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ABSTRACT. This study reports on how students can be led to make meaningful connec-

tions between such structures on a set as a partition, the set of equivalence classes determined

by an equivalence relation and the fiber structure of a function on that set (i.e., the set of

preimages of all sets {b} for b in the range of the function). In this paper, I first present an

initial genetic decomposition, in the sense of APOS theory, for the concepts of equivalence

relation and function in the context of the structures that they determine on a set. This

genetic decomposition is primarily based on my own mathematical knowledge as well as

on my observations of students’ learning processes. Based on this analysis, I then suggest

instructional procedures that motivate the mental activities described in the genetic decom-

position. I finally present empirical data from informal interviews with students at different

stages of learning. My goal was to guide students to become aware of the close conceptual

correspondence and connections among the aforementioned structures. One theorem that

captures such connections is the following: a relation R on a set A is an equivalence relation

if and only if there exists a function f defined on A such that elements related via R (and

only those) have the same image under f.
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1. INTRODUCTION

This study reports on how students can be led to make meaningful connec-
tions between such structures on a set as a partition, the set of equivalence
classes determined by an equivalence relation, and the fiber structure of a
function on that set (i.e., the set of preimages of all sets {b} for b in the
range of the function). In this paper, I first present an initial genetic de-
composition, in the sense of APOS theory, based on the Piagetian model of
epistemology, for the concepts of equivalence relation and function in the
context of the structures that they determine on a set. This genetic decom-
position is primarily based on my own mathematical knowledge as well as
on my observations of students’ learning processes. Based on this analysis,
I then suggest instructional procedures that motivate the mental activities
described in the genetic decomposition. I finally present empirical data
from informal interviews with students at different stages of learning. My
goal was to guide students to become aware of a correspondence between
the aforementioned structures. The interviews are analyzed with the aim of
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evaluating the theoretical genetic decomposition and the extent to which
the hypothesized cognitive tools were indeed constructed by the students.
The analysis also evaluates the instructional procedures.

2. THEORETICAL FRAMEWORK

This study is based on APOS theory interpretation of Piagetian construc-
tivism (Dubinsky, 1991) and the idea of “genetic decomposition” of math-
ematical knowledge into an interrelated group of mental schemas (Piaget
and Garcia, 1989). Schemas are sets of cognitive elements and relations
between these elements. Understanding or mastering a concept would re-
quire the construction of a schema corresponding to it. The construction
procedure is referred to as reflective abstraction, and involves the follow-
ing mental activities: interiorization (the construction of an internal pro-
cess corresponding to some mathematical transformation), generalization
(assimilation of a new phenomenon to an already existing schema), coordi-
nation (linking together more than one schema), encapsulation (solidifying
into a mathematical object a certain cognitive process), and finally rever-
sal (forming a new process by reversing an existing internalized process).
Briefly, reflective abstraction is the general coordination of mental con-
structions through the mental activities above for the purpose of building
more complete structures. In the framework I adopted, mental construc-
tions in the genetic decomposition are known as Action, Process, Object
and Schema, whence the acronym “APOS theory” (Asiala et al., 1996).
An action conception of a mathematical idea is a description of an under-
standing that is limited to performing an action on that concept. When an
action is repeated and reflected upon, it may be interiorized into a process.
A learner has a process conception of a concept when his or her depth of
understanding is limited to thinking about the idea as a process without
being able to execute an action on this process. A process is said to be en-
capsulated into an object when the individual can perform actions on it, and
decompose it back to the matter from which it was initially formed. Finally
a schema of a piece of mathematics is an individual’s collection of actions,
processes, objects, and other schemas, linked in a coherent framework in
the person’s mind (McDonald et al., 2000).

According to Piaget, learning requires being cognitively active, respond-
ing to mathematical situations by trying to assimilate them to one’s existing
schemas. A key assumption to this theory is that the student must be aware
of a certain conflict or contradiction between the problem and the offered
solution, or the unavailability of a solution. Obviously, this theory of learn-
ing is not in agreement with the “transmission” view of teaching, based
on the belief that knowledge may be transmitted from one who knows to
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one who may or not be eager to learn by way of verbal transmission and
providing many examples.

3. MOTIVES AND GENERAL PLANNING OF THE RESEARCH

This study was triggered by my dissatisfaction, as a teacher, with students’
general tendency to overlook similarities between the effects of partitions,
equivalence relations and functions on a set as far as setting a structure on
that set. I then tried to reflect on the situation as a researcher, from the point
of view of APOS theory.

Normally, students are subjected to information about functions, parti-
tions and equivalence relations as separate fields; it is not obvious to them
that they can be linked. In general, any theorem that brings together several
concepts that are normally unrelated can be a source of difficulty to stu-
dents. This difficulty will not have the structural aspect of a contradiction,
but will cause instability (Piaget, 1980). Such instability becomes structural
only when the learner tries to compare the different practices leading, in our
context, to similar structures. It is the instructor’s responsibility to guide
learners toward finding links and connections between such concepts.

According to the adopted theory, to find ways of fostering conceptual
thinking in mathematics, the researcher must follow several steps: first
observe the students in the process of learning, and then analyze these
observations in the light of the theory. These observations, together with
the researcher’s own mathematical understanding, help hypothesize the
genetic decomposition for the concept involved. Instructional methods are
then designed for the purpose of coaching students along the cognitive steps
in the proposed genetic decomposition. Following that, empirical data are
once again collected, this time focusing on the mental constructions that
are made while students are subjected to the planned learning procedures
(Dubinsky, 1991). The purpose this time is to verify if these actual men-
tal constructions coincide with the theoretical genetic decomposition. The
conclusion would either be that mathematics has indeed been learned, or
that the initial analysis needs revision. As an outcome of this analysis,
more light is shed on the epistemology of the concept; at the same time,
pedagogical strategies are designed in agreement with the way we believe
that students can actually learn.

4. THE CONTEXT OF THE STUDY AND ITS GUIDING QUESTIONS

4.1. The course content and students’ background

I conducted this study in a discrete mathematics course during two
semesters, once in a forty-student-class in the fall, and another time in
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a twenty-five-student class in the summer. The fall class met three times
a week for 14 weeks, for 50 min each time, while the summer class met
daily for 5 weeks for 100 min each time. The students were either computer
science or business-computer majors. The prerequisite for the course is ei-
ther one course in calculus or one course in basic mathematics, a terminal
course for non-science-majors that includes the topics of basic set theory,
logic, linear programming, number theory, binary systems, and basic in-
formation on functions and graphs. In discrete mathematics the topics are
fundamentals of set theory, functions, logic, induction, relations, introduc-
tion to graph theory, and basic probability.

When they reach this part of the course, it is safe to assume that stu-
dents have an acceptable knowledge of functions: they think of a function
f defined on a set A called its domain as a machine that takes input (usually
called x) from the set A and transforms it or maps it to a unique image, called
f(x), in the set f(A), the range of f. As far as representations are concerned,
they are familiar at least with the “formula” representation, which they call
the “equation” of the function. They are able to graph simple functions:
linear, quadratic, and exponential functions. They know how to compare
the growth of functions and they can compose functions. They can check
if a function is increasing or decreasing, if it is an injection, a surjection or
a bijection. They know that bijections are invertible, and they have learned
some techniques for finding the inverse of a function.

4.2. Description of my teaching approach

When teaching the course, I like to promote an unusual perspective, which
I called “grouping like-elements.” As part of my teaching experiment, I
guide students through class activities and interactive class discussions into
thinking of a function and a relation in a new perspective. This perspective
primarily involves shifting the emphasis from the effect of the function or
relation on the elements on which they act, to grouping those elements in
the domain of the function or the relation into categories depending on the
way they are being acted upon by those operators.

4.2.1. Rethinking equivalence relations: Change of emphasis
Equivalence relations are normally introduced as special relations with
the three properties: reflexivity, symmetry and transitivity. Equivalence
classes come forward as a typical structure on a set, hard to identify just by
“contemplating” the relation. When teaching this section, I guide students
into envisioning the equivalence classes corresponding to an equivalence
relation, which requires going beyond the element-wise conception of a
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relation, to a more global perception of it. This is not a straightforward
activity, especially that there is no definite pattern that can always be
applied.

4.2.2. Rethinking functions: Change of emphasis
Just as an equivalence relation must be rethought in order for its equivalence
classes to be visualized, a function must also be rethought through its
effect on its elements to attend to and visualize the “fiber structure”1 of the
function, i.e. the set of all subsets of the domain that are made of elements
mapped on a single element of the range. While the main emphasis in
teaching functions is normally put on the images of the elements in the
domain, the emphasis in this case is shifted toward regrouping the elements
in the domain according to their images. In other words, a function will
be characterized by the manner according to which it clusters elements in
its domain, sending all elements in one group to a common image; in that
sense, less attention is awarded to what is that image, with more emphasis
on the clusters themselves.

4.2.3. Good use of partitions
An extensive work on subsets, complements, power sets, and cardinality
always precedes the introduction of partitions on a set, which is in general
a subject whose usefulness is hard to show. In teaching the section on
partitions, I make it a point to illustrate their effectiveness in proofs that use
Venn diagrams, as in showing that: U −(A∪B) = (U − A)∩(U −B). In this
case I use a partition determined on U by the two subsets A and B, consisting
of the following four (non-overlapping) subsets: U − (A ∪ B), A − B,
B − A, and A ∩ B. Students see that each element of U must fall in exactly
one of these subsets. Just like when entering a four-room house (with no
corridors), one must be in exactly one room at any given time. With this
understanding, it suffices to verify that the subsets of the partition making
up the left side are themselves the subsets making up the right side; and that
would be a rigorous mathematical proof, to the surprise of most students.

4.3. General questions guiding the study

In this study, I am interested in answering the following general questions:

• How do students understand partitions?
• How do students understand partitions determined by equivalence

relation?
• How do students understand partitions determined by functions?
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And most importantly

• Can students surf between structures determined on a set once by equiv-
alence relations and another time by functions? And if so, how?

5. THEORETICAL ANALYSIS (GENETIC DECOMPOSITION)

The purpose of the theoretical analysis is to propose a genetic decompo-
sition of the concepts of equivalence relation and function in the context
of the structures that they determine on a set. At least two major cognitive
structures must be present in order to begin the construction of equivalence
classes: that of a function and that of an equivalence relation.

In this section I will analyze the cognitive tools and mental activities
involved in the constructions stated below:

1. Finding the partition on the set A determined by an equivalence relation
R on the set A. (In other words, given R, find the corresponding partition
structure on A.)

2. Finding the partition on the set A determined by a function f with
domain A. (In other words, given f, find the corresponding partition
structure on A.)

In the following, the procedure of deducing the equivalence classes
determined by an equivalence relation will be referred to by “(M1)”. The
procedure of identifying the fiber structure of a given function f will be
labeled “(M2)”.

3. Finding a function that would determine the same partition on A as a
given equivalence relation R on A. (In other words, given R, find the
corresponding f.)

4. Finding an equivalence relation R on a set A that would determine the
same partition on A as a given function f with domain A. (In other words,
given f, find the corresponding R.)

5. Coordinating the constructions in 3 and 4 above in order to establish
theorem EQF: a relation R is an equivalence relation if and only if there
exists a function f such that elements related via R (and only those) have
a common image under f.

The following is an analysis of constructions (1–5). The terms in italics
represent the reflective abstraction mental activities, or cognitive tools.

5.1. Analysis of construction 1

Finding the partition of the set A determined by an equivalence relation R
on A requires different tools depending on many factors. When the set A is
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finite and relatively small, or the relation is explicitly described as a subset
of A × A, the task of identifying the elements that are related to a fixed
element m in A is a mere action. However, if the set A is infinite (or large)
or the relation R is represented by a formula, then, given an element m in
A, one needs to interiorize (into a process) the action of checking for all the
elements related to m. In other words, one needs to have a practical inner
sense of the effect of R. This makes it possible to identify all those elements
related to m without having to go through all the elements of A, (mechani-
cally) checking whether or not each one of them is related to m. Reaching
this inner sense requires a process conception of the relation, which is the
result of building an internal construction that does the same thing as the ac-
tion of checking for the elements related to m. Once this is done, one needs
to encapsulate the process of finding the many elements related to m into
an object, which is nothing but the equivalence class [m]. This would cor-
respond to grouping elements in A in a many-to-one mode (Piaget, 1977).

5.2. Analysis of construction 2

Given a function f defined on a domain A, finding the partition of the set A
determined by f requires the reversal of the action of mapping x in A to y
in f(A) into the action of, given y in f(A), finding the cluster of elements x
in A such that f (x) = y. This corresponds to grouping elements in A in a
many-to-one mode (Piaget, 1977).

5.3. Analysis of construction 3

Given an equivalence relation R on a set A, finding a function that would
determine the same partition on A as R requires a generalization of the
schema of function construction. In this case, the function is constructed
based on its fiber structure. Thus the required function at this step maps
elements in a class into a single image. Less importance is given to what that
image might be. There are two alternatives for constructing such a function:

(a) One possibility is to take, for f, the canonical mapping from A onto
the quotient structure A/R,2 whereby each element m in A is mapped
onto its equivalence class [m]. Now that the classes are identified, their
elements can be acted upon by a different and higher level structure,
namely that of a function, as in f (m) = [m]. Note that although an
element m appears to be associated with a single element (otherwise
the function f would not be well-defined), yet, in reality, m is associated
with all those elements n in that class, as a collection rather than as
separate elements. Hence, grouping elements in A are now performed
in a one-to-many mode. One can describe this process of function
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construction as follows: the classes [m] that became concrete impose a
certain partition on A. Based on that partition, the function f is defined.
So this process can be summarized by: Equivalence relation, hence
partition, hence function (whose fibers constitute that partition.)

(b) The other possibility for constructing a function f that agrees with R
runs as follows. R classifies the elements of A into equivalence classes
according to certain characteristics that they have in common (e.g.
integers are classified into even and odd numbers). The function f is
then constructed based on these characteristics, in the sense that it
will map an element to that identified characteristic (continuing the
example: f maps numbers divisible by 2 onto “even” and numbers not
divisible by 2 onto “odd”). Consequently, it will naturally follow that
elements in A that are in the same class are mapped to the same image.
In a way, this construction relies on the range since we are considering
that f−1 (characteristic x) = the set of those elements of A which possess
the characteristic x ; hence the one-to-many grouping mode.

Piaget (1977) uses the expression “classifying the elements according
to similarities between the elements” to describe this transition from relat-
ing elements in A to one another via R, to relating elements in A to one
another according to a “common characteristic”. Applying his analysis to
our situation, and given the properties that put elements into classes, it will
follow that the function which maps an element to its property is a function
whose inverse images form that initial partition on A.

During a class discussion, as I will later narrate in the section on em-
pirical data, one student proposed a technique that he called the “break-up
technique” for isolating that characteristic x common to elements in a class
[m]. The technique simply involves a re-reading of the relation R in the
form “mRn if and only if both elements m and n independently satisfy a
property x”. As a result, the properties become labels associated with ele-
ments in the set A; consequently, elements with the same label are placed
in one subset of A; these subsets obviously form a partition on the set A.
The function f will be defined in such a way that an element m is mapped
on the label that was attached to it. The cognitive tool used here, as far as
reflective abstraction is concerned, is reversal since the function f is con-
structed based on its inverse images: all those elements carrying that label.
Needless to say that it is possible to separate m from n in the expression
for R only if R is an equivalence relation.

5.4. Analysis of construction 4

Given a function f defined on a set A, finding an equivalence relation R on A
that would determine the same partition on A as f requires a generalization
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of the schema of relation construction so as to include the construction of
an equivalence relation based on an existing partition on A. The partition in
this context consists of the fiber structure of f. The equivalence relation R is
defined by: mRn if and only if f (m) = f (n). Moreover, the “many-to-one
mode” grouping mode referred to earlier has been reversed into a “one-
to-many” grouping mode in the following sense: (many) elements in (one)
single fiber of f are grouped in [m], whereas (one element) m is related to
(many elements) in [m] via R.

5.5. Analysis of construction 5

The coordination between the processes described above culminates in
the following theorem, labeled EQF: if the relation R is such that there
exists a function f with the property that for every (m, n) in A × A we
have f (m) = f (n) if and only if mRn, then R is reflexive, symmetric and
transitive.

In what follows I will refer by DEQ to the definition: a relation R is an
equivalence relation if and only if it is reflexive, symmetric and transitive.

The difficulty of understanding EQF can be explained by the presence
of a double level quantification, and the fact that two different types of
quantifiers are applied in succession to a single proposition (Dubinsky,
1997). Understanding this theorem requires the following steps of reflective
abstraction: first, the encapsulation of the process of double implication in
“ f (m) = f (n) if and only if mRn” into an object, one for each element (m,
n) in A × A, which entails browsing through A × A, checking the validity
of the proposition “ f (m) = f (n) if and only if mRn” for all elements of
A × A (Dubinsky, 1997). Notice here the use of existential quantifiers with
which students have trouble in general.

Alternatively, instead of iterating through A × A, one may allow the
object which is the double implication “ f (m) = f (n) if and only if mRn”
to be the output of a function Q with domain A × A, namely,

Q(m, n) = “ f (m) = f (n) if and only if m Rn”.

This function is a great example of a cognitive step, which is not a mathe-
matical step, since it is not mathematically necessary (Dubinsky, 1997). The
use of this function requires the generalization of the schema of functions
so as to include double-implication-valued-functions.

Finally what yields the second level quantification is applying the exis-
tence of the function f to the previous proposition Q.

In conclusion, one can think of (M1) and (M2) as objects in the general
schema for proofs of the existence of partitions on a set. This means that the
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two practices must have been encapsulated so that the student can reflect
on them along with other similar methods, when faced with a situation that
requires proving the existence of a partition on a set (Dubinsky, 1991).

6. INSTRUCTIONAL PROCEDURES

I assume that any successful instruction of mathematical constructions
would take into consideration the cognitive structures, as well as the mecha-
nism (reflective abstraction) on which these constructions are built. The pre-
ceding epistemological analysis serves as a guideline for planning instruc-
tion. In the following I present a selection of activities that were designed
to help students along the cognitive steps in the genetic decomposition.

The classroom treatment of partitions, and set structures determined
by functions and equivalence relations, takes about a week and a half.
It consists of a relatively traditional treatment of the topic, in which a
general description of the different concepts is presented in lecture form,
interspersed with the working of an example, followed by the students
working on problems in class and receiving immediate feedback in the
form of a subsequent explanation of each problem and a discussion of
errors that may have been made.

In all my classes, I usually try to periodically guide students toward
connecting concepts. Many times students have pleasantly surprised me
by uncovering hidden unintended relationships and connections between
concepts, such as looking for a formula for the total number of possible
partitions within the power set of A, or finding a practical technique for
isolating common properties in an equivalence class, as mentioned in the
previous section.

Below, I present some of the in-class activities with some comments
and relate them with the respective mental constructions mentioned in the
proposed genetic decomposition.

6.1. Warm-up activities on partitions and relations

The following three activities are meant to merely reinforce what is sup-
posed to be prerequisite cognitive structures to the construction of the
involved concepts: they represent a revision for the foundation of the con-
struction.

Activity 1. Given a set A, select as many partitions of A as possible from a
given collection V of subsets in the power set P(A) of A. For instance, A =
{a, b, c, d, e, f } and V = {{a, b}, {a, c}, {c, f }, {a}, {e, f }, {d}, {e},
{c}, {c, d}, {b}}.
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Even a student with only an action conception of partition would be
able to complete such an activity. One student asked whether there was a
formula that gives the number of partitions of A in terms of the cardinality
|A| of A, since there is already a similar formula that gives the cardinality
of the power set in terms of the cardinality n of A. I included this exercise
as a take-home project for n = 2, 3, 4, and received interesting responses.

Activity 2. Extend to a partition a certain subset V of P(A) in as many ways
as possible. For instance, A = {a, b, c, d, e, f } and V = {{a, b}, {c}}.

Note that in this type of activities, it is enough to focus on isolated pieces
of the material without necessarily noticing the cognitive connections be-
tween similar situations.

Activity 3. Given a set, to construct a relation with a given set of properties
(e.g., a relation that would be reflexive and transitive but not symmetric).

This class exercise turned into a fun and challenging game. Students
decided to split into two opponent teams: one would impose the required
properties, while the other would construct the appropriate relation. It was
added later that the team that proposed inconsistent conditions would lose
the game.

6.1.1. Activities promoting M1
Activity 4 below requires the mental constructions exhibited in step 1 of
the proposed genetic decomposition.

Activity 4. Given a relation R on a set A, first verify that R is an equivalence
relation and then find the equivalence classes relative to R (e.g., as in the
case of congruence mod p).

The next activity aims at preparing students for the mental constructions
exhibited in step 4 of the genetic decomposition since here, given a partition,
they need to come up with the corresponding equivalence relation; whereas
in step 4, given a function, they need to come up with the equivalence
relation.

Activity 5. Given a set A and a certain subset V of the power set P(A), first
verify that V is a partition of A, and then recognize a “known” equivalence
relation R that would correspond to that partition (e.g., as in the case of
A = Z and {{3k}, {3k + 1}, {3k + 2} : k ∈ Z} or {{k, (−1)k}, k ∈ N}.
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6.1.2. Activities promoting M2
The following activity requires the mental constructions exhibited in step
2 of the proposed genetic decomposition.

Activity 6. Given a function f with domain A and range B, find the inverse
images, under f, of all {b}, where b ∈ B. In other words, identify el-
ements in A with a common image under f (e.g., as in the case of the
functions f (m, n) = m/n in Z × Z∗ or f (m) = m2 on Z.

Just like in Activity 5 above, the following activity (Activity 7) prepares
students for the mental constructions exhibited in step 3 of the analysis
since here, given a partition, they need to come up with the corresponding
function that puts the same structure on its domain as the preset partition.

Activity 7. Recognize a known function f on a set A whose inverse images are
a preset partition V on A (e.g., as in V = {{3k}, {3k+1}, {3k+2} : k ∈ Z}
or V = {{k, (−1)k}, k ∈ N}, where in both cases A is Z).

6.1.3. Activities promoting coordination between M1 and M2
The following activity requires the mental constructions exhibited in step
4 of the proposed genetic decomposition.

Activity 8. Given a function f on a set A, find a relation R on A such that f
and R would give the same partition on A (e.g., A is the set of rational
numbers and f (m) = m2 or f (m) = �m�, the greatest integer in m. Or
A = Z × Z∗ and f (m, n) = m/n.

6.1.4. Activities promoting EQF
The following activity requires the mental constructions exhibited in step
3 of the proposed genetic decomposition.

Activity 9. Given a relation R on a set A, construct a function f on A whose
fiber structure is the same as the structure of equivalence classes deter-
mined by R, that is, such that f (m) = f (n) if and only if mRn, for all
(m, n) in A × A. (For instance, A = Z × Z, and (m, n)R(p, q) if and
only if mq = np, or m + q = n + p.

Finally, activity 10 requires the mental constructions exhibited in step
5 of the proposed genetic decomposition.

Activity 10. Given a set A, a collection of functions with domain A, a col-
lection of relations on A, and a collection of partitions of A, match them
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appropriately in order to end up with triplets: (relation, function, parti-
tion). In case you matched a relation with a partition but you are missing
the corresponding function, find it. In each case find the corresponding
classifying set of properties.

As a whole, these activities serve as motivating students to surf between
equivalence relations, functions, fiber structures, and partitions, finding the
corresponding components.

7. EVALUATION OF THE GENETIC DECOMPOSITION:
EXCERPTS FROM INTERVIEWS WITH STUDENTS

Students’ performance on assignments and their responses to the informal
interviews have served, in this research, as instruments of evaluation of
the proposed genetic decomposition. In this section, I will present excerpts
from interviews and discussions with students, together with a short anal-
ysis. The interviews are supposed to show the extent to which the student
made the previously listed required mental constructions posited in the ge-
netic decomposition. In successful cases (where progress was made and
where mathematics was learned), I will try to determine those activities that
contributed to this progress. Another purpose of the analysis is to evaluate
the instructional procedures. Finally I hope to reach an evaluation of the
entire approach both in terms of a supported explanation of how one might
learn the involved mathematical concepts, and a pedagogical strategy for
enhancing that learning.

The interviews were conducted with twenty-three students who came
to my office to collect their graded homework. The chosen interviews
present some common trends among the participants. Not all the ques-
tions were determined beforehand, and the students did not always know
what was going to happen. They were coming for a discussion of the mate-
rial, but knew that they were not going to be graded. Most of the interviews
lasted for less than 10 min. Only notes were taken, and no recording was
done.

7.1. Construction of equivalence classes

When the following question was asked in an interview, students had just
been exposed to the procedure M1, which consists in deducing the equiv-
alence classes determined by an equivalence relation. At the time of the
interview, type 4 and 5 activities had been completed in class, and problems
similar to those activities had been assigned as homework.
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Interviewer: Given an equivalence relation R, how do you find the equiva-
lence classes [m]?

Student A: I take an element m in A, and I check with all the other elements
in the set A for the ones that are related to m. If they are, then I just place
them in [m].

Interviewer: You would do this how many times?
Student A: Till I’ve finished [checking] all the elements in A.

When asked about what to do in case the set was infinite, the student
did not know what to say.

This student needs to interiorize the relation R. He was merely respond-
ing to an external stimulus, namely checking if an element m is related to
an element n. Had he mastered type 4 and 5 activities he would have been
able to answer the question. We also note that the student did not acquire
the complete mental constructions described in step 1 of the genetic de-
composition. He had only acquired an action conception. The “practical
inner sense” of what R really does was not depicted.

In contrast, Student B below had a better mastery over type 4 and 5
activities, which allowed her to “guess”, without prompting, which pairs
of elements were related to each other.

Student B: I need to really know what R does. For that, I should see lots
of examples of elements that are related via R, and observe what makes
them related. Once I really know R, I should be able to guess what are
the next elements that are related to each other without having to check
every time if mRn is satisfied.

One can easily see that Student B interiorized, into a process, the action
of checking for all the elements related to a given element m in A.

7.2. Understanding M2

The interview cited below was done in my office when the student came to
pick up his homework involving questions similar to type 8 activities.

Interviewer: In your opinion, how does a function f defined on A determine
a partition on that set?

Student C: First I have to find an equivalence relation R that does the same
thing as f.

Interviewer: What do you mean by that?
Student C: I mean that if the function does not distinguish between some

elements, then they must be related via R. As if both f and R see
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those same elements as one entity. Then after I show R is an equiv-
alence relation, I will find its corresponding classes. Those classes
will be the partition on A, relative to R, and consequently relative
to f.

To this student, it is more natural for an equivalence relation than it is
for a function to set a partition structure on a given set. Student C may have
seen this approach as a shortcut and, in fact, may have already encapsulated
the equivalence between partitions, equivalence relations and fiber struc-
tures. So, one can say that in a way, the student went too fast through the
APOS process. When I first heard his comment, my initial interpretation
was that he ignored or overlooked the class effort in activity 6 (given a
function, to find the corresponding partition), thus refuting the seemingly
more direct procedure, and remembered only the procedures in type 8 ac-
tivities (given a function, to find the corresponding equivalence relation)
just because they were more recently learned procedures. But later I was
more inclined to believe that it was more natural and straightforward for
him to go through equivalence relations because to him, a partition is more
naturally connected with equivalence relations than with functions. That
procedure, although takes a longer time, is more elementary and requires
less proven facts.

7.3. Constructing the function f given an equivalence relation R

When the interview quoted below was done, procedures M1 and M2 had
both been practiced in class, but theorem EQF was not discussed yet. Stu-
dents were able to surf between an equivalence relation and a partition, or
between a function and a partition. Also type 8 and 9 activities had been
extensively practiced in class, and so students were trained on how to find
R given f, and vice versa, yet, they could not transform this ability into a
theorem that could be used to determine whether a certain relation is an
equivalence relation (as in EQF).

Interviewer: So far we know that an equivalence relation and a function
both determine a partition on a set A. Now given a partition determined
by an equivalence relation, can we find a function that would correspond
to that same partition?

Student D: First I need to have a picture of the set A as a whole so that I
can see those elements in A related to each other. Then I collect them in
groups. Then I need to make sure that f sends elements in one group to
one single image.
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This is a clear reference to a many-to-one grouping mode.

Student D: OK. So I must say that this must eventually happen, that f should
send a whole group to the same image. So, remind me what am I given
as a start?

Interviewer: You are given a partition say {Ai} determined by an equiva-
lence relation R.

Student D: OK. This means that each of these subsets in the partition must
be some class [m]. But let me see, how to insert a function in here?

Interviewer: Why don’t you start from the end? If a function f were to
determine that partition, what would those sets {Ai} be with respect to f?

Student D: I guess Ai are the preimages3 of f. . . I am sure.
Interviewer: OK, so now can you say what f exactly is?
Student D: Since the preimages of the function f are obviously those sets
{Ai}, I could crush the whole set Ai to one element, so to speak.

The term “crush” above is used in reference to the “encapsulation” into
an object of those elements related via R, namely the encapsulation into an
equivalence class. However, it was not clear to that student whether f acts
on the elements that make up those subsets in the partition, or whether it
acts on the partitions as elements in its domain. She still needed to “loosen”
the elements inside every subset. I can say that student D knew how to go
from a relation to the corresponding function, that is, she had the mental
constructions described in step 3 (and 4) of the genetic decomposition,
yet, she needed the stronger mental construction in step 5 to answer that
question. In conclusion, my interpretation is that types 1 through 9 activities
handle at most two out of three components at a time; (the three components
being functions, equivalence relations and partitions). It is not till activity
10 that the three components are explicitly coordinated. The needed mental
construction for such a complete coordination is described in step 5 of the
genetic decomposition.

7.4. A technique for isolating the common properties of elements
in one equivalence class

The mental construction described in the alternative 3b of the genetic de-
composition was hypothesized right after the in-class discovery made by
student E quoted below. When this class revelation occurred, students were
very familiar with procedures M1 and M2, and had extensively practiced
with type 1 through 9 activities. No coordination between the two methods
had yet been explicitly stated. Up until this class discovery led by Student
E, the mental constructions applied to find f given R were the ones described
in point 3a of the genetic decomposition.
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This discussion came right after we had covered in class a number of
examples of equivalence relations, and in each case we were collectively
coming up with the corresponding function (that would determine the same
partition).

Student E started the discussion by making a very wise observation:

Student E: We can imagine that we are coloring the elements that are related
to each other in one color.

Interviewer: What guarantees that no elements can have more than one
color?

Another student: R is an equivalence relation.
Student E: Yes, yes. The function we are looking for must then send those

like color elements to the same image. That way, elements will be in a
subset of that partition in case they have the same color. We are interested
in deciding on the color categories, that’s all. We need to know what it
is that places an element in a certain class.

Another student: What do you mean by we need to know what places an
element in a class? It is R, since elements that are related via R are
automatically in one class.

Student E: Yes, yes, of course. But there is a certain reason, a formula,
a condition that makes two elements related; you see what I mean?
Otherwise the relation will have no meaning. Just like a random list of
elements connected to each other.

Interviewer: And we are now treating, I assume, relations that are given
by a formula and where the set A is infinite. Great strategy. You mean to
say related elements must have a common property?

Student E: Yes, yes, of course. This is it. And this is what gives them the
same color. In fact it is as if the color is the property.

Another student: So when we are given the relation in the beginning, it is
as if we are given a certain number of colors and using them to color the
elements.

Student E: Yes, and then the function will be simply the map that assigns
to each element that very color!

Interviewer: Great strategy. Now how to find those properties? Consider
the relation on the set of lines in the plane or space: l1Rl2 if and only if
l1 is parallel to l2.

When there was no response, I had to give some help.

Interviewer: Try to find what those lines that are related to one another
have in common.

Student E: The direction, of course, or slope. So the common property will
be common slope.
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Interviewer: And in general, any idea of how to separate those common
properties?

Student E: I guess what should be done is have the relation specify that m
and n must both do something, but separately.

Student E: We need to rewrite whatever equation or expression of R so that
m and n are each on one side of the expression.

Interviewer: Well, let us take an example of a relation that is not an equiv-
alence relation. Consider, say: mRn if and only if |m − n| = 4.

Student E: Well, suppose I rewrite it as m = n ±4. But I cannot get similar
expressions on the two sides, no matter what. I guess that implies that R
cannot be an equivalence relation.

The class decided to call this method the break up technique, and they
decided that it works only in the case of an equivalence relation.

7.5. Formulating EQF

The following discussion occurred during the next semester. At that time
coordination between procedures M1 and M2 had already been solicited
but theorem EQF had just been stated without application. All except type
10 activities had been practiced in class. Student F came to my office at the
end of the lecture where EQF was stated, asking for some clarification.

Student F: When we say that we must have f (m) = f (n) if and only if
mRn, I first thought you meant that both the relation and the function
must be given to us?

Interviewer: And now you know that you are only given the equivalence
relation?

Student F: Yes, but, this f, I am not going to use it exactly. I will not have
to evaluate the value of f at any point. I should just find it and that is it?
It looks kind of tentative [undefined] to me. Do I need f for any other
purpose?

Interviewer: Not exactly. You are right. You need to find it for reassurance?
Is that what you meant to say?

Student F: Yes, and I don’t know if I need it to check if R is an equivalence
relation, since this is what I need, right?

Interviewer: Yes.
Student F: I only need to check if R separates the elements of A into subsets

that are not overlapping and if they fill A.
Interviewer: Do you know another name for those subsets?
Student F: A partition, yes. At the same time, they are the equivalence

classes, of course. So, if R creates such equivalence classes, then it must
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be an equivalence relation. It is a feeling only. I know that I cannot
present the proof this way; it is not formal yet, if you know what I mean.

Interviewer: Yes, but you have not used f yet.
Student F: Exactly. Those elements that are in the same subset (of the R-

created partition), f must send them to the same image. But in order to
find f, I start from the end exactly as in a backward proof: I need to have
a feel for what makes the partition the way it is, and what the relation is
exactly doing, and why the elements of A are grouped in a certain way
in those subsets (which will later be equivalence classes). When I figure
this out, I can form f, as if I am guessing and checking and all that.

The mental construction witnessed in this excerpt is the implicit interi-
orization into a process of the action of checking for the elements that are
related to each other. This corresponds to the cognitive tools described in
step 1 of the genetic decomposition. Also, the mental construction in step
3 is demonstrated since the student was able to describe although he did
not exactly execute the mentioned steps. The activities that promoted such
a construction are of type 4 and 9.

7.6. A comparison between DEQ and EQF

The following is a very interesting comment as far as the different roles
that an equivalence relation and a function play.

Interviewer: To show that a relation R is an equivalence relation, when
would it be easier for you, if at all, to come up with a function f that
maps elements related via R to a common image, rather than to verify
that R is reflexive, symmetric and transitive?

Student I: Rarely. But I can say that theorem EQF is used when we are
able to visualize R through its classes. In that case, constructing a func-
tion that maps elements in one class to a common image is easier or
more straightforward than showing that R is reflexive, symmetric and
transitive. In a way f and R do the same thing. The relation would say
elements are related to each other, whereas the function would say they
are mapped to the same place.

What paved the way to such an insightful observation is the practice
of activities of type 10 that promote the sought coordination between the
different set structures. We can see that in order for a student to make such
an observation he must have had a deep understanding of the material that
allowed him to express such a clear comparison between cases that involve
a visualization of R and f.
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8. CONCLUSION

In an attempt to evaluate the genetic decomposition, I demonstrated to some
extent, how in successful cases of learning, the students made the mental
constructions listed in the genetic decomposition. At the same time, in
an attempt to evaluate the instructional procedures, I pointed out to the
activities that contributed to this progress.

Yet, I would still consider the genetic decomposition presented above
only as a preliminary decomposition, subject to adjustment and modifi-
cation depending on further interviews with students. Ideally, one should
repeat and revise both the genetic decomposition and the instructional pro-
cedures until a balance is reached.

Overall, I can say that the activities and instructional procedures that I
designed and applied helped in building the mental tools listed the genetic
decomposition at the different stages of learning.

In the future I intend to pursue this interest in observing how stu-
dents perceive equivalent definitions in general, using the same theoretical
framework.

NOTES

1. The fiber structure of a function on that set is the set of preimages of all sets {b} for b

in the range of the function.

2. Understood, by students, as a collection of equivalence classes; students don’t have any

formal notion of quotient structure. The language in which this theoretical analysis is

conducted is not the language of students’ understanding.

3. The term preimages was used in class to mean fiber.
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