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ABSTRACT. We report a study of repairs in communication between workers and vis-

iting outsiders (students, researchers or teachers). We show how cultural models such as

metaphors and mathematical models facilitated explanations and repair work in inquiry and

pedagogical dialogues. We extend previous theorisations of metaphor by Black; Lakoff and

Johnson; Lakoff & Nunes; and Schon, to formulate a perspective on mathematical models

and modelling and show how dialogues can manifest (i) application of ‘dead’ models to

new contexts, and (ii) generative modelling. In particular, we draw in some depth on one

case study of the use of a double number line model of the ‘gas day’ and its mediation

of communication within two dialogues, characterised by inquiry and pedagogical dis-

course genres respectively. In addition to spatial and gestural affordances due to its blend of

grounding metaphors, the model translates between workplace objects on the one side and

spreadsheet-mathematical symbols on the other. The model is found to afford generative

constructions that mediate the emergence of new understandings in the dialogues. Finally

we discuss the significance of this metaphorical perspective on modelling for mathematics

education.
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1. INTRODUCTION AND BACKGROUND

Previous studies have shown how workplace systems structure practices
in ways that can make them difficult for outsiders to access, thereby caus-
ing communication ‘breakdowns’ (Pozzi et al., 1998; Wake and Williams,
2001; Williams et al., 2001). In our previous paper (Williams and Wake, this
issue) we showed how the mathematics of workplaces can become ‘black-
boxed’ in instruments and artefacts and in a division of labour which is held
in place by rules (in turn often regulated by aretefacts and instruments).
Our original study1 (Wake and Williams, 2001) involved a dozen workplace
field studies in which we explored with workers, college students and their
teachers aspects of a worker’s daily activity that include elements of math-
ematics. In this paper we will show how communication repairs can some-
times be constructed so that outsiders can make sense of the ‘black-box’
and come to understand the mathematics inside. We highlight the role of
particular cultural tools in these repairs, i.e. models and metaphors, and de-
velop an argument for conceptualising mathematical models as metaphors
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– we argue that this perspective on modelling can clarify and broaden its
significance for mathematics education. Thus we ask:

‘How can models and metaphors mediate communication between students, work-
ers and teacher-researchers?’

Of course we are interested in consequences for pedagogy and curricula
in mathematics education, especially for the motivation of learning and
for the better teaching of uses of mathematics. Mathematics education has
long had a significant interest in models and modelling. The whole cor-
pus of work of Freudenthal and the Freudenthal Institute has shown how
models and modelling problems drawn from the culture can be significant
in the service of abstracting mathematics and building new mathematics,
through ‘horizontal’ and ‘vertical’ mathematisation (Freudenthal, 1983;
Gravemeijer et al., 1999; Streefland, 1991; Treffers, 1987). Well-known
work by Cobb and colleagues has benefited from this approach, and the
design of pedagogical models and problems that can serve as tools in class-
room practice is now well documented (Cobb et al., 2000). However, in
addition to the Freudenthal approach with a focus on the elementary and
main school curriculum, there has been a persuasive development in math-
ematics education recognising modelling as a vital applied mathematical,
problem-solving skill (Blum, 1991; Niss, 1996). This trend developed an
approach to mathematics education, pedagogy and assessment, through
the International Conference of Teachers of Mathematical Modelling and
Applications (ICTMA), initially focused on Higher Mathematics and High
School, but later extended though all the school phases. For example, see
ICTMA proceedings over two decades: most recently the 11th Confer-
ence (Lamon et al., 2003). Indeed these two trends have had some cross-
fertilising influences.

More recently, the mathematics education community has begun to take
the concept of metaphor seriously (English, 1997; Nunez, 2000; Pimm,
1987; Sfard, 1994). This follows an extensive development in cognitive
linguistics, which situates cognition in language use in general and tropes
in particular (Lakoff, 1987; Lakoff and Johnson, 1980, 1999). Taking
their standpoint in embodied cognition and drawing on previous work
in cognitive linguistics, Lakoff and Nunez (2000) have shown how one
can build up mathematics from metaphorical extensions and conceptual
blending of the four ‘grounding metaphors’ underpinning and embody-
ing arithmetic. Their ‘building up’ of mathematics involves metaphorical
constructions and representations at each stage. In the case of the num-
ber line model for instance, one observes how metaphorical talk about
number is spatial, as in ‘between 24 and 25’, or ‘as near to zero as you
like’.
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Their approach has been criticised from mathematical and psychological
points of view, and especially for suggesting that there is just the one, per-
haps overly simplistic ‘cognitive linguistic’ and in particular ‘conceptual-
metaphoric’ route to mathematical constructions (Goldin, 2001; Schiralli
and Sinclair, 2003). We take Wartofsky’s (1979) view that mathematics,
models, analogies and metaphors all lie on a spectrum of representa-
tions: i.e. they all involve the presentation of one thing as if it were, or
in terms of, something else. Linguistic representations provide an impor-
tant route into mathematics, as do images and graphical-spatial representa-
tions: language and metaphor are perhaps particularly salient for declarative
knowledge and concepts. We conclude that metaphors and models cer-
tainly have and always have had significance to mathematics teachers and
teaching.

In this paper our analysis of naturalistic discourse between workers and
outsiders is situated in part in this theoretical framework. By way of a
concrete example, we will be considering the work of an engineer, Dan,
who works in a large industrial chemical plant. One of his tasks involves
the use of a spreadsheet formula which we present here in its entirety and
with which we fully expect to mystify the reader as were we ourselves (at
first sight anyway):

{{{{{“2nd INTEGRATING READING”-“0600 INTEGRATING READING”}
+{{{“2nd INTEGRATING READING”} – {“1st INTEGRATING
READING”}}/T2}∗TIME4}}/100000}/3.6∗CALCV∗1000000/29.3071}

Each day workers routinely collect meter readings at certain times; they
fill in boxes on a recording sheet with these readings. Dan takes the values
from the sheet and inserts them into his formula. Thus, for instance, “0600
INTEGRATING READING” is a value taken from the recording sheet,
which the operatives originally read from a meter.

The result of this spreadsheet calculation is a value that is used to or-
der gas from the supplier to keep the plant functioning over night. The
reader might like to consider this practice, and try to make some mean-
ing of it mathematically. How does this practice compare with the kind
of mathematical practices we might expect to observe in a College class-
room, e.g. the solution of a quadratic equation? To be slightly contentious
for the moment, it might appear remarkably similar. As far as the engi-
neer’s operatives are concerned: they read and insert data into a proforma
(c.f. College students identify coefficients of the quadratic and insert into
a formula) – the mysterious formula (constructed elsewhere) being used
to compute a result of interest only to someone else: the manager / boss
(c.f. examiner/teacher). Both College student and operative are, in this ac-
count, essentially instrumental, alienated by being ‘black-boxed’ from the
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meaning of the mathematical activity they are involved with (Williams and
Wake, this issue).

To understand what is at stake, what the engineer and his manager are
doing, how the engineer came to construct this formula, and how it might
need to be adapted in the future as circumstances change, is a problem
and a challenge, however. This requires a certain amount of work process
knowledge: knowledge about how this practice fits into the production
process and its activity system. Before he goes off shift, Dan needs to
estimate the amount of gas the plant will have consumed by the end of the
‘gas day’ (i.e. 0600 the next day). The gas consumed has to be accurately
estimated, because the gas supplier expects to supply and get paid for
that amount, and there will be a financial penalty if the real consumption is
outside some tolerance of the estimate. As Dan says, millions of pounds are
involved. This is a very hierarchical production system, with each worker
assigned a role and rules of operation guiding the dance of the whole
production community. The manager is the decision-maker and seeks to
minimise costs incurred. His decisions and motives control the community
accordingly. The engineer has the technical task of handling the data and
reporting, and also instructing the workers under him as to what data to
collect. Dan ‘owns’ the spreadsheet, but is also accountable to the manager.
Dan tells us that his calculations have to be very accurate, and if he gets
this wrong he may be dismissed. For Dan’s operatives the spreadsheet is
a black box, a mystery, and we find some evidence that Dan is happy to
maintain his exclusive ownership of it, and hence his expert role.

Now the reader understands the purpose of the activity, and to some
extent its division of labour and rules, let us return to the formula again
and see if it can be understood. The readings substituted into the formula
are gas meter readings at the beginning of the gas day, 0600, and later at
two times quite close together (actually a time t = T2 apart). These two
‘integrating readings’ are used to calculate the rate of gas consumption,
and hence predict the total gas day’s consumption at this same rate over
the time remaining until 0600 next morning, “TIME4”. We translate the
formula into academic ‘College mathematics’ below.

So far we have seen how different workplace mathematics appears from
a College mathematics point of view. Above we performed a ‘translation’
as it were between different languages. But these are not differences a
linguist would recognise as such, they are more like different Bakhtinian
‘genres’ and ‘social languages’ within a national language, i.e. patterns of
communication and styles of language used for particular purposes, within
particular types of setting and communities.

For Bakhtin et al. (1986) ‘genre’ is the ‘horizon of expectations
brought to bear on a certain class of text-types’ (p. 428), and includes
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Figure 1. Translating the workplace spreadsheet formula into College algebra.

everyday genres such as ‘the personal letter’ whose conventions are almost
universally shared within a culture (Gee, 1996; Halliday, 1978; Halliday
and Hasan, 1985; Wells, 1999; Wertsch, 1991). We talk of workplace gen-
res of mathematics because each technical workplace may develop its own
conventions and terms, though it may also draw on elements of more widely
recognised social, cultural forms of mathematical language, ‘engineering
mathematics’, ‘spreadsheet mathematics’ and so on.

This particular workplace mathematics genre has been shaped by many
local features:

• the aim of the activity is efficient production, and the need to minimise
gas costs due to mistaken estimations of gas needs during the ‘gas day’
accounting period;

• the local instruments which measure gas consumed at various times,
in various units, and the recording sheet the operatives use to record
relevant values;

• the particular jargon of the workplace: the ‘gas day’, the naming of the
variables as ‘integrating readings’ etc;

• the technology of the spreadsheet and language used to address it (only
partly local);

• the division of labour that allows (maybe insists) that Dan has the tech-
nical expertise and job of ‘calculation’, his ‘lads’ are operating in the
dark, the manager interprets and reports, and holds them all to account.

In Williams and Wake (this issue) we suggested we can view College
mathematics as ‘another genre’ of mathematics, shaped by an international
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mathematics community, a national curriculum and assessment culture and
also by more local systems of the professions, pedagogy and schooling.
Thus the formula we created above to clarify meaning and structure of
the workplace spreadsheet formula for you, the reader, is structured by
an academic genre of mathematics which has emerged historically within
academic practices of scholastic mathematics: it values elegance, formal-
ity and certain conventions which afford the perception of mathematical
structure (we notice at once its linearity in T for instance).

In contrast, the workplace genre has certain qualities of local situativity:
these prove very helpful to Dan in supporting his re-construction of the
formula for our benefit as we shall see. The terminology used for variables
for instance are redolent of the sources of the data, and absent from our
translated version in the academic genre: these variables therefore have
to be defined by us in order for the formula to recover its meaning as a
workplace practice, and so to re-contextualise it (Van Oers, 1998).

We have now explained this formula for the reader, but how did we
come to make sense of it at the time? We now examine the communication
breakdown and its repair in some of our data, and we find ourselves drawn
to investigate cultural models and metaphors in our quest to understand
these.

2. HOW WORKERS (AND WE) USE METAPHORS AND MODELS

IN HELPING MAKE SENSE OF MATHEMATICS IN PRACTICE:
THE MACHINE TOOL PROGRAMMER

A fine example of the power of metaphor in translation arose in Steve’s
metalwork shop where a machine tool is programmed to punch holes in,
and ‘nibble’ metal plates (for more see Williams and Wake, this issue).

One line of his program reads as follows:

X 25. Y 172.5 T12 G90

This line commands the drill to punch a hole in metal plate: to ‘move’
through certain distances across (X) and down (Y), to select an appropriate
tool (T) with which to cut a hole. Presumably the original author of the
programming language in use here was a software designer – we could say
another kind of mathematician - making use of notions of Cartesian axes for
vectors but adopting conventions particular to this genre of mathematics,
such as the use of a decimal point after the whole number 25, and the
‘simultaneous’ execution of all the commands appearing on one line of
program (curiously, in this programming language, the command G90 is
taken to be executed before X and Y commands are executed, even though
it appears later in the instruction).
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In explaining the last command, G90, which was baffling to the re-
searcher, Steve said:

Steve: G90 switches it back to thinking from nought-nought

Researcher: Yes

Steve: So from here it’s thinking: ‘Oh, . . . I’m going from nought-nought, I’m
going to go one hundred and seventy two and a half down, twenty five in, . . .’

Steve’s use of a metaphorical device (– it’s thinking, ‘Oh, I’m going. . .’
–) here is of interest. Speaking formally he might have said something
like “The subroutine G90, according to the manual, resets the machine’s
co-ordinate frame from relative to absolute references for the commands
X and Y.”

Instead, quite typically of our case studies, he adopted an anthropomor-
phic machine-as-person, in fact servant-being-instructed metaphor. Thus,
Steve’s program is formally, perhaps, a text of characters which will become
binary coded and stored as strings of bits, which later become electrical
signals to the machine that order mechanical actions. But the program is
read or understood as ‘a series of orders to a servant/robot who understands
them and acts accordingly’. This particular type of servant can read or in-
terpret coordinates in relative or absolute modes, and G90 tells the servant
to switch the mode.

In the above case, Steve reads “G90” as an ‘instruction’ to the ma-
chine thenceforward to ‘interpret’ movement ‘commands’ differently, i.e.
to ‘think from nought-nought’. Thus he sees it as changing the machine’s
way of ‘thinking’. He may be aware that G90 is a subroutine, and even
how this routine works, but if so he gives no indication of this: he speaks
of it as any other instruction, its meaning is in its function, expressed
effectively through the metaphors employed. It is uncertain whether or
how his understanding of the code reflects that of the programmer who
originally invested mathematics in it: his discourse suggests that it may
be quite different. Once the programming language has its technical at-
tributes codified in a manual, it becomes a tool in a different activity,
such as Steve’s: the object of activity is new, and thus the language ac-
quires new meanings. For Steve this meaning is principally expressed
metaphorically.

Being told to ‘G90’, our servant metaphorically responds conversation-
ally:

“Oh . . .”

as though momentarily surprised by this command. Why surprise? Because
the command G90 forces our servant to re-interpret what had previously
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been (mis-) understood – reading the line of the programme from left to
right- by the commands X and Y. And so now the servant thinks:

“. . . I’m going from nought-nought”.

Thus a conversational device, “Oh”, here helps one to understand how the
command is to be understood as a change of interpretation of the vector
commands. It seems that Steve has situated his discourse metaphorically
in a world where the computer has become a person in a dialogue, and this
allows him quite effortlessly to make use of everyday dialogical strategies
and devices drawn from this world. This metaphorical world of machine-
as-servant therefore proves extensible to include implicit entailments that
were not apparent at first sight, or even made explicit: the metaphor offers
a somewhat open-ended set of resources to be drawn on as and when
necessary.

We will seek to show how this can also be the case with mathemati-
cal models. That is, a mathematical model can also generate a world of
‘metaphorical entailments’, or mathematical implications not explicit at
first sight, (see next section) and that this can be a key generative feature
in communication and problem solving.

Lakoff and others have studied metaphors as mappings from a source
to a target domain. Thus, after Lakoff and Johnson (1980) we have the
following metaphorical structure:

source domain = Target domain

servant = computer-machine

master = programmer

series of orders = program

The utility of a source domain in metaphoric use is to provide a more
concrete domain to map onto the relatively formal and abstract target: the
source under-pins or ‘under-stands’ the target. The complex of implications
of the metaphor in the source domain is now transferred creatively by Steve
to explain effects in the target domain, thus:

Source domain = Target domain
‘it’ thinks = machine interprets

‘oh’- surprise- = machine recognises (unusual) signal
to re-interpret. . .

‘I’m going from nought-nought’ = via change of mode of interpretation
of X and Y

Related metaphors include the conduit metaphor for communication
(Reddy, 1993), and the brain-computer analogy. These metaphors and
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analogies involve many ‘entailments’ such as: the machine has a ‘mem-
ory’, programs have to be ‘interpreted’, and so on. Indeed, it would be all
but impossible to discuss programming without deploying terms such as
‘language’, ‘interpreter’, and ‘memory’. Of course, metaphorical under-
pinning can also introduce false entailments into the Target domain, by
over-extending an analogy (Spiro et al., 1989). For instance we may be-
have as if we believe that the computer will display the ‘common sense’ of
a human servant. Perhaps the retention of the pronoun ‘it’ for the servant
helps inoculate Steve against such a danger. The erroneous interpretation
of the line of the program as if ordered from left to right – which was
instrumental in causing surprise – perhaps arises from a false ‘left-to-right’
entailment of the English language, i.e. from the metaphor ‘program as
written English communication’.

The traditional mapping or comparison approach to metaphor has a
weakness that is evident in this example. The asymmetric mapping schema
‘from’ Source ‘to’ Target domain suggests that the computer is the more ab-
stract frame which is to be understood by the more concrete master-servant
domain, or compared one with the other via a common ‘ground’. But actu-
ally metaphor brings about an interaction (Black, 1962, 1993). As we know
the concept of a person’s ‘memory’ is these days indissolubly linked to that
of computer memory, as well as vice versa: thus we have the ‘brain is a
computer’ metaphor, in which memory can be ‘working memory’, ‘short
term memory’ or ‘long term memory’. Now the computer is used to under-
stand the servant! Indeed the mind-is-computer metaphor is also referenced
in talk of brain functioning colloquially, as in ‘I’d better re-compute’. This
metaphor is essential to our understanding of human and computer ‘mem-
ory’ whose modern meaning has been constituted by a recursive interaction
of meanings in the two domains. Thus, we see that Steve could have a con-
versation of some quality with the machine because the machine shares
with Steve many common faculties: they both have a memory, they speak
a common language, they interpret instructions, and they can even both be
surprised. We will later argue that this quality of recursion is crucial also
with mathematical models and representations. That is, the meaning of a
model is generated recursively through its interaction with other domains
and representations by other models and metaphors. Furthermore, Steve’s
metaphorical way of speaking seemed to the researcher perfectly clear and
unproblematic: perhaps the response “Yes” is the most remarkable part of
this short discourse. The researcher got the point at once!

We therefore suggest that this metaphor is a ‘cultural model’, i.e. it
is a widely distributed, inter-subjectively shared way of speaking about
programming, machines and so on within a particular culture (Gee and
Green, 1998; Holland and Quinn, 1987; Hutchins, 1995). Such models are
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effective mediators of communication as well as a means of thought. We
argue that mathematical models can come to have a similar status in the
culture; indeed we will argue that they must do so if they are to be of
communicative value. This provides a motivation for placing ‘models’ in
a common culture and so at the heart of mathematics education.

In ‘The model muddle’ Wartofsky (1979) clarifies the meaning of ‘mod-
els’: for him the essence is in re-presentation. He suggests that a model be-
gins with our first mimetic acts and first use of language, and ‘we continue
modelling by way of . . . analogies, models, metaphors, hypotheses and
theories’ (p. 10). Mathematical models and even isomorphisms are repre-
sentations at one end of a spectrum from abstract to concrete, but every act
of drawing attention to similarity or comparison belongs on the spectrum
at some point. Lakoff and Johnson (1980) expose the embodied nature
of cognition in the body-metaphors employed in our language: ‘we travel
the path of life’, ‘love is warmth’, ‘relationships provide nutrition’, ‘time
is a resource’ etc. These metaphors re-present the abstract, formal, social
(life, love, time, etc.) in more embodied concrete, perceptual and imagistic
terms (journeying, warmth, resources etc.). Thus the concrete and familiar
in language is ultimately, for them, experienced in our body in space and
time, via perception and image.

In many instances these metaphors have become so deeply embedded
in our culture that we have no other way of thinking about their targets:
thus for many psychologists the brain IS a computer with a short-term
memory and so on, while for computer scientists BASIC is really a lan-
guage, to be interpreted and so forth. Once such metaphors have embedded
themselves in the culture to the point they are ‘dead’ (in Black’s term:
see Black, 1993) we may become culturally trapped in their metaphorical
entailments: acts of metaphorical deconstruction become necessary. The
point about the anthropological (Holland and Quinn, 1987), or cognitive
linguistic (Lakoffian) de-construction of cultural models and metaphors for
us is that it diagnoses a historical reification process: the model or metaphor
that once came creatively into being has been crystallised and may even be
forgotten and dead. This reification and forgetting is double-edged, since
meaning becomes implicit and unconscious. In our example, we can say
that Steve explains to the outsider how the command G90 functions, and
rather than recreate the knowledge of G90 as a subroutine, he mediated his
explanation metaphorically, calling on a widely shared cultural model, i.e.
our way of thinking and talking about programming as instructing.

To take another case by way of contrast, we note in the above example
the use of Cartesian X and Y co-ordinates in the movement commands,
which is a widely culturally shared mathematical model, shared by Steve
with us by virtue of having been taught in school. Thus the referencing of
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X and Y in the code serves as an effective model for the language-author
and for its user, Steve. Clearly mathematics can provide important ‘cultural
models’ in affording communication too.

Black (1993) contrasts dead metaphors such as those analysed by Lakoff
with metaphorical work that creates something new in the moment of the
speech that invents it: metaphor in poetry provides good examples of this.
A living metaphor, one that is still doing new work, may still be in the
act of establishing itself as a cultural model, with its ramifications being
worked through in practice. A powerful technological example of this is
the ‘generative’ metaphor of Schon (1995). He describes how a group of
technologists (trying to develop a man-made-fibre paint brush that doesn’t
‘clog up’) come to see the paint-brush as a kind of pump. The brush pumps
the paint onto the surface it paints. As this insight develops over the course
of days and weeks, its entailments are worked out: e.g. the ‘pipe’ the paint
flows through is formed by the brush fibres, with the hand-handle working
as the active pumping mechanism. This ‘pipe’ needs to deliver a smooth
flow of paint from the top to the bottom of the brush-fibres so as to prevent
the paint becoming ‘gloppy’ and clogging, so a smooth gradient to the
‘pipe’ has to be engineered. This analogy proves vital in engineering the
right shape and arrangement of the fibres. In this paper we will show how a
mathematical model can provide entailments that are generative in a similar
way, providing for insights and communication repairs in a powerful way.

What begins as a metaphorical insight, works out as a fully organised
analogy, whence we imagine it might become common-place in the engi-
neering community: brushes behave like so and so because ‘they are really
just pumps’. Even though apparently ‘dead’, these analogies might still,
through new interactions of the target domain with the source domain, give
new life: ‘hey, why don’t we make a ‘real’ water pump out of fibres’. One
might imagine a time coming when technologists in the business talk of
brushes that pump faster and smoother than others, in ways that leave the
metaphor tacit or finally dead. Subsequently, in deconstructing this cliche,
a critic might reveal inappropriate entailments that provoke fresh insights
into our assumptions about brushes. This is the life-span of metaphor, from
creative, to living, to dead, to resuscitation and hence perhaps new creativ-
ity, via deconstructive analysis.

We argue that this perspective could be adopted in relation to mathe-
matical modelling, which might involve three distinct, important uses of
models and modelling, as in (i) generative modelling, (ii) the use of well-
known ‘cultural’ models in communication and in applications, and (iii)
deconstruction of dead, crystallised models. In the next section, we will
look at a case of breakdown in which an appeal to a well-known cultural
‘mathematical’ model – a double number line – proved generative. It is a
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well-known model, almost dead in some uses, but it takes on new life in
the context of the workplace practice where it is fused with particular work
processes.

3. AN EXAMPLE OF MODELLING AT WORK: THE GAS ESTIMATION

FORMULA

Let us return to the complex formula used by Dan to estimate the amount
of gas that his power plant would use in a “gas day” (i.e. from 6 am one
morning to 6 am the next):

{{{{{“2nd INTEGRATING READING”-“0600 INTEGRATING READING”}
+{{{“2nd INTEGRATING READING”} – {“1st INTEGRATING
READING”}}/T2}∗TIME4}}/100000}/3.6∗CALCV∗1000000/29.3071}

This spreadsheet formula was constructed by Dan himself, using terms from
the workplace as variables, making it easier for him to recall the reasoning
encapsulated by his formula. The use of so many brackets lengthens the
formula and makes it look very complex but perhaps this arose because
Dan has built up the formula by constructing it in stages. The brackets may
well be useful in emphasising this and help him to ‘unpack’ the logic in
the construction of the formula when necessary. However, although Dan
confidently reconstructs the formula’s meaning for the mystified researcher
in the following transcript, there are indications that there are elements that
have been forgotten by him; (we notice his hesitation over the unit of time
in use, for instance).

In the following dialogue Dan, the power room engineer and guardian of
the spreadsheet, explains what the spreadsheet is doing to Kate, a visiting
teacher-researcher. Two students, Ben and Adam are present also but mainly
silent. Kate is trying to work out what the formula does, and gets confused
about the various time variables and what they mean (section 1.1–1.3). In
an effort to clarify this, Dan draws a timeline model (middle of section 1.3)
which he finds useful in marking out times and intervals for Kate.

1.1 Kate, our teacher-researcher

inquires into the formula Notes

Kate Right, what’s it doing? Look at that

bit (∗), where it’s got a minus, it’s

just taking the two readings away

from each other, so that’s just how

much it’s used between. . ..

(∗) Pointing to minus sign in {“2nd

INTEGRATING

READING”-“0600

INTEGRATING READING”}
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Dan Between . . . space-time metaphor signals a

possibility of the time-line model to

come

Kate . . . the last reading that you took, and

the very first one.

readings “2nd INTEGRATING

READING” and “0600”

Yes. And then it’s added on the

difference between. . .

Dan The difference between the last two

readings..

Referring to difference: +{{{“2nd

INTEGRATING READING”} –

{“1st INTEGRATING

READING”}}/T2}
Kate Yes.

Dan That gives you your rate, over a time,

.. Doesn’t it?

This part of formula calculates the
rate of use of gas between the 1st

and 2nd Integrating Readings: C−B
t

1.2 Kate doesn’t follow and is provoked to inquire again: the breakdown moment

Kate Oh, hold on, hold on. . .. I don’t. . . breakdown

Right. So we’ve got three readings:

reading 1, reading 2, reading 3,. . ..

and the first bit gives that minus

that.

Kate struggling to understand the

formula, students silent. Three

readings. . .0600, 1st and 2nd

INTEGRATING READINGS

Dan Yes. So you know how much gas

you’re taking between them.

he means how much gas is consumed

between readings

Kate That’s right. . .. now the second bit. . . Points to next chunk of formula

Dan So you add to it. . .

Kate That (1) minus that (2). (1) i.e. 2nd integrating reading, minus

(2) i.e. 1st integrating reading

Dan That (1) minus that (2). Refers to time T2

But then time comes into it.

Kate Yes.

Dan So you get a rate, . . . per second or

per minute, I forget what.

Rate per sec/min. Dan seems unsure

of the details – once the formula has

been constructed it is not necessary

to remember the details –

1.3 Inquiry about T2: the source of confusion

Kate Yes. Time T2 an interval not a point in

time: this seems an obstacle

Oh so that time that you’ve got there,

that. . .?

Is it T2? But also there is TIME4 in the formula

Dan Yes, there’s another calculation in

there, it gives you T2

T2 is calculated from other data not

visible in this formula.

Kate Oh I see, right. So T2: that’s the time? recognising that ‘time’ is an interval,

not a reading-

inquiry about T2’s extent
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So is it the time from first to the last,

or is it a combined. . .

Dan Because you’ve already got. . . Dan seems to recognise a need to help

his explanation.

All I’m interested in, is. . . Dan drew the following time-line

sketch: from left to right: first the

unlabelled line. . .

Let me draw it out. . . then marks points on the line and

labels them

Dan The gas day: 0600. . . reading 1,. . .

reading 2, . . . end of gas day.

‘gas day’ is 0600 to 0600 next day

Kate Right.

Dan You’ve got a reading there (1), and

you’ve got a reading there (2). . .
(1) points to. first 06.00 reading

so subtract one from the other, and

you know how much you’ve used

there (3).

(2) points to. 2nd integrating reading

i.e. ‘how much gas’ you’ve used:

(3) i.e. between first 06.00 reading

and 2nd integrating reading

Reading 1 and reading 2, subtract one

from the other, you know how much

you’ve used there (4);

‘there’ indicates points on line, in

time, and readings

but you also know the time difference

between there and there (4).

(4) i.e. between 1st and 2nd

integrating readings, the interval of

time (T2)

Kate Yes.

Dan So if you say. . .. If that was one

minute and you took two units, it

would be two per minute.

Dan refers to easy values of times in

his attempt to explain “rate”.

Kate Yes. (to students) Are you with this,

alright?

Checks students

Ben I’m all right. . .. One student, Ben, claims to follow . . .

Kate Sort of? Kate not convinced that students have

followed this.

Dan Because these lads have had to input a

time as well as a number.

‘these lads’ who work for him put

readings and times into a

worksheet. . . here, ‘number’ is the

measure of gas used

Kate So you know how long it’s taken.

Dan So now you know the rate between

there (1) and there (2).
(1) i.e. 1st integrating reading (2) i.e.

2nd integrating reading

Kate Yes. (3) i.e. 06.00 reading next day

Dan You also know the time difference

between there (2) and there (3).
Kate Yes.
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Figure 2. A double number line representation of gas used and time elapsed.

The function of the drawing of the timeline is to afford explanatory
discourse that is indexed by gestures pointing to the points and seg-
ments of the line, and simultaneously by the verbal pronouns “there”
and “between there and there”. Each point (interval) can reference a
moment in time (time-interval), a gas reading (amount of gas con-
sumed), or even the variables (and expressions) in the formula that signify
these.

Thus we claim that the number line serves as a powerful semiotic
support for the articulation of expressions relating to the times, inter-
vals, and readings and their connection with the formula. A more pow-
erful and complete representation such as a graph or a double num-
ber line separately representing time and gas-reading could help disen-
tangle these references even more efficiently (see Figure 2 below and
later).

Having established the rate of gas use, Dan now explains the ‘rate’
method for estimating gas used:

Dan So if you transpose that rate into that
time, and then. . . we get the volume

that you’re going to use between

there and there (pointing to C and D)

Unusual use of the mathematical term

‘transpose. . . into’. . . he might

mean he assumes you can ‘use’ this

rate over the longer time?

add it to that.

That’s why the first part of the sum is so

easy: subtract that from that. You’ve

already got the bulk of your day. . .

Pointing to terms in the formula:

‘that’ and ‘that’

Kate Ah. . . (to students) So do you follow

what’s happening? It’s only that bit

that you’re using to do the rate. It’s

not the whole lot. That was where I

was thrown, because I thought you

were trying to bring this in. Right.

‘That bit’ between 1st and 2nd

integrating readings. . . rather than

the average rate over the whole day

‘this’ referring to the first 6 am

reading, 0600 is a number
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Kate has understood the formula now and the number line has served Dan’s
explanation: let us examine the affordances of this model as an explanatory
device here.

This time-line model is a special case of the number-line model that
Lakoff and Nunez (2000) analysed and related to the grounding metaphors
of arithmetic. It ‘blends’ the ‘source-path-goal’ metaphor (hence space
and time), with the metaphors of numbers as ‘collections/sets’, ‘objects
to build with’ and ‘measuring sticks’. The line as a collection of points
metaphor affords ordinal and cardinal properties of whole number, while
the line segments, intervals or ‘sticks’ afford measurement. Thus far in the
discourse above, we can see the metaphorical use of intervals as measures,
and as arithmetical differences between values at points. Ratios between
measures were also implicit in Dan’s appeal to gas used as a function of
time: ‘if that was one minute and you had two units. . .’ An important
pedagogical feature of the number line is that numbers are represented
both by points on the line and by segments or intervals between points:
thus it is ideal for exposing and working with the arithmetic of addition and
subtraction, as Gravemeijer et al. (1999) have shown in work on children’s
strategies.

In this case, the points of the time-line, signify both instants in time
(e.g. 0600) and gas readings (e.g. “0600 Integrating reading”); while the
intervals between them signify both intervals of time (e.g. T2 and TIME4) or
gas consumed e.g. {“2nd integrating reading” – “1st integrating reading”}
etc. Thus, there is here the double metaphorical blend of the number line
itself with time and gas consumption, which makes it a particularly apt
representation for this situation. In this ‘applied’ version of the number
line, we see a conceptual blend of the gas day and gas consumed, but to
this must be added:

• The number line metaphor itself: i.e. a blend of the grounding number
metaphors on a source-path-goal metaphor;

• Symbols in the spreadsheet are also points and intervals on the line, and
hence instants and intervals in time, or gas readings and quantities of gas
consumed.

Consequently, every point on the line is associated or even semioti-
cally ‘fused’ with (i) an instant in time and a gas reading, and (ii) the
(pairs of) numbers or algebraic symbols that represent these. The pair of
numbers involved suggests the need for a coordinate pair, i.e. a graph
rather than a line. This will be discussed later, as it was in fact in-
troduced as an explanatory model by the teacher – researcher work-
ing with the College students who accompanied her on the workplace
visit.
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In the above discourse, we claim that indexical gestures (pointing to
‘points’, waving back and forth at ‘intervals’) and indexical pronouns in
the discourse (it, here, there, between) indicate – albeit ambiguously – the
concepts or signs with which the points or intervals are fused, including
implicitly expressions in the spreadsheet formula. Thus the timeline affords
an ‘embodied’ sensori-motor and associated multiple discursive world of
engagement, grounded in the space-time image-schema and a narrative of
passing through time. This obviates the need to call on formal language
such as ‘time interval’ and ‘instant in time’, ‘gas reading’ etc. in favour
of pointing gestures which can convey the relevant meanings. Indeed the
verbal equivalent of ‘between here’ – point 1 – ‘and there’, point-2 – might
be as complex as “from the time of the first integrating reading to the time
of the second integrating reading”, or “the gas consumed between the first
and second integrating reading” and indeed the non-verbal gesture may
be read in either manner. Thus gestures make communication both easier,
more fluent, and also more ambiguous, allowing the interpreter to gen-
erate meaning, or several meanings. Initially lacking precision, gestures
indexing points and intervals afford negotiation and elaboration, and hence
progressive refinement and precision to emerge inter-subjectively. For in-
stance, when Dan first points to there and there on his line, it is unclear
whether this refers to gas consumed or time elapsed, but meanings emerge
in subsequent dialogue.

According to Roth (2001) ‘gestures constitute a central feature of human
development, knowing and learning across cultures’ (p. 365). Roth shows
how expositions with graphs in a science education context can ‘have both
narrative (iconic gesture) and grounding functions (deitic gestures) con-
necting the gestural and verbal narratives to the pictorial background’ (p.
366). But Roth’s review suggests the significance of gesture is even deeper
than this: there are suggestions in the literature that gestures provide access
to another dimension of communication (McNeill, 1992). For instance,
when gesture conflicts with the verbal, it usually signifies a transition in
meaning or development of understanding, and gesture leads the verbal
development. In Roth’s own studies, (op. cit.) the emergence of coherence
from ‘muddled’ verbiage in children’s explanations is accompanied by ges-
tural embodiment of relations in advance of their formal, verbal articulation.
In sum, gesture can provide a midwife for the birth of understanding.

In the above example, the double number line is surely as important
as the midwife’s obstetric instruments. It is a particularly apt tool for the
purpose, affording gestures the precision required to associate the context
with the mathematical formula with near optimal efficiency. The gestures
that mark out an interval and associate it with the symbol T2, allow Kate
to see that T2 is an interval, and, by homing in on its endpoints, the extent
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of that interval. Finally we note the critical role of the number line as a
means of identifying points and intervals with the spreadsheet terms and
workplace realities they represent.

But in the above discourse this role of the model did not appear all at
once, ready-made and complete. We suggest that the affordances of the
time-line emerge like that of the paint-brush metaphor in Schon’s account.
Dan seems to produce the unmarked line, representing the course of the
gas day. This metaphorical allusion is then developed by placing labels on
points to represent the day’s source (0600) and goal (0600 next day). Thus
the line is manifested as a line containing some special points indicating
the times and integrating readings taken at these times, and connecting
these to variable names in the spreadsheet. We suggest that the complex of
metaphorical, or model entailments has now begun to develop. But at this
point in time (!), not all the relevant metaphorical entailments of the num-
ber line have come into play: for instance the ‘measuring stick’ metaphor
has not yet played a role (see later where this will become apparent). We
suggest also the key generative property which seemed to enable Kate’s un-
derstanding was not initially manifest from the moment the line was drawn.
Rather it emerged through the inquiry dialogue. It seems that neither Kate
nor Dan knew quite what the communication problem was, nor how or
whether it would be cleared up. Perhaps Dan reached for the number line
as an externalisation of an image that came to mind, a habit of engineers
in supporting explanation when problem solving. The nature of the prob-
lem and its solution then emerged as the model’s representational potential
developed in the inquiry, as terms in the formula began to be attached by
gesture and deictics to the relevant points and intervals in the model.

In the next section we show how the time-line was replicated and its
entailments extended by Kate when discussing the formula and its under-
lying assumptions with one of the students, Adam. This will illustrate the
pedagogic use of a double number line model, validating its potential as a
communication and problem solving device of significance to modelling
and to mathematics education.

4. THE PEDAGOGIC USE OF THE MODEL WITH THE STUDENTS

The students present on the visit said very little during the entire interchange
between Dan and Kate. Kate had good reason to think that the students had
found the explanation difficult to follow, as they had earlier found a much
simpler formula problematic. In the follow-up interview, she reminded
Adam of the situation, and drew the timeline again, and engaged him in
recalling Dan’s explanation of the formula:
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Notes

Kate Right. Well, if I remind you what he

did.

Student was shown the formula.

First of all he took the reading just

before they went home. Subtracted

the reading at 6 o’clock, so he

would actually know
how much gas he’d used then, Kate draws out Dan’s time line to

help her exposition

Because

he’s got them on the readings. So

right, so looking at the formula,

that’s what this bit’s doing, right.

It’s the second integrating reading

minus the 6 o’clock reading.

Bit = segment

Adam Right.

Kate So that’s telling him how much he’s

used there.

Now the problem is, that there’s the

bit after he goes home.

‘goes home’: traces the work process

Adam Yes.

Kate So, what he does, is he takes two

readings just before he goes home,

so they’re quite close together and

what he does, is find how much gas

he’s used.

1st & 2nd Integrating Readings are

‘close’ in time and space on the line

Adam And then plus some on to each other. i.e. add estimate?

Kate Right. So when you say he pluses

some on to each other. Any ideas

how he’d do that? I mean, how

would you do it?

check meaning? Initiate (in I-R-F)

Adam There’d be a certain amount of time

between them so he just added the

times with the values on.

Indicating time-line between 2nd

Integrating Reading and 6am next

day.

It is not clear what Adam means, but he uses the term ‘times’, and Kate picks
up on this as a sign of a ‘rate’ conception, and translates his comment into
a mathematical form ‘however many times’ i.e. a number of times. Then
Adam makes use of the number line to identify a ratio as the number of
times one interval will go into another, i.e. its measuring stick metaphorical
entailment:
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Kate Good. That’s right, so what I’m

understanding you to say, is

that he found how much he’d

used there and then, however

many times. . .

i.e. between 1st & 2nd

Integrating Readings

Adam Times-ed it by how many there

are. . .

i.e. between 2nd Integrating

Reading and 6am next day. See

figure. ‘Times’ conception of

ratio, as opposed to more

sophisticated ‘rate’

conception.

How many time periods there are

between there and there.

Figure 3. Time line used as a measuring stick to indicate how many ‘times’ T2 goes in

TIME4.

By pointing to the segments (or ‘sticks’) “between first and second inte-
grating reading” (T2) and “between the second integrating reading and the
next day’s 0600” (TIME4) he makes use of these segments as measures to
access a ‘number of times’ conception of rate here, i.e. he uses the measur-
ing stick property of the line. Where Dan had used the rate in the formula
formally, the student accesses the same idea through a more concrete and
‘embedded’ number of times conception.

Thus we see one more metaphorical affordance of the number line be-
coming energised and providing a resource for problem solving and com-
munication. As in the ‘paint brush’ metaphor, we claim that the number line
has a generative character here emerging in pedagogic discourse, relevant
because of the conceptions accessible to the student.
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In the next part of the conversation, Adam reveals that he has decon-
structed the formula sufficiently to appreciate its underlying, linear as-
sumption, and questions this as a surprising feature of ‘gas consumption’
during a 24 hour period. His teacher imagines work process conditions
under which this assumption might seem reasonable.

Kate Good. That’s right. That would be one

way of doing it.

recognises this was not Dan’s rate

method

Adam It’s just that I thought, before he’d go

home people would still be using it

quite regularly. It’d be different

between that time and say, 3

o’clock in the morning.

Adam questions the assumption that

the rate of use of gas will remain

constant overnight. . . his analogy is

with ‘people using gas’. . . which

does not reflect this industrial

context

Kate Excellent, yes. So, you are realising

that he’s using that last bit of time,

and assuming. . .

Kate says ‘assuming. . ..’ Making

model assumptions explicit

Adam That it’s going to be the same

throughout the night.

. . . i.e. ‘same’ rate of consumption of

gas all night: seems counterintuitive

Kate Now, I don’t think he actually said

anything about what he was

assuming, but you’re right, he is.

So, because these are quite close

together, I think possibly, I don’t

think he said this, but possibly from

that little bit before he’s going

home, perhaps the rest of the plants

all go home at 4 o’clock so he

knows that it’s down to the right

sort of level. Perhaps that’s it.

Kate constructs Work Process

Knowledge that could justify the

linear model

Adam shows a really significant insight here, all the more remarkable be-
cause linearity is one property of the model which is not iconically repre-
sented in the number line. Kate later is able to bring this out more clearly
in a graph, where the gas consumed as a function of time is shown clearly
as a straight line (its constant slope indicating the linearity in the model!).

Examining the two discourses in the case study above we see patterns
of inquiry and pedagogic discourse genres. An inquiry genre is charac-
terised by questions which seek information and clarification (as in Kate’s
inquiring of Dan), while the pedagogic genre is characterised by Kate’s
questions for which she already knows the answer. The latter are moti-
vated pedagogically and initiate a response and is followed by assessment
feedback (‘good- yes’). Elsewhere these have been characterised as Inquiry
(Wells, 1999) in contrast to ‘Initiate-respond-feedback’ I-R-F (Sinclair and
Coulthard, 1975). Clearly in these two discourses above we see Kate in
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mathematical ‘inquiry’ and then in ‘pedagogic’ dialogues, but the timeline
model plays a mediational role in both styles of communication. Thus we
conclude that, while there are evident differences between inquiry and ped-
agogic discourses, mathematical models can play an effective role in both,
making communication about complex ideas more accessible, particularly
drawing on gesture and informal language referencing workplace variables
and quantities on the one hand, and spreadsheet symbols and mathematical
signs on the other.

Finally, we draw attention to other relevant models and translations.
Our translation of Dan’s spreadsheet formula led to an academic form in
Figure 1. This was our attempt to prepare a mathematical reader for an
understanding of Dan’s formula, at least sufficient to follow the transcript.
This ‘translation’ involves a ‘hiding’ of workplace/related details, (names
of readings, conversion coefficients, bracketing, obscurities such as T2 and
TIME4) which expose other, structural features of the formula (difference,
rate, linearity). The translation into ‘College mathematics’ strips it of ves-
tiges of the workplace practice, and a framing text has to be attached so that
the situated sense of the formula can be re-constructed. Although we saw
significantly different, potentially generative entailments of each mathe-
matical model, the two formulae (spreadsheet and pure-mathematical), the
double – number line and the Cartesian-graph model. Each model high-
lights different aspects of the practice of estimating gas, and each affords
different connections and insights.

The use of the models in the two discourses revealed (i) the significance
of the use of well known aspects of a well known model in supporting
communication and problem solving in an applied context, but also (ii) the
significance of ‘generative’ modelling, in the sense of the generative use
of affordances of a model initially implicit.

5. DISCUSSION

In the previous paper (Williams and Wake, this issue) we drew on Cultural
Historical Activity Theory (CHAT) to show how context structures mathe-
matical practices in work and College, (especially the former) and to illumi-
nate contradictions between them. We also developed a new methodology
to examine these: we study the contradictions as ‘lived’ in communication
between workers and outsiders.

Any community engaged in a collective activity develops its own micro-
culture, including its own discourse genres. We note this for situated math-
ematical practices too: they are mediated by their Activity System and tend
to develop a genre of their own. In workplaces we suggested that this media-
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tion involved workplace instruments, technical language and work-process
knowledge. Outsiders have to learn something of the work process (norms,
rules and division of labour) and workplace technology and jargon if they
are to make sense of these practices, and this demands inquiry skills-and-
predispositions as well as social confidence: many of our students seemed
to lack these. Focusing on the different genres of mathematical language
involved, the concept of translation or re-interpretation has attractions here.
In the process of translation across mathematical genres, worker and out-
sider have to engage in new interpretations.

Productive explanations by workers sometimes draw on cultural models
including metaphors and mathematical models in ways that serve the trans-
lation by making connections with relatively more concrete, relatively ‘uni-
versal’ cultural resources: the metaphors of communication and time-line
and the model of the double number line are examples of these. In particu-
lar in the case of the time-line model, this embodiment affords a powerful
combination of gestures and pronouns that semiotically link points and in-
tervals with numbers or formulae and their workplace objects. Modelling
can then be conceived of as the process of introducing a powerful model
into a situation. A mathematical model may be powerful by virtue of the
wealth of its potential mathematical, metaphorical entailments. Thus an
initial insight to attach a model to a problem can be generative of new
semiotic connections, as with a living metaphor.

The perspectives on metaphor offered by Black (interactive, living, dead,
and resuscitated metaphor) Lakoff, Nunez and Johnson, (deconstruction of
metaphor as embodied, ultimately grounded in sensori-motor action), and
Schon (metaphor as generative) offered us a helpful, new perspective on
mathematical models and modelling. We saw that tacit or dead mathematics
can be deconstructed, or resuscitated. We saw that models can offer support
for communication in inquiry and pedagogy, especially in offering an em-
bodied, spatio-temporal world of sensori-motor action and communication
through gesture and deictics. But finally we found that models can become
generative, they may begin with an insight, the briefest of metaphorical
connections, and become generative as the full entailments of the model
emerge in its interaction with the context.

We argue that this perspective helps reveal the significance of mathe-
matical modelling. Models do not only provide routine (dead) methods of
solution, they also can be used to facilitate communication and thought
in new applications and contexts, and they can interact with their field of
application, or ‘target domain’ in creative, generative ways. This offers the
possibility of solving genuinely new problems with a known model. It also
accounts for the applied mathematician’s view of mathematical modelling,
in which mathematics is a model and representation of an external reality,
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and modelling strategies are described as metacognitive problem solving
heuristics.

But recall also that the interaction between target and source domain
can lead to new insights in the source domain. Just as the computer-is-a-
brain metaphor leads computer scientists to insights into what a computer
might be and do, so also the brain-is-a-computer metaphor led cognitive
psychologists to new ways to model mind and thought. Similarly therefore,
we suggest that the application of a model in a creative way to a new problem
can involve some generative work on the mathematics of the model itself.
This is the basis for the Freudenthal design of productive problems for
mathematisation. In the example to hand above, for instance, we suggest
that the pedagogical discourse between Kate and her student Adam above
may have led to a new appreciation, at least for Adam, of the significance
of ‘the linear function’ and its representations. We therefore argue that the
role of real and authentic problems in developing mathematics can best be
thought of as a metaphorical recursion or dialectic between mathematics
and problem context. We find it elegant and seductive to tie together these
two roles - modelling of mathematics and modelling with mathematics –
as a dialectical, recursively-metaphorical interaction.

We used the term cultural model for such mathematical models because
of their accessibility across a ‘common culture’. There is a sense in which
the College and workplace are sub-cultures of this common culture. When
breakdowns in communication occur then explanations fall back on this
wider culture, a common knowledge involving cultural resources incuding
models. But these are surely by no means universal, even if they are of-
ten considered to be shared among educated people. Indeed they may be
thought of as instantiating what it might mean to be ‘educated’ mathemati-
cally. We therefore infer that the discovery and validation of these cultural
models in practice can and should inform our curriculum and pedagogy:
both in the particulars of working out a workplace-relevant curriculum,
and in general in terms of developing pedagogical strategies for making
formal and abstract mathematics more accessible. We argue, again, that
the research strategy we employed might provide an example for future
curriculum research in relation to prevocational mathematics. By exposing
the College maths curriculum to such distress, we may generate deeper
development of it as a cultural resource.

NOTES

1. The Project ‘Using College mathematicxs in understanding workplace practice’ was

funded by a grant from the Leverhulme Trust to the University of Manchester.
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