. 234). A procedure using the constant ratio Gi
Fi

or Fi
Gi

is termed

“function procedure” or “within strategy” (ibid).

2 We term ratio a multiplicative relationship between two physical quantities (e.g. 3

parts of concentrate, 2 parts of water), or two mathematical quantities possibly being

numbers. Thus, a ratio can be associated with a number, possibly rational (e.g. 3
2
or 3

5
in

the case of the mixture above). We term proportionality a linear relationship between

two variable quantities.

3 All these situations have been taken into account in other studies, for instance Harel

et al. (1991, pp. 125–126) or Alatorre and Figueras (2005, p. 1), but we have never

found the six of them in the same paper.

4 A classical introduction to rational numbers by fractions, often reinforced by a teaching

that gives greater place to “pie parts”, leads pupils to consider that a fraction does not

represent one but two numbers (Hart and Sinkinson, 1989; Streefland, 1993, p. 114;

Adjiage, 1999, p. 204).

5 Michel Barthelet, who participated for many years in IREM (Institut de Recherche sur

l’Enseignement des Mathématiques) activities, besides his teaching charge.

6 In French: “La dialectique outil/objet”.

7 In French: “Le fractionneur”.

8 Kathleen Hart, who helped us to revise our paper (thanks a lot, Kath!), criticized this

choice of situation, because there is something implicit in the question: All glasses of

chocolate should have the same taste. Similar doubt does not arise for instance in the

case of mixtures of fruit syrup and pure water. Actually none of the involved pupils

asked for some explanation in the presented case, nevertheless this fact underlines how

important the precise descriptions of the physical environment are.

9 Pupils who used a whole number to express a ratio were “marked” INT (e.g. 3 in MIX1

for 18/6). But pupils who used two whole numbers as consecutive operators, instead of

one fractional operator (e.g. (÷7) ◦ (×10) instead of 10
7

in DIL2, to move from 21 to

30), were also “marked” INT.

10 Pupils of both classes, who used a decimal number in any item of the final questionnaire,

also used in the same item the sign ÷, clearly distinguished, in the official French

curriculum for grade 6 (6e), from the fraction bar.
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