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ABSTRACT. The CAME1 project was inaugurated in 1993 as an intervention delivered

in the context of mathematics with the intention of accelerating the cognitive development

of students in the first two years of secondary education. This paper reports substantial

post-test and long-term National examination effects of the intervention, yet, by discussing

the methodology used, questions the assumptions implicit in the original intention. It is

now suggested that a better view is to regard CAME as a constructive criticism of normal

instructional teaching, with implications for the role of mathematics teachers and university

staff in future professional development.
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1. INTRODUCTION

In this paper we present the findings of an intervention project on some
2500 11 to 13 year-olds which produced large (0.8 S.D.) long-term effects
on the achievement of students when they reached the age of 16. Yet the
methodology used is 30 years out-of-date and hence unfamiliar to many,
believed by others to be permanently discredited, and is forgotten by some.
It therefore seems necessary briefly to show the reasons for using it.

Suppose it were possible to estimate on a scale the difficulty of a piece
of mathematics or a scientific concept. Suppose also that on the same scale
it were possible to estimate the differential abilities of students. Would that
not be delightful? – then one could match the learning presented to the
ability of students to process it. Or, if a Vygotskian perspective is being
taken (Shayer, 2003), one could judge just how far ahead of students’
present ability to select their learning so as to promote their intellectual
development.

During the 60s an approach was essayed on this task by behaviourists.
Bloom’s (1956) Taxonomy was to be the instrument for discussing the
difficulty of learning. But how about a scale for estimating the ability of
students? Psychometric tests give a measure which has at least the virtues of
being an interval scale, although even that has been contested (Embretson,
1988). Yet as the art proceeded it narrowed its focus to comparing the
abilities of children of the same age. Given a 10 year-old’s standard score
of 105 on a test of mathematics, what does that number tell you about what
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mathematics he should be able to process at age 14? What indeed does it
tell you of what mathematics he can cope with at 10? All you know is that
he is marginally above average for his age. It is worse still if the question is
asked of a score of 135. Bloom’s Taxonomy throws out a pier from one side,
and psychometric tests throw out another from the other side, but without
a theory of mathematical difficulty the chasm between yawns permanently
unspanned.

By the Sixties also Piaget had brought to the threshold of adulthood his
studies of the progressive psychological development of children. In what
way might they do better than behaviourism and psychometrics?

Perhaps an analogy from physics will help. Starting in the 17th century
there had been various measures of temperature, so by the 19th century
there were Reaumur, Fahrenheit and Celsius scales, different numbers for
the same thing. But it was only through a kinetic theory interpretation of
temperature as molecular vibration that it was possible to conceive of an
Absolute scale of temperature, and give its zero the meaning of no vibration.

In Inhelder and Piaget (1958) one is presented with a scale by which
the level of different degrees of understanding of science concepts, and the
intellectual level of the children working on them, are described in one and
the same terms. Thus in working on the Pendulum problem children at the
mature concrete level (2B) can make observations based on simple causal
thinking, and do find the effect of length. But because they confound the
variables of weight and angle they only describe the phenomena. At the
early formal level (3A) they have an idea about controlling variables, but
may control the variable they are trying to test, and do not go further toward a
solution. At the mature formal level (3B) they can find and prove that neither
weight nor angle of swing affect the rate of swinging by designing and
reasoning from controlled experimentation. There is an incipient Absolute
scale of intellectual development that describes both the level of the task
and the level of the learner. Piaget (1953) worked on the bottom end of this
scale back in 1927–31 by describing the development of his own children
from two hours old up to 2 years of age. In measurement theory it took
Rasch (1980) to show how the same principle of a common scale can be
applied to the construction of tests (Wright and Stone, 1979).

Shayer and Adey (1981) by drawing widely on Piaget’s work were able
to produce a taxonomy by which every level of science curricula currently
in use in schools could be assessed, and also produced tests that have been
used ever since in schools, Piaget-based and Rasch-scaled, that are used to
assess the present level of students’ understanding. This methodology is
very convenient, and its re-consideration well overdue. Piaget’s logic-based
theory however, is admitted to be difficult, but recent neuro-psychological
work suggests further use (Duncan, 2000).
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1.1. Piaget’s explanatory theory of cognitive development

Piaget’s method for studying ‘The psychology of intelligence’ (his title,
Piaget, 1950) was to go below the surface of all aspects of thought and
describe the underlying logic involved in each thinking act: the argu-
ment being that, just as mathematical models are the essential language
of physics, so too as ‘logic is the mirror of thought’ logical models serve
an equivalent function for psychology (Inhelder and Piaget, 1958, p. 271).

1.1.1. Concrete operations
Dealing with the thinking of 5 to 10/11 year-olds, logical operations of
classification, ordering (seriation), transitivity, conservation of number
(1:1 correspondence) and other conservations, causality, and aspects of
number are described ‘genetically’ – that is, successive steps of mastery
of these operations are reported experimentally, always embedded in real-
world contexts. Viewed from the context of scientific and mathematical
learning, the essential quality of ‘concrete operations’ is that they are all
descriptive models; that is, in their use they constitute more powerful eyes
upon the world than simple perception of qualities, like ‘red’, ‘three’,
‘heavy’, ‘big’ etc. But they do not carry the user below the surface of
what is described: ‘the longer the pendulum the slower it swings’ is simply
a more powerful way of summarising what is in common between several
observations.

1.1.2. Formal operations
With some 12 to 16 year-olds a further stage of thinking is found. Piaget
calls this ‘reflective thought ‘. . . when the subject becomes capable of
reasoning in a hypothetical-deductive manner.’ In the case of the Pendulum
she sees that if she goes on varying both the weight and the length of
the pendulum between experiments, she is never going to know which
affects the rate of swinging, or if both do. By comparing different controlled
experiments she can then exclude any irrelevant variable, such as weight or
angle of swing. So formal operations are a deeper operation of thinking on
aspects of reality which first have been described using concrete operations.
Piaget describes ten qualitatively different formal operations (‘schemata’),
but they are not exhaustive of reality.
Control of variables:

Exclusion of irrelevant variables
Combinatorial thinking
Notions of probability
Notions of correlation
Coordination of frames of reference
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Multiplicative compensation (moving one weight further from balance
point counteracted by putting more weight on the other side)

Equilibrium of physics systems involving 3 or more variables
Proportional thinking
Physical conservations involving ‘models’ (e.g. displacement volume)

It can be seen that in principle the descriptions of thinking of both these
stages are sufficiently rich in variety to encompass most of the agenda of
school learning in science and mathematics.

1.2. Ages and stages

Unfortunately, by basing his work on the observation of ‘good subjects’
– a strategy typical of his earlier biological training – Piaget did put into
circulation two false pictures of psychological development: that the de-
velopment of formal operations occurred in all people by the age of 16,
and that development first of concrete and then of formal operations is tied
closely to age. In the late Sixties and Seventies, when evidence to the con-
trary began to appear, this led to widespread rejection of the whole corpus
of the Genevan work. As we will see, if attention is confined to the top
20% of the population, Piaget’s age/stage picture is nearly true (actually
only the top 13% achieve mature formal operations, 3B, by the age of
16).

Two replications of Piaget’s work on representative population samples
show a very different picture. Shayer et al. (1976) and Shayer and Wylam
(1978), using three Piagetian tests reported a survey of 14,000 children
between the ages of 10 and 16, as part of the work of the CSMS research
programme.2 Already by the age of 14, 24% of the population are at the early
formal level or above as can be seen in Figure 1. But half the population have
not completed their full development even to the concrete generalisation
(2B∗) level! Cognitively, this is what the full population of 14 year-olds is
actually like: a most important statistic for applied educational research.

In the monograph Shayer, Demetriou and Pervez (1988), children
between the ages of 5 and 10 were surveyed. As with the CSMS survey
of older students a similarly wide spread of development at each year of
age was found. Yet already by the age of 7/8 the top 20% of the children
were at the mature concrete level (2B) on at least 2/3rds of the tasks they
were tested on in each of the countries Greece, Pakistan and Australia. Our
hypothesis is that it is these same top 20%, at the concrete generalisation
level (2B∗) by the age of 11, who are then ready, as Piaget described, to
develop formal operational thinking during adolescence.
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Figure 1. Cognitive range of British 14 year-old population.

1.3. The necessity of intervention

If one consults the medical literature on child development (Tanner, 1978)
graphs of, say, children’s height against age show a very strong relation
between height and age, with the variation around the mean at any one year
quite small. The interpretation of this is that – at least in a first-world nation
by the Sixties – the variation is due to genetic differences. The environment
is favourable to this aspect of growth. But if a factor more obviously affected
by environmental differences like weight is inspected, the variation around
the mean is greater. Thus a possible interpretation of Figure 1 is that the
general environment is very unfavourable to the universal development of
cognition. On this view Piaget’s age-stage view of development, which
does fit the top 20% of the population, can be interpreted as describing the
genetic programme all are born with, but most, at present, do not realise.
His term for this was ‘the epistemic subject.’

The reason this matters for education is that much of the agenda of sec-
ondary school science and mathematics requires formal operational think-
ing for its comprehension. For example, in mathematics the moment one is
into generalised number and algebra, formal modelling is implicit (Halford,
1982; Collis, 1978). Figure 1 indicates that between 70 and 80% of the 14
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year-old population would be barred from further participation – ‘I was
never any good at maths.’ On the hypothesis of the genetic potential being
still present in all adolescents, the only way the situation could be changed
would be through a school-based intervention designed to boost the transi-
tion from concrete to formal operations. And the only way the hypothesis
could be justified would be if the intervention were successful both in terms
of cognitive development and achievement in mathematics. Such consider-
ations led to the Cognitive Acceleration in Mathematics Education project
(CAME). But this would not have been attempted had not an earlier in-
tervention project using the same methodology in the context of science
been successful (Shayer, 1999). In the report of Shayer and Adhami (2004)
the case was cited of a school with an intake around the national average,
whose previous 14 year-olds had 25% at the early formal or above level,
having 65% at this level after a two-year intervention, with comparable
gains on National examinations three years later.

1.4. The context of mathematics

Few would deny that mathematics makes strenuous demands on students’
thinking and comprehension. Thus in principle it would be particularly
favourable as a context for promoting thinking. But in comparison with arts
subjects and science (except for mathematical aspects of physics) there is
an important difference. The language of mathematics itself is so power-
ful that it lends itself to the production of procedures which can deliver a
result even if students using the procedure have little, if any, understand-
ing of what they are doing. An example would be ‘the rule of three’ for
operating a proportionality. Thus in designing activities for students, subse-
quently published as Thinking Maths (TM) (Adhami, Johnson and Shayer,
1998) two important principles were used. A context would be chosen for
a mathematics concept that would contain different levels of achievement,
ranging from mature concrete to mature formal, each of which would fulfil
the Bruner hypothesis: ‘. . .any subject can be taught effectively in some in-
tellectually honest form to any child at any stage of development’ (Bruner,
1968, p. 44). In this way all students can contribute to the agenda of the
lesson, and all have the opportunity to progress from their current level.

Second, the conduct of the lesson would be focussed on the students con-
structing for themselves not just algorithms or procedures, but the reasons
for the procedures and how they relate to other aspects of mathematics.

1.5. The Vygotskian contribution

In a recent article (Shayer, 2003) a detailed case is made that Piaget’s and
Vygotsky’s contributions to the psychology of cognitive development are
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complementary to each other. Vygotsky’s concept of the Zone of Proximal
Development (ZPD) presents two faces bearing on cognitive development.
The first is that skills that lead to instant success on psychometric test
items are not all that are there in children’s present minds. In addition there
are many schemas in different degrees of completion – illustrated in great
detail in every published book of Piaget’s – which one day will surface
as completed schemas – hence ‘Proximal.’ Vygotsky established a mode
of interactive testing, one-on-one, by which he could assess how much
and what kind of mediation a child would need to succeed on test items,
and hence what was their present potential for development (ZPD). But he
also extended the notion of ZPD to a largely social model of conceptual
development. When children are collaborating in some learning task they
share a common ZPD which can result in gains for each of them. Vygot-
sky’s technical term for this is ‘mediation’. Much of individual children’s
cognitive development is not done by each constructing concepts for them-
selves. Instead, when a child’s ZPD for a concept may already be a half or
three-quarters completed, seeing a successful and completed performance
by another child like themselves results in their internalising instantly the
whole concept, mediated by the other child. And even this view of the pro-
cess is too individualistic: children – or indeed, any learners – all contribute
to the interaction that results in the production and expression of insight.
Such was the understanding used at the time – 1993–1997 – of the CAME
project: more recently a more subtle and complex view of the process as
it applies to learning in mathematics is to be found in Davis and Simmt
(2003). In Shayer (2003) is a strong argument, based on original quota-
tions from Vygotsky, that to view this mediation process as ‘scaffolding’
by adults is mistaken. Adults are too far away from where students are (see
Davis and Simmt, 2003, p. 150, para. 3).

This view of cognitive development underlies much of the style in which
the CAME lessons are conducted. Teachers need to take a Piagetian view
of what is implicit in the mathematics, but only if, in addition, they conduct
the lesson on a Vygotskian view of psychological development, will they
be successful. Both views are necessary, and need to be integrated in their
teaching skills.

2. THE METHODOLOGY OF THE CAME PROJECT

As in the earlier intervention research in the science context (Shayer, 1999),
the assumption was made that a period of at least two years in the lives of
adolescents was required if the effects of an intervention were to be perma-
nent for them. This period was suggested by analysis of previously reported
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data on the effects of Feuerstein’s Instrumental Enrichment programme
(Feuerstein, Hoffman and Miller, 1980) as part of Shayer’s replication of
that programme (Shayer and Beasley, 1987), where effect-sizes of over one
standard deviation on Raven’s Matrices and a Piagetian test were found.
Students on entry to secondary school at the age of 12 (Year 7: Y7) would
receive Thinking Maths (Adhami, Johnson and Shayer, 1998) lessons at a
rate of about one every 10 days during this period, and their mathematics
teachers would also be encouraged to ‘bridge’ the teaching strategies used
in these lessons into the context of their regular mathematics teaching. In
this way students’ learning might be made subject to a multiplier effect in
all mathematics lessons.

2.1. The context of mathematics

For CAME little of the research conducted at Geneva by Piaget was avail-
able to cover the learning involved in secondary school mathematics. For
the cognitive aspect, assessing in Piagetian terms the level of thinking de-
manded (‘cognitive demand’) for each achievement in mathematics was
done partly in terms of a taxonomy initially developed for the field of sci-
ence (but including mathematical descriptions) in chapter 8 of Shayer and
Adey (1981). This was supplemented in considerable detail with the partly
theoretical, partly empirical, work of the GAIM project,3 itself directed by
one of the original members of the CSMS team in the 1970s (Brown, 1989,
1992). In order to assess student progress during each year of secondary
education on an individual basis the GAIM team produced behavioural
descriptions of competence at some 15 different levels in nine major areas
of mathematics, called ‘strands’. On average a student was expected to
progress through one level a year (starting with a median level of 5 in Year
7, the first year of secondary education at 12), but some students would
progress faster than this so that they could be promoted to more demanding
work. The levels were described initially with reference to the findings of
the CSMS project that had been underpinned already in terms of a Piagetian
interpretation, but were then subjected to further empirical fine-tuning by
the teachers’ use of these levels in assessing their students.

2.2. The CAME teaching strategy

The mathematical strands featured in the work of GAIM were taken as
the equivalent of the concrete and formal schemata reported in Inhelder
and Piaget (1958) in the context of science. Each strand represented a
key theme or ‘flavour’ underlying mathematical thinking. In designing
Thinking Maths lessons two principles were used. First, as far as possible
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the set of 30 lessons would sample the principal strands, and later lessons
would continue at a higher level the agenda of the earlier ones. Second,
contexts would be chosen which allowed some two or three different levels
of achievement for different students, depending on their current level of
development, rather than having just one aim. This strategy is shown in
Table I. Each lesson is focused on a major strand – shown as a solid black

TABLE I

The CAME lesson set Secondary CAME Thinking Maths lessons by strands (1997)
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Figure 2. CAME two-step relations lesson.

circle. But inevitably, mathematics being an inter-related activity, other
strands will also be implicated – shown as empty circles. In this way the
whole agenda of mathematics would be addressed in a spiral curriculum
going round the whole spectrum.

The CAME methodology can be illustrated by Activity 7: Two-Step
Relations. The major strand featured is Functions. Figure 2 shows the
pupils’ worksheets.

The overall aim of the activity is functional relations expressed in al-
gebraic terms. But as can seen from Table I, part of the function concept
involves looking at the number relations of, e.g. Twigs and Leaves in multi-
plicative rather than additive terms. Then to express the functional relation
in generalised number terms, insight into how to translate the relation as
an algebraic expression would be needed.
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Entry into the task requires only descriptive concrete schemata (2A/2B,
middle concrete to 2B, mature concrete). Getting as far as a generalisation
in words,

Number of leaves = number of twigs times 3 plus 2 leaves at the trunk

would be still at the concrete generalisation (2B∗) level. But making
the jump into constructing the letter language of generalised number
is the first step into formal thinking (Collis, 1978). Empirical evidence
on the scaling level of this is to be found in Demetriou et al. (1991).
So likewise is interpreting the two graphs in terms of their different
expressions.

This is the Piagetian aspect of the lesson. But the Vygotksian social
agenda can also be read into the context. Every TM activity involves at
least two 3-Act episodes. The Twigs and Leaves episode is introduced by
some 5 to 10 minutes of whole class discussion managed by the teacher,
in which pupils are asked first to explain to each other what they think
the worksheet is about. Then pupils are asked to attempt at least one of
the problems, and encouraged to discuss possible answers. This first Act
is called Concrete Preparation, where the intention is to begin the process
of establishing a shared ZPD. Then the pupils in pairs or small groups are
given 10 to 15 minutes to work together on the four worksheet questions,
with the expectation of having to give an account of their ideas to the rest
of the class. In this second Act the collaborative learning involved in small
group work and discussion takes place. At this point the teacher, rather than
spending time going round to groups ‘helping’; instead listens, sees and
notes where each group has got to, and, depending on the different aspects
of working on the underlying mathematical ideas he finds, makes a plan of
which groups, and in what order, he will ask to contribute to Act 3. He may
occasionally throw in a strategic question if he sees a group is stuck. Act
3 is whole class discussion for a second time and, when well conducted,
gives the maximum scope for a communal ZPD. It is not necessary for all
of the class, in Act 2, to have tried solutions to all of the worksheet: the
teacher uses judgement to choose the time when enough variety of ideas
have come up in at least some of the groups. As each group reports its
ideas – or those which the teacher asks them to address – other pupils are
encouraged to ask questions, and so all the strategies and queries produced
by all the groups are made available publicly so each pupil in the class
has the chance to complete their ZPD with respect to each of the possible
concept levels, even if their group did not produce it. The teacher’s role is
not ‘scaffolding’, but the more subtle art of managing students’ peer-peer
interactions.
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The Act 3 whole class discussion is then steered into a brief concrete
preparation to Worksheet 2, and the second 3-Act episode then continues,
conducted in the same style, but faster. Finally, if time permits, the brief
Worksheet 3 on graphs of the relations is attempted.

Further specifics of the CAME methodology may be inspected in Shayer
and Adhami (2004).

3. THE CONDUCT OF THE CAME INTERVENTION

3.1. The sample, timing and evidence collected

In the first two years of the research (1993–1995) four pilot classes taught by
the Heads of Mathematics in four schools were chosen for the trial and de-
velopment of the Thinking Maths lessons. Twelve schools then volunteered
for the CAME project itself in the subsequent two years (1995–1997). Two
schools within reach of Cambridge and two schools in the London area,
named ‘Core’ were visited frequently by Shayer and Adhami; the others,
named ‘Attached’ received professional development (PD) only through
the attendance of their Heads of Department at King’s College. In each
school all Y7 classes were involved, and the intervention continued un-
til the end of Y8 (students were 12 to 14 years of age in their first two
years of secondary education). Pre- and Post-tests were given to all stu-
dents, using the Thessaloniki Maths test (Demetriou, Platsidou, Efklides,
Metallidou, and Shayer, 1991). Subsequently, after the end of Year 11 (the
5th year of secondary schooling), the students’ General Certificate of Sec-
ondary Education (GCSE) results for mathematics, science and English
were collected.

3.2. The Thessaloniki Maths test

This test was derived from the original research of Demetriou et al. (1991),
mentioned above, establishing the measurement of quantitative-relational
abilities. It contains items featuring three aspects of mathematical activity:
Use of the 4 operations; Algebra, and Proportionality, covering a wide
range of levels from middle concrete (2A/2B) to mature formal (3B). It is
therefore particularly appropriate as a test of general mathematical ability
for studying intervention, as can be seen from Figure 3.

In Figure 3 the items for two of the three sets are shown at the
levels at which they scale (with two exceptions all the proportionality
items – derived from the research of Noelting (1980) – scale at the early
formal (3A) to mature formal (3B) level). The 4 Operations items contain
one or more operations each given an arbitary symbol, and the pupil has to
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When is it true that

 L  +  M  +  N  =  L  +  P  +  N?

 Always,   Sometimes,  Never
 

e  +  z  =  8
 e  +  z  +  h  =  ?

x  =  y  +  z,
 x + y + z  =  30
 x  =  ?

 2a + 5b + a  =  ?

 3a  -  b  +  a  =  ?
 
Multiply  n  +  5  by  4

 When is is it the case that  2n  
is bigger than  2  +  n  and why?

(3  x  5) @  5  =  10

 4  o  3  =  12

  8  *  3  =  5

 6  @  2  =  3

 (2  @  4)  *  2  =  6

 (4  o  2)  @  2  =  6

 (7  *  3)  @  5  =  9

 (12  @  3)  *  5  =  10

 (4  0  2)  @  3  =  2  (3  0  2  *  4)  @  3  =  7

 (7  @  5  *  6)  0  2  =  6

 (2  0  3  *  3)  @  5  =  7

 ( 3  #  2)  *  4  =  (12  o  1)  @  2

 (8  #  4)  @  5  =  (4  0  2)  *  1

 (2  0  4)  @  2  =  (6  *  2)  #  3

-4.0

-3.0

-2.0

-1.0

0.0

1.0

2.0

3.0

a + b  =  43
 a + b + 2 =  ?

 a  +  5  =  8
 a  =  ?

Additive operation
only

One unknown number 
to find

Additive 
operation
& distributivity of
X  over  +

m  =  3n  +  1
 n  =  4, m  =  ?

Closure & distributivity
over one variable with 
a definite value

ALGEBRA  Items

Distributivity
with TWO
 variables

Lack of closure
for both items, with 
implied distributivity for 
the more difficult item

Lack of closure ,& 
true concept of a 
VARIABLE - hence 
relations between 
variables (Formal)

One 
unknown 
operation 
to find

FOUR OPERATIONS Items

Two unknown 
operations to 
find

Three 
unknown 
operations 
to find

? ARE BOTH SETS
OF SKILLS PRE-
REQUISITES FOR A 
TRUE VARIABLE 
CONCEPT?

Logits

Piagetian
levels

3A

3B

2B*

2B

2A/2B

Four 
unknown 
operations 
to find

 u = r   +  3,
 r  = 1,  u  =  ?

2a  +  5a  =  ?

Figure 3. Scaling of Items in Thessaloniki Maths test.

choose the right operation for each (derived from the research of Halford,
1982).

Subsequently the test was standardised in England in terms of the CSMS
norms (Shayer, Küchemann and Wylam, 1976) using Y7 and Y8 data from
four schools where the students had also had administered one of the Pi-
agetian tests used in the CSMS survey. In effect these four schools serve
as Controls for this study.

3.3. Immediate post-test

The Thessaloniki Maths test was administered to all classes in September
1995 at the beginning of Y7, and again early in July at the end of Y8,
with the exception of school Attached 8 which did not administer this post-
test. In Table II the Pre- and Post-test means for each school are shown,
together with the effect-size computed in terms of the standard deviation
of the Y8 controls. The scale used for the data is an equal-interval scale
where 5 = Mature Concrete; 6 = Concrete Generalisation, and 7 = Early
Formal. The predicted values were obtained from the Thessaloniki Maths
test norms, given the school pre-test mean.

The moderate overall school effect-sizes hide a wide variation class by
class within each school, which is now shown in Figure 4. The school
means are shown in black.
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TABLE II

Pre-post test school means on the Thessaloniki Maths test

Post-test

School Pre-test Predicted Obtained Effect (SD) p

Core 1 6.08 6.49 7.00 0.41 <.01

Core 2 5.32 5.79 6.02 0.18 <.05

Core 3 5.03 5.52 5.66 0.13 n.s

Core 4 5.45 5.91 6.47 0.52 <.01

Attached 1 5.63 6.08 6.58 0.49 <.01

Attached 2 5.99 6.41 7.02 0.56 <.01

Attached 3 4.77 5.29 5.59 0.28 <.01

Attached 4 5.69 6.13 6.15 0.01 n.s.

Attached 5 5.30 5.78 6.17 0.38 <.01

Attached 6 5.29 5.77 5.97 0.2 <.025

Attached 7 5.68 6.13 6.76 0.62 <.01

Overall mean 0.344 SD

No-one familiar with secondary school departments is likely to be sur-
prised by this variation: it can clearly be seen that quite large effects have
been achieved by some classes. Figure 5 – a stem-and-leaf diagram of the
class effect-sizes – is even more revealing.

It can be seen that the distribution is tri-modal – suggested medians for
each mode are in bold – with 30 classes ranging between ±0.3 standard
deviations, which is just about the expected range for a zero effect; 37
classes range around a moderate effect-size of about 0.5 SD, while 11
classes show a large effect of the order 0.8 to 0.9 SD.

Perhaps the top mode shows the effects that can be obtained by teachers
who have thoroughly mastered the new teaching skills required, while the
middle mode shows quite worthwhile effects being used by teachers for
whom this is the first time they have practiced them.

3.4. GCSE 2000 results

The intention of the CAME project was to enhance the cognitive devel-
opment of students through approaching their mathematics learning in a
reflective way. Given that intention it could then be predicted that the learn-
ing ability of the students would in general be increased as an effect of their
becoming more intelligent. An alternative prediction would be that only
their mathematics achievement would be enhanced. In order to investigate
these two possibilities – and of course the null hypothesis that no effect
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Figure 4. Class gains above expected gains over two years.

Figure 5. Effect-sizes on Thessaloniki Maths test: all classes.

whatsoever had occurred – the GCSE results in mathematics, science and
English of all the students in the 12 schools of the project were collected.

Data on a similar number of Control schools were collected whose
average level of intakes covered the same range as the CAME schools
(approx. the 18th to the 65th percentile in National terms). These were
schools receiving professional development (PD) from King’s College in
the CASE4 project, all of whom were pre-tested at the beginning of Y7
with PRT II: Volume and Heaviness, the same CSMS test used to set the
norms for the Thessaloniki Mathematics test. The classes sitting GCSE in
the year 2000 had received neither the CASE nor the CAME intervention.
This procedure would introduce some ‘noise’ into the data due to slight
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Figure 6. Added value in GCSE 2000 Maths for CAME schools.

variations in the school intake from year to year, but the assumption was
made that this variation is random (the Y7s tested were either from 1996 or
1997, whereas the CAME schools were pre-tested in 1995). The National
GSCE 2000 data on the whole population would serve as a check on the
representativeness of the sample of Control schools.

Figure 6 shows how the data were analysed.
The mean GCSE grade for each school was plotted against the mean

percentile of their Y7 intake (the percentages were plotted as logits in order
to linearise the scale for percentages – hence the non-linearity of the scale
as shown). Then the regression line for GCSE grades by logit percentile for
the Control schools was plotted. The added value in GCSE grades for each
CAME school is then the distance above the regression line for its data
point plus the extent to which the regression line lies above the National
average. These effects for GCSE mathematics are shown in Table III.

The mean added-value of 0.8 grade may appear modest, but Table IV
shows that for the higher-ability students the gains are substantial – in three
cases the proportion of students gaining C-grade or above was doubled.

For mathematics at least it seems that the Thessaloniki Maths post-test
gains shown in Table II predict even larger added-value at GCSE three
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TABLE III

Added-value for GCSE maths for CAME schools

Maths mean Added Effect-

School grade predicted Obtained Residual value size Significance

National

average 4.79 4.70 −0.10 0.00

Core 1 5.03 6.10 1.07 1.17 0.63 <.01

Core 2 3.78 4.08 0.30 0.39 0.21 n.s.

Core 3 3.51 3.64 0.13 0.23 0.12 n.s.

Core 4 4.03 4.62 0.60 0.69 0.37 <.01

Attached 1 3.39 4.80 1.40 1.50 0.81 <.01

Attached 2 3.58 4.84 1.26 1.35 0.73 <.01

Attached 3 2.95 3.87 0.92 1.01 0.55 <.01

Attached 4 4.45 4.80 0.35 0.45 0.24 n.s.

Attached 5 3.87 4.51 0.63 0.73 0.40 <.01

Attached 6 3.77 4.42 0.64 0.74 0.40 <.01

Attached 7 4.38 5.08 0.70 0.79 0.43 <.01

Attached 8 5.13 5.64 0.51 0.60 0.33 <.01

Mean 0.80 grade 0.44 SD

TABLE IV

Added-value for GCSE maths in terms of C-grade or above

Maths% C-Grade+

School Predicted Obtained Added-value Significance

Core 1 54.6 74.4 18.2 <.01

Core 2 27.5 30.3 1.2 n.s.

Core 3 22.8 22.2 −2.2 n.s.

Core 4 32.3 50.0 16.1 <.01

Attached 1 21.0 47.3 24.7 <.01

Attached 2 24.1 50.4 24.7 <.01

Attached 3 15.0 29.6 13.0 <.01

Attached 4 41.3 48.0 5.1 n.s.

Attached 5 29.3 40.2 9.3 <.05

Attached 6 27.4 47.1 18.1 <.01

Attached 7 39.8 53.0 11.6 <.05

Attached 8 56.9 75.9 17.4 <.01

Note: no effect-sizes are given here because the standard deviation of the

%C-grades and above statistic cannot be computed from the DfES National

statistics.
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Figure 7. Correlation between gain scores of GCSE 2000 maths and Thessaloniki post-test

1997 both in relation to Thessaloniki pre-test 1995.

years later. From Figure 7 it can be seen that there is substantial correlation
between the two:

In order to test whether the CAME intervention had a general effect on
the cognitive development of the students it is now necessary to inspect
the Added-Value for the other GCSE subjects. Tables V and VI give the
corresponding effects for science and English.

As with the mathematics percent C-grade data the regressions were
calculated with logits rather than raw percentages (to give the variable an
equal-interval scale), which explains the slight discrepancies between the
added-values and the differences between predicted and obtained.

In the case of science and English the effect-sizes are comparable with
the Post-test results on the Thessaloniki Maths post-test at the end of Y8.
The lower statistical significance for the English effects is due to the lower
correlation between the Pre-test and the Control English grades giving
greater variation around the regression line.

4. CONCLUDING DISCUSSION

The original intention of the research presented here was to use mathematics
learning as a context for enhancing the cognitive development of some 60 to
70% of the adolescent population. Students’ achievement in mathematics
was not ignored, but if it was found to increase it was assumed that this
would be due to the students’ hoped-for increased learning ability. This
intention will now be examined.
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TABLE V

Added-value and effects for science and English

Science English

Added value Effect-size Added value Effect-size

School (Grades) (S.D.s) Sig. (Grades) (S.D.s) Sig.

Core 1 0.67 0.39 <.01 0.70 0.44 <.05

Core 2 0.28 0.16 <.05 0.27 0.17 n.s.

Core 3 0.13 0.08 n.s. 0.54 0.33 <.05

Core 4 0.68 0.40 <.01 0.66 0.41 <.05

Attached 1 1.05 0.62 <.01 0.49 0.31 <.05

Attached 2 0.65 0.38 <.01 0.65 0.40 <.05

Attached 3 0.54 0.32 <.01 0.53 0.33 <.05

Attached 4 0.55 0.32 <.01 0.43 0.27 n.s.

Attached 5 0.97 0.57 <.01 1.05 0.65 <.01

Attached 6 0.03 0.01 n.s. 0.18 0.11 n.s.

Attached 7 0.21 0.13 n.s. 0.30 0.19 n.s.

Attached 8 0.36 0.21 n.s. 0.47 0.29 <.05

Means 0.51 0.30 0.52 0.32

TABLE VI

Added-value for GCSE science and English in terms of C-grade or above

Science% C-grade+ English% C-Grade+

Added- Added-

School Predicted Obtained valuea Sig. Predicted Obtained value Sig.

Core 1 51.5 67.0 12.8 <.025 62.3 79.6 20.3 n.s.

Core 2 23.9 33.3 8.4 n.s. 32.0 39.4 8.1 n.s.

Core 3 19.4 24.5 4.3 n.s. 26.3 43.0 26.3 n.s.

Core 4 28.5 50.9 19.6 <.01 37.6 60.6 21.9 n.s.

Attached 1 17.7 46.4 28.0 <.01 24.1 40.3 18.0 n.s.

Attached 2 20.6 36.4 16.0 <.01 27.9 48.2 20.7 n.s.

Attached 3 12.3 26.9 19.9 <.01 16.9 37.3 24.5 <.05

Attached 4 37.6 64.0 22.2 <.01 47.9 61.0 13.0 n.s.

Attached 5 25.6 54.8 25.7 <.01 34.0 68.9 31.1 <.025

Attached 6 23.8 29.6 4.3 n.s. 31.8 40.4 9.2 n.s.

Attached 7 36.0 43.0 4.1 n.s. 46.2 57.4 11.1 n.s.

Attached 8 53.9 60.0 3.0 n.s. 64.6 80.0 18.7 n.s.

aThis value is less the residual for the National average which was above the regression

line.
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Although the Thessaloniki Maths test is placed in the context of math-
ematics it was in fact designed by Demetriou et al. (1991) as a general
test of quantitative relational abilities. The strong correlation between the
added-value scores on this test in 1997, and the added-value scores in GCSE
mathematics in 2000 shown in Figure 7 is some evidence for the validity of
the original intention. Although the effects shown in Tables V and VI are
lower than for mathematics in Tables III and IV they are substantial enough
to support the hypothesis that students’ intelligence in general has been en-
hanced by the CAME intervention. While it could be argued that there is
enough mathematical content in science to explain the science effects in
terms of student’s enhanced competence in mathematics, the same cannot
apply to the effects in GCSE English, taken three years after the end of the
CAME intervention. In order to see if there is more in the research data
than originally intended, the cognitive effects relating to the social agenda
will now be examined in more detail.

4.1. The cognitive agenda

The question may be asked, What is the ‘intelligence in general’ that it is
claimed has been enhanced? Piaget’s (1972) view was that it is the degree
of sophistication of children’s logical powers, which underlie performance
in whatever context they are directed to. Looked at from the point of view of
memory research (Baddeley, 1990) it would be the number of ‘chunks’ that
can be handled in short-term memory, and the efficiency with which each
chunk can be embodied with content (Case, 1992). But in terms of the psy-
chometric tradition it would be what, ever since Spearman (1927), has been
called ‘g’; variance in common between different psychological batteries.
This might be considered as just a factor-analytic artefact, generated by the
mathematical models used to abstract from the specifics of the test-data. But
a recent study (Duncan, 2000) appears to provide a neuro-psychological
location for a general processor. He took two tests, both of which had high
‘g’ loadings – one of verbal reasoning and the other a spatial test. Subjects
were asked to work on the items while undergoing a PET scan. Activity
was, of course, found in the areas of the cortex involved in verbal and spa-
tial specifics respectively as expected. But common to both was activity
in the same area of the lateral frontal cortex, an area associated with gen-
eral information-processing, executive control functions and monitoring
the contents of working memory. This supports Piaget’s view, but perhaps
we need something more specific than his logic-based model. In Demetriou
(2005) tests of quantitative-relational, causal, and social thinking, together
with one of drawing with aspects of metacognition of each, were given to
840 students aged between 11 and 16. Structural equation modelling on the
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battery revealed both domain-specific and domain-general (‘g’) systems.
Demetriou argued that ‘self-monitoring and self-representation’ – that is,
metacognition –’ ‘are integral components of g and that the stronger g is
the more advanced these processes are’. His paper is far more complex
than space allows here for its presentation, but it does provide an under-
standing of why work in a specific domain, undertaken in the right way,
is the only likely way by which children’s domain-general thinking can
be affected. This would follow also from Duncan’s (2000) paper: unless
there are domain-specifics for the brain to abstract from or relate to, no
improvement in executive control and monitoring of working memory can
take place. But, while metacognition is undoubtedly a feature of general
thinking ability, and was indeed fostered in the conduct of the TM lessons,
it is not argued that it is the cause – in a transfer of training sense – of the
improved cognition of the pupils. ‘Thought is an unconscious activity of
the mind’, Piaget (1950, p. 22) quoted approvingly from Binet. Ability to
handle more aspects of reality, and more complex relations between them,
in any one thinking act in the context of mathematics should result – given
exposure and experience in the quite different domain of English – to the
ability to handle a comparable degree of complexity there as well.

4.2. The social agenda

Earlier it was asserted that the Vygotskian interpretation of cognitive de-
velopment invokes the teacher managing peer-peer mediation rather than
‘scaffolding’ by adult-student mediation. There is some evidence in this
study that supports this interpretation. In Figure 4 schools Core 1, Core
2, and Attached 2 all had remedial classes where the range of ability was
very restricted and low (mean Pre-test values in the 2A/2B Middle Con-
crete range). In the case of Core 1 this was brought about by setting in
mathematics throughout the year-group at half-term in term 1 of entry into
secondary school (Y7). Core 2, in contrast, was a small comprehensive
school with the lowest level intake in the county, who put all their bright
children in the one class – the one with the effect-size of 0.6 SD – leaving
two of the other three with a range that another school would have labelled
remedial. Attached 2 had two remedial classes – the others were much
more heterogenous. Core 4, on the other hand, had a strict mixed-ability
policy maintained right through to the end of Y9, and so can serve as a
comparison.

In Attached 2 it can be seen that there is one class with a virtual non-
effect, and next to it is a class with the highest effect-size showing (0.97
SD). Both classes were taken by the same teacher: the difference is that the
non-effect class was one of the remedial ones. Likewise in Core 2 the two
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remedial classes were those with effect near zero. The teacher of one of
them, the Head of Mathematics, was very skilled in promoting collaborative
learning and also had a good grasp of the cognitive agenda. In Core 1 it was
the lowest of the remedial classes that had the zero effect. By contrast all
but one of the mixed-ability classes in Core 4 had substantial effect-sizes.

The interpretation suggested is that, despite evidence of two good
CAME teachers taking remedial classes in two schools, their skill was
in vain because of a lack of higher-ability children in the class who could
supply to the less able students the ‘successful performances’ they needed
to witness to extend their ZPDs. Both in the collaborative small group work
and in the whole class discussions the collective ZPD was too limited to
act as a spur to their cognitive development.

Given this argument, perhaps one may look at a small piece of related
evidence bearing on the issue of mixed-ability classes versus streamed
(setted). In England all students are assessed at the end of their third year
in secondary school by National tests (Key Stage 3 – KS3) in science,
mathematics and English, and each pupil’s results are reported in terms of
what level they reached in terms of the 8 levels of learning achievement
published in the National Curriculum (NC). In each of the three Core
schools the median Y7 Pre-test Piagetian level on the Thessaloniki Maths
test for all pupils subsequently achieving NC level 7, then level 6 and so
on was computed and inserted into Figure 8. Thus the lower the mean
Thessaloniki Maths Pre-test score at entry to secondary school for, e.g. all
pupils assessed at NC level 6 three years later, the better was the school
doing for them.

Figure 8. Median Y7 entry value for KS3 success at each National curriculum level.
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It can be seen that, up to KS3 NC level 6, the mixed-ability school Core
4 consistently obtained National Curriculum levels from students of lower
ability at entry to secondary school than the other two schools – for level 6
markedly so, and this is the level that predicts C-grade or above at GCSE,
the level usually regarded as justifying further education in the subject for
the student. For the only 3 students from Core 2 (the worst school in the
district) who obtained level 7, it can be seen that the school had clearly
enabled them to realise their potential. Core 1, the school which setted
for mathematics from term 1 in Y7, did no better for its very high ability
students than Core 4 with mixed-ability classes, and for levels 5 and 6
demanded higher ability students at intake to Y7 than did Core 4.

4.3. The issue of professional development (PD) and further research

Twelve years on from the outset of the initial CAME research it is necessary
to update a view of the original aims. At the time of its introduction it was
perhaps acceptable in England to regard the English National Curriculum
as defining the norm of instructional teaching. The idea of the CAME
intervention was that by accelerating the cognitive development of students
in the first two years of secondary schooling, one might at least double the
proportion of students able to access the objectives of normal instructional
teaching in mathematics. In this paper evidence is given that this aim has
actually been achieved for three of the CAME schools. Yet if ‘normal’
mathematics instructional teaching continues only to produce the dismal
results for at least half the population in secondary schools reported in the
original CSMS research from the 70s (Hart, 1981) both in achievement and
motivation, it is now time to question this dichotomy.

First, just in relation to the CAME intervention itself, it seems doubtful
whether the delivery of just 30 stimulating activities over a two-year period
could itself have been responsible for the large effects on the students. The
mathematics teachers were encouraged, as part of their PD, to establish
connections between the agenda of the CAME lessons, and the contexts
of their ordinary mathematics lessons using the same reasoning patterns.
They were also encouraged to adopt the teaching skills they were using
in the CAME activities into the social agenda of their other mathematics
lessons. In effect many of them were taking a ‘Thinking Maths’ approach
into all their teaching, and by implication encouraging their students to take
a thinking approach to their learning, which seems to have affected their
learning in other subjects as well. It was probably this ‘multiplier’ effect
that accounted for the students’ marked development.

If this view is correct is it then better to regard CAME as being a con-
structive criticism of normal instructional teaching in mathematics itself?
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Such a view was certainly taken by Vygotsky in the late 20s (Shayer, 2003):
all teaching in schools should be rethought so as to enhance the thinking of
all students. Piaget’s view (Smith, 2002) of schooling was complementary
to this: the individual needs the collaborative learning of ‘the collective’ in
order to ‘to think and re-think the system of collective notions’. Some uni-
versity Departments of Education currently use some of the CAME lessons
as part of their work with teachers in initial training.

In two more recent research projects – CAME for the last two years
of Primary school as part of the Leverhulme programme5 and the current
RCPCM,6 for the first two years described in Shayer and Adhami (2004)
– the relation of the university research team to the project teachers has
evolved. In all the projects teachers are being asked to enter into an interac-
tive multilogue with their students in their Thinking Maths lessons where
the overall script for the lesson is given but the conduct depends on the
individual and collective responses, moment by moment, of the students.
Somehow the teachers need to develop and internalise both the cognitive
and the social aspect of the process described above. They are to ‘catch’ the
process whereby they see the individual and collective ZPDs of their class
and make the right moves to promote them. If their students are being asked
to construct their learning through a collective and collaborative process
then it follows that teachers cannot simply be told how to do it. They need to
experience a comparable process in their professional development. Just as
they ask their students to work on some mathematics task in small groups,
followed by whole class discussion, they need to plan together a lesson or
two, go away to teach it (ideally in small groups so that one teacher’s prac-
tice is observed and assisted by the others), and then discuss with each other
the specifics of the different ways of how the children acted and how this
relates to the script of the lesson and the cognitive and social agenda. The
teachers’ construction of their teaching process parallels their children’s
construction of mathematical concepts and skills. It is their construction
that makes it real for them. Davis and Simmt (2003, p. 145–154) give a
detailed account of such teachers’ professional development. The role of
the university researcher is to offer ideas based on sound evidence-based
research, not to instruct them how to use them. Thus the university re-
search team relate to and are dependent on the teaching skills and ideas of
the teachers they are working with. This interaction is an interesting and
demanding discipline for university staff to submit to and experience. Some
of the teachers, on the basis of this experience, are then able to conduct
Professional Development (PD) for other teachers. Such an organic pro-
cess could initiate exponential growth throughout the country’s schools. It
is very different from the ‘cascade’ model of PD still currently used, for
example, by the Government education department (DfES) in England.
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Thus we suggest that, if we agree with Vygotsky that‘. . . the only good
kind of instruction is that which marches ahead of development and leads
it; it must be aimed not so much at the ripe as the ripening functions’.
(Vygotsky, 1986, p.188), the better use of CAME would be for it to be
part of a practice which allows its own evolution in the process whereby
good previous instructional teaching in mathematics can be integrated with
teaching skills suggested by CAME. Evidence-based research on the ef-
fectiveness of this evolution would be an essential part of the process.

NOTES

1. Cognitive Acceleration in Mathematics Education I (1993–1995) project funded by

the Leverhulme Foundation. Cognitive Acceleration in Mathematics Education II
(1995–1997) project funded jointly by the Economic and Social Research Council

and the Esmée Fairbairn Trust.

2. CSMS: Concepts in Secondary Mathematics in Science. Research programme funded

by the Social Science Research Council at Chelsea College, University of London,

1974–1979.

3. GAIM: Graded Assessment in Mathematics Project of the Inner London Education

Authority.

4. Cognitive Acceleration through Science Education (1984–1987): project funded by the

Education and Social Research Council.

5. Leverhulme Numeracy Research Programme (1997–2002), Funded at Chelsea College

by the Leverhulme Trust.

6. Raising the Cognitive Potential of Children 5 to 7 with a Mathematics focus
(2001–2004). Research Project funded by the Economic and Social Research Council.
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