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APPREHENDING MATHEMATICAL STRUCTURE: A CASE STUDY
OF COMING TO UNDERSTAND A COMMUTATIVE RING

ABSTRACT. Abstract algebra courses tend to take one of two pedagogical routes: from

examples of mathematics structures through definitions to general theorems, or directly

from definitions to general theorems. The former route seems to be based on the implicit

pedagogical intention that students will use their understanding of particular examples of an

algebraic structure to get a sense of those properties which form the basis of the fundamental

definitions. We will explain the transition from examples to abstract algebra as a series of

shifts of attention and in this paper we will use a case study to examine the initial shift, which

we will call apprehending a structure, and examine how one student came to apprehend

the structure of the commutative ring Z99.
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The teaching of abstract algebra is a disaster, and this remains true almost
independently of the quality of the lectures.

Leron and Dubinsky (1995)

1. INTRODUCTION

To someone with a strong background in abstract algebra, just encoun-
tering the phrase ‘the ring Z99’ may well bring with it a flood of images
and ideas about zero elements, unit elements, zero-divisors and so on. For
them, Z99 is an instance of a commutative ring and as such it inherits all the
properties of commutative rings they have learned (and perhaps proved) in
abstract situations, along with ones which may be peculiar to this instance
(such as, because 99 is composite, having zero-divisors). To teachers, how-
ever, encouraging students to engage in tasks such as the investigation of
the properties of Z99 can be intended to serve a complementary purpose:
to enable the students to attend to the interrelationships between the el-
ements of Z99 which appear as consequences of the modular operations,
as a preparation for the later development of formal definitions related to
commutative rings.

This paper will explore the extent to which this complementary purpose
is fulfilled for one student and how she begins to make sense of structure.
In that sense, it complements papers which focus on how undergraduate
students make sense of the processes and objects of their mathematical
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studies (Asiala et al., 1996; Gray and Tall, 1994; Sfard, 1991) and how they
come to understand the fundamental notions of formal proof (Alibert and
Thomas, 1991; Harel and Sowder, 1998; Moore, 1994; Selden and Selden,
2002). First the paper will explore the concept of the acquisition of structural
sense, particularly in the context of abstract algebra, and define what we
mean by ‘apprehending structure’ in terms of relationships between objects.
We will then explore the pedagogical routes to abstract algebra and the
teaching intentions that implicitly inform them. In analyzing the data from
our case study, we will suggest that Karmiloff-Smith’s (1992) notion of
representational redescription provides a suitable way of accounting for
the development of structural apprehension.

The main part of the paper will contextualize the idea of apprehending
structure through a detailed examination of one student’s development as
she tries to make sense of a structure which was intended to be a conceptual
basis of a commutative ring. Over a period of three years, from her first
encounter with the structure, to her communicating her discoveries and
understandings in a diploma thesis, data was collected in a variety of ways.
Looking at both small scale conceptions of objects and particular operations
within the structure and the conception of the structure as a whole, we will
show that there is a consistent pattern in the shift of her attention from
particular objects and operations to the interrelationships of objects caused
by the operations. This is accompanied by an increasing consciousness and
ability to communicate that shifted attention.

Finally, we will consider the implications of our perspective for differing
pedagogical strategies for teaching abstract algebra.

2. ABSTRACT ALGEBRA

The existing research literature concerning how students learn abstract
algebra splits into concerns about common student misconceptions, and
explorations of innovative teaching experiments based on the genetic
decomposition of fundamental algebraic concepts. Many of the funda-
mental misconceptions, such as confusing a theorem with its converse
(Hazzan and Leron, 1996) or difficulties distinguishing between a set and
an element of the set (Selden and Selden, 1978), may be of more general
concern than the cognitive development of abstract algebra. Others, such
as a lack of focus on the structure’s given operations (Hart, 1994) and using
techniques and ideas from systems other than the one under consideration
(Hazzan, 1994), seem more fundamentally related to the nature of learning
abstract algebra and it is on these ideas that our theoretical account and
case study analysis will focus.
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A second stream of literature depends upon the development of in-
novative courses in abstract algebra, founded upon the idea of a genetic
decomposition of concepts using the notion that the transition from action
through process to object conceptions are often fundamental in many areas
of mathematics (Asiala et al., 1996). In early work on developing a curricu-
lum based on programming operations (such as coset multiplication), and
tests for properties (such as associativity), Dubinsky et al. (1994) hoped
to help students move through these various conceptions. The research
focused on the students’ conceptions in this type of course and demon-
strated significant difficulties with making process-object transitions and
with understanding structural concepts which involve working with sub-
structures, such as cosets, quotient groups and normality (Asiala et al.,
1997). Other investigations in the same theoretical tradition have focused
on student difficulties with particular algebraic structures or examples, such
as permutation and symmetry (Asiala et al., 1998) or the dihedral group
D4 (Zazkis et al., 1996).

Hazzan (1999), in a more general exploration of abstract algebra, intro-
duces the notion of reducing abstraction as a ‘plausible theoretical frame-
work to explain students’ ways of thinking in abstract algebra situations’.
Reducing abstraction may involve basing arguments on familiar objects
and operations (rather than the more abstract or unusual ones intended by
the teacher), interpreting definitional properties (such as commutativity) as
procedural instructions and working with an element from a set rather than
the set as a whole or working with an instance rather than the generality.
The opportunity to reduce abstraction may depend to a large extent on the
way the teaching is organized.

3. ATTENTIONAL SHIFTS IN LEARNING ABSTRACT ALGEBRA

We contend that there are two basic teaching strategies observable in most
textbooks and descriptions of courses, and that these can be related to im-
plicit intentions concerning the problem of reducing abstraction. Teaching
the definitions of algebraic structures before examining examples might en-
courage students to work at high levels of abstraction from the beginning.
Teaching from examples of structures to definitions of those structures,
however, carries the implicit pedagogical intention of encouraging stu-
dents to attend to aspects of the particular which will appear as important
facets of the general (Mason and Pimm, 1984). Indeed, Skemp argues that
this examples-to-definitions route is cognitively necessary:

Concepts of a higher order than those which people already have cannot be com-
municated to them by a definition, but only by arranging for them to encounter a
suitable collection of examples.
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Since in mathematics these examples are almost invariably other concepts, it
must first be ensured that these are already formed in the mind of the learner.

(Skemp, 1971)

For example, in working with sets of permutations and the operation
of composition, students are encouraged to attend to permutations which
reverse the action of others, to a permutation which appears to have no
effect, to the importance of the order in which permutations are composed,
etc. This, it is supposed, will enable them to make sense of the properties
which define ‘group’ or are important in the general analysis of groups.

Dreyfus, however, argues that, for some students, the route through
examples may be superfluous or even a distraction:

[One student] was able to learn directly about abstract algebraic structures, and
concrete representations tended to disturb him, if anything. When asked if a given
structure was a ring, he immediately realized he needed to prove three things
and proceeded to prove these with maximal reliance on earlier proved struc-
tural results. A similar situation may pertain to advanced mathematics students
who have had the opportunity to acquire considerable experience with abstrac-
tion; this experience is likely to make some of the above stages superfluous
and, for complex mathematical structures, even a hindrance to abstraction . . .
abstraction from one, or even from zero cases, may be seen to be easier for such
students.

(Dreyfus, 1991)

We suggest that moving from examples to formality involves multiple
shifts of attention (in the sense of Mason, 1989). In coming to understand a
particular set and operation as an example of a structure, the student has to
make sense of it in two stages. Clearly they must first understand how each
operation works and what the objects in the set are. This is not necessarily
straightforward: coming to understand, say, permutations as objects which
the operation of composition can act upon is far from automatic (Asiala
et al., 1998) and certainly encapsulating permutations as objects seems
necessary for the second stage of understanding the structure of a given
group of permutations.

This second stage involves attending to interrelationships between ob-
jects which are the consequences of the operations.1 In particular, the stu-
dents should come to attend to interrelationships amongst elements within
the particular structure which are important in the general theory. In the
case of using particular permutation groups to motivate the definition and
subsequent analysis of group theory, we, as teachers, would like our stu-
dents to attend not to the particular objects and operation, but to the fact
that imposing the operation on the set of objects creates interrelationships
which are important, such as associativity, inverses, etc. Thus, to understand
initial examples in preparation for working with the general and formal,
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we want students to shift their attention from the objects and operations to
their relationships.

Subsequent to this, as they are introduced to the formal definitions of,
say, a group, we need them to shift their attention again from the particular
relationships, which are observed in the example, to general statements
of relationships. These general statements need to be seen as definitions
which can be used as the basis for deductions that reveal other general
relationships amongst elements and properties of the structure (theorems).
The power of much abstract algebra comes from this shift – working from
the generality of the definitions to discover further relationships which
tell us about properties which may have been hidden in examples of the
structures (for example that certain sets of permutations may be collected
together and form structures of their own as, say, quotient groups). The
shift of attention from the inter-relationships in the example to those inter-
relationships as examples of the defining properties of the abstract structure
involves a focus on what Dorier (1995) calls the ‘unifying and generalizing
concept’. Sierpinska sees this shift as both necessary and problematic:

Examples are, in understanding abstract concepts, the indispensable prop and the
necessary obstacle. It is on the basis of examples that we make our first guesses.
When we start to probe our guesses, the fundamental role is slowly taken over by
the definitions.

(Sierpinska, 1994)

This shift of attention acts rather like Deacon’s shift from indexical to
symbolic cognition (Deacon, 1997). Deacon contends that symbolic think-
ing catalysed the co-evolution of language and the brain and that systems
of symbols connected, through indexical links, to systems of referents pro-
vide us with ways of working at ever more abstract levels. Importantly, the
generality of the more abstract thinking applies to all applicable examples.

In Deacon’s terms, then, the unstated (and unexplored) pedagogical
intention behind an examples-to-definitions teaching strategy is to encour-
age students to focus attention on the interrelationships between objects
in preparation for providing indexical links between signs like ‘commuta-
tive’, ‘identity’, ‘inverses’, etc. which will later form the basis of the formal
symbol system of, say, group theory. Leron and Dubinsky (1995) also note
the importance of the development of indexical links in the learning of
abstract algebra through an innovative course: “If the students are asked to
construct the group concept on the computer (by programming it), there is
a good chance that a parallel construction will occur in their mind”.

Thus, the transition from working with an example structure to working
abstractly involves an intricate sequence of shifts of attention. These are as
follows:
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1. Seeing the elements in the set as objects upon which the operations act
(which may involve a process-object shift).

2. Attending to the interrelationships between elements in the set which
are consequences of the operations.

3. Seeing the signs used by the teacher in defining the abstract structure as
abstractions of the objects and operations, and seeing the names of the
relationships amongst signs as the names for the relationships amongst
the objects and operations.

4. Seeing other sets and operations as examples of the general structure
and as prototypical of the general structure.

5. Using the formal system of symbols and definitional properties to derive
consequences and seeing that the properties inherent in the theorems are
properties of all examples.

4. APPREHENDING STRUCTURE AND REPRESENTATIONAL

REDESCRIPTION

To some extent this repetitive shifting of attention follows roughly the same
pattern as Piaget and Garcia’s (1989) movement between stages of opera-
tional thinking from intra-, to inter- and then trans-operational thinking.

Oversimplifing drastically, one might say that in the first stage one performs ac-
tions within the objects, with attention to the properties of the objects themselves.
Next, one shifts attention to relationships and transformations between objects and
invariances across objects. Lastly, one builds a higher level structure that embodies
these relationships as its elements and one attends to the properties of this structure.

(Kaput, 1994)

It is important to note that, unlike process-object theories, we do not see
all of the shifts as involving the reification of new objects that have their
genesis in processes on previous objects. The first shift described above
(seeing the elements in the set as objects upon which the operations act) may
indeed involve such a reification. The later stages, however, need not. The
final three stages involve relating the definitional properties of the (teacher-
defined) abstract algebraic structure with the interrelationships noted in the
initial example (and in subsequent instances of the structure).

However, our focal point in this paper is the second shift of attention. We
will define the phrase ‘apprehending structure’2 to encapsulate this shift: by
it, we will mean the shift of attention from the familiarity and specificity of
objects and operations to the sense of interrelationships between the objects
caused by the operations. For example, this may involve moving from a
focus on permutations and composing, to relationships between certain
pairs of permutations (which we will eventually call inverse pairs), between
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one particular permutation (which we will come to call the identity) and all
others, etc. We argue that this shift of attention is an act of what Karmiloff-
Smith calls ‘representational redescription’ (Karmiloff-Smith, 1992).

In an attempt to reconcile nativism and constructivism, Karmiloff-Smith
argues that learners pass through multiple cycles of re-representing, in
different formats, that which they have already internally represented: in
Karmiloff-Smith’s terms, the representation has come to be redescribed.
She does not argue that this is the only source of new material for the
mind, but it is an important one for us in this context, as we believe that
we can account for the move from objects and operations to relationships
and, ultimately, to expressions of generality and deduction as cycles of
representational redescription. Arguing against theorists who posit a ‘mas-
sively modular’ structure to the brain (such as Cosmides and Tooby, 1994),
Karmiloff-Smith suggests “the brain is not prestructured with ready-made
representations; it is channeled to progressively develop representations
via interaction with both the external environment and its own internal
environment.”

It is not clear how this process of channeling takes place. Tomasello
(1999) argues that it is channeled by a single innate structure which en-
courages us to see others as intentional beings and to create, with them,
joint attentional scenes. Informally, we ask ourselves, unconsciously, ‘what
would I have intended me to attend to if I had made that utterance’ every
time we hear someone speak to us. In formal learning contexts (such as
undergraduate abstract algebra classes, where the teacher starts by asking
us to examine particular sets of objects and operations) asking that ques-
tion of ourselves makes us consider what aspects of the sets and objects the
teacher wishes us to attend to and thus, through the process of represen-
tational redescription, we may come to attend to their interrelationships –
that is we begin to apprehend the structure.

The process by which knowledge is redescribed is broken down by
Karmiloff-Smith into four stages, though we will argue that only two (the
first and last) can be seen clearly in students’ behaviour and, while interme-
diate aspects can be seen in our data, the distinction between the middle two
stages is perhaps too subtle for naturalistic studies such as ours to uncover
clearly.

1. Initially information about the structure is encoded as separately stored
procedures, with no intra- or inter-domain connections. At this phase,
the learner might appear to have a set of actions on pre-existing objects
(in the sense of Dubinsky, 1991).

2. These actions become internally redescribed. This redescription is an
act of abstraction which retains only some of the aspects of the full
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procedures (it is an internal description of the procedure, no longer the
procedure itself). At this phase, such a description is unconscious, but
may manifest itself in the wise choice of objects in the structure with
which to work.

3. Learners are able to consciously access the redescription of the proce-
dures, so that they have an appreciation of the relationships within the
structure sufficient to guide them in solving structural problems. How-
ever, they may not be able to verbalise or symbolically express these
relationships. Learners may, for example, note similarities or relation-
ships between objects in the structure, but might not be able to articulate
the nature of the similarity or relationship.

4. The final phase is the ability to communicate directly about the rela-
tionships and properties of the structure.

Despite the difficulty in discerning unconscious redescriptions from
conscious but unsharable ones, the general flow from focusing on existing
objects upon which one acts, through an uncommunicable appreciation of
the relationships inherent in the structure which develops from the actions
on the objects, to a naming and communication about the relationships
seems to be a reasonable account for the transition which is the focus of
this paper: the apprehension of mathematical structure.

5. THE STUDY

The data for this paper was taken from one student who took a particularly
significant role in a larger study about the learning of abstract algebra.
All the students were training to become secondary mathematics teachers
in the Czech Republic. Traditionally these students encounter concepts
of abstract algebra structures quite formally. However, they appear often
to acquire them by memorisation and learning the rules of manipulating
symbols. Not least because of their intended future career, their emphasis
on learning without an apparent appreciation of meaning was of concern.
Therefore, it was decided to carry out a research project on the ways in
which they link or do not link their formal knowledge of algebra acquired
in their university lectures to a particular example of an abstract structure
acquired informally by their own investigations. A research tool was thus
developed which involved an instance of what mathematicians would see
rapidly as an important algebraic structure: Z99.

The students were introduced to a structure consisting of a set,
A2 = {1, 2, . . . , 99}, and two operations ⊕, ⊗ (called z-addition and
z-multiplication respectively). These operations were defined in terms
of what was called a reduction mapping on the naturals: r : N → N,
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r (n) = n − 99 × [n/99], (where [y] is the integer part of y). Initially
the reduction mapping was introduced as a verbal instruction rather than
in mathematical symbols, and was accompanied by examples:

For a natural number n < 100, r (n) = n. If n ≥ 100, we split n into
pairs of digits starting from the units digit and add the pairs together. We
repeat the procedure until we get an element of A2. For example,

r (682) = r (6 + 82) = 88,

r (7 945) = r (79 + 45) = r (124) = r (1 + 24) = 25.

The two operations on A2 were then defined and illustrated as:

∀x, y ∈ A2, x ⊕ y = r (x + y) and x ⊗ y = r (x × y).

For instance, 72 ⊕ 95 = r (167) = 68, 72 ⊗ 95 = r (6 840) = 9.
It is worth noting that, while the structure is disguised so as not to cue

students instantly into seeing the structure as a supposedly familiar one, it
was expected that the students would come to see it as a representation of
Z99. They did not. Certainly all the students would have met some aspects
of modular arithmetic prior to encountering this structure and it was felt that
they might make some connections between their formally taught abstract
algebra and this situation. Again, they did not.

There were originally 12 participants all of whom took part in the first
stage of the research reported here. However, one of them, whom we will
call ‘Molly’, became extremely interested in the work and took up an offer to
continue to work on the topic with a view, eventually, to writing her diploma
thesis about it. In all, from her first encounter to the submission of her
diploma thesis, she worked on and off with the structure for three and a half
years. As a result, her case study database is extremely rich and diverse. She
was communicative, conscientious, had a good rapport with the interviewer
and was willing to speak freely about her thinking. She claimed to like
mathematics and particularly enjoyed solving mathematical problems.

In terms of her knowledge of abstract algebra, when she started
working on the problem, she had briefly met the concept of group, ring
and congruences modulo n (with examples of small n). In her third year
(which corresponds to weeks 78–110 of the study, see Figure 1), she took
a course in which structures with one and two operations were investigated
in more detail.

The data collection consists of three main forms: Interviews, Writing
and Investigations.

Nine one-to-one semi-structured, clinical interviews (in the sense of
Ginsburg, 1981) each lasting between 15 and 60 minutes were carried out
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Figure 1. Overview of data collection.

during which Molly was introduced to the structure by defining A2, the
reduction mapping (as an instruction) and z-addition and z-multiplication.
Then she was given some problems to solve, starting with additive and mul-
tiplicative equations. Later, she posed her own tasks related to the structure.
The interviews were recorded and later transcribed.

Under the heading of ‘writing’, the case study database includes Molly’s
writing for herself and her mathematical description of results she found
about the structure which culminated in her writing a diploma thesis. There
were 7 substantial pieces of writing, many being drafts of the final thesis.
The writing comprises her descriptions of basic properties of the structure,
of her investigation of general powers and of Pythagorean triples in the
structure. As Morgan (1998) suggests, as well as being a good source of
data for the study, “writing can actually help students in their learning of
mathematics, in particular in supporting moves towards the symbolization
of generalizations, but also in supporting reflection and the development
of problem solving processes.”

Alongside much of the writing, Molly was involved in a number of
self-directed investigations into the structure which led to impromptu dis-
cussions with the interviewer, and short pieces of writing. Detailed field
notes were taken of all of these encounters.

In addition, Molly attended a ‘concept map interview’, in which she was
asked to report on a concept map (in the sense of Novak, 1990) which she
had previously completed relating her current ideas about the structure, and
a ‘final interview’ where she answered questions about her views of math-
ematics and mathematics teaching, her experiences as a learner across both
school and university and about her experience with this research study.
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Figure 1 provides an overview of Molly’s encounters with the structure,
the data collected and the times at which the encounters and data collection
took place. The data were analysed using methods adapted from grounded
theory (Glaser and Strauss, 1967) together with atomic analysis, used
particularly for the analysis of students’ written solutions (Hejný, 1992).
The analysis began by exploring the interviews, coding initially on math-
ematical aspects in the transcripts. The transcripts were then summarised
and emergent phenomena noted. These emerging phenomena led to dis-
cerning clear pathways of the development of particular aspects of a math-
ematical structure. This style of analysis and the codes and the categories
were then applied to the remaining data using the constant comparative
methods discussed by Glaser and Strauss (1967), leading to a substantive
theory.

The analysis of Molly’s mathematical writing was done from the view-
point of the following five categories whose choice was inspired by van
Dormolen (1986) and Morgan (1998): structure of writing, style of writ-
ing, presentation of new concepts, vocabulary and symbols, mathematical
validity. In this paper we will explore Molly’s development from the point
of view of how she comes to apprehend the structure of A2.

6. APPREHENDING STRUCTURE

The notion of apprehending structure as the shift of attention from the
familiarity and specificity of objects and operations to the sense of interre-
lationships between the objects caused by the operations can be applied at
many scales. One may attend to particular interrelationships caused when
one looks at operations in particular ways (which we will call ‘small scale’
apprehensions of structure), or one may attend to the way these particular
interrelationships are linked within the structure as a whole (‘large scale’).

It should be noted that the separation of small scale and large scale con-
ceptions is necessarily artificial: it is clearly not the case that Molly first
gained a ‘full’ understanding of one small scale conception, then a ‘full’
understanding of another, and so on until she attained a full apprehension
(or ‘comprehension’) of the whole structure. The development of her con-
ceptions overlap and have been disentangled here only so as to make the
developments more accessible.

We will examine two ‘small scale’ examples of Molly’s apprehension
of some of the structure of A2 under the defined operations – developing in-
verse operations (called z-subtraction and z-division) and apprehending the
structure of zero-divisors in A2. We will also give an account of Molly’s de-
veloping understanding of the structure as a whole. In both of these we will
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see the shift of attention from objects and operations to interrelationships,
as a passage through stages of representational redescription.

6.1. Inverse operations

Having worked with the teacher-given definitions of A2, ⊕, ⊗ and r, Molly
had already begun to attend to structural aspects of A2 which were dis-
tinct from the structural aspects of ordinary arithmetic in N and R, such
as the importance of the object 99. The concept of z-subtraction, however,
did not occur spontaneously for her in these initial explorations. It had
been expected that this might occur as she attempted to solve some addi-
tive equations, but Molly instead developed what we called the ‘strategy
of inverse reduction’ (SIR) in which, on trying to solve an equation like
x⊕ 25 = 6, she considered an ‘inverse reduction’ of 6 (e.g. r (105) = 6) and
implicitly solved x +25 = 105 with her knowledge of ordinary arithmetic.

Having avoided the expected spontaneous development, she was
prompted (at the end of her second interview session) to ‘look at z-
subtraction’ in preparation for interview 3. She was quickly able to cat-
egorise three different situations shown in Figure 2.3

During the same interview, as she discussed the last part of Figure 2, she
said: “If a is smaller than b, (pause) I will get a negative number (pause)

Figure 2. Molly’s discussion of z-subtraction.
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and I drew it on a number line because I know that the two will repeat
itself all the time . . . I calculated an example 3 minus . . . 7 equals minus
4. . . . I simply went the four steps to the left from the zero and came to the
result that 3 − 7 is 95.” Her representation of z-numbers on a number line
suggests that while she retains some imagery for natural numbers she has
a partial awareness of the cyclic nature of the structure she is now working
with.

At this stage we contend that the fact that she saw three separate situ-
ations and used an adaptation of a common representation from familiar
integer arithmetic meant that she was still focused on the objects and oper-
ations and, indeed, on the objects and operations as adaptations of integers
and common arithmetic operations.

Separately from her work on z-subtraction, the notion of inverses ap-
peared in a different context when Molly said that “opposite numbers”4

in Z were, for instance, 3 and −3. When asked to consider the situa-
tion in A2, she gave an example in Figure 3 and stated that the opposite
number exists to any z-number except 99 because 99 − 99 = 0 which is
not a z-number. Later she corrected herself and said that 99 is opposite
to 99.

She then used this implicit additive-inverse notion in her subsequent use
of a procedure for subtracting a bigger number: 4 	 12 = 4⊕(99−12). At
this stage, she did not draw attention to her new procedure for z-subtraction
or make the link between z-additive-inverse and z-subtraction explicit. It
can also be seen at the stage she drew her concept map where z-subtraction is
only directly connected to what Molly called “negative numbers” (which
she put in inverted commas suggesting she sees the relationship as like
negative numbers in ordinary arithmetic), the number 99 and the property
of being closed on a set.

Figure 3. Molly’s discussion of opposite numbers.
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In her mathematical writing (version 1) as she tried to make explicit
her understanding of z-subtraction for her perceived reader, she suggested
a sequence of concepts as follows:

A. Negative number: “. . .Consider the property x ⊕ 99 = x . If we add
number 99 to a negative number, we will get a positive number (this
positive number corresponds to that negative number). E.g. r (−4) =
	 4 ⊕ 99 = 99 	 4 = 95, so r (−4) = 95.”5

B. Z-subtraction: “We already know how to change a negative number
into a positive number in A2, so there is no problem. For example,
6 	 24 = r (−18) ⊕ 99 = 99 	 18 = 81.”

C. Z-subtraction on a number line: “The operation of subtraction can be
best imagined on a number line. There are only numbers from A2 on
this line in such a way that they repeat in a cyclic way. So . . . 52, 53,. . .,
98, 99, 1, 2,. . ., 33, 34, 35,. . ., 14, 15,. . ., 99, 1, . . . .. On our example
6 	 24 we can show how z-subtraction functions on a number line. We
will find number 6 (in any cycle) and move from this number 6 by 24
places to the left. We will get number 81.”

In version 3 of her writing she tried to reconcile her first introduc-
tion of z-subtraction and the structural introduction as the addition of
inverse.

“In the set of A2, classic negative numbers do not exist, that is why
we will introduce the opposite number x ′ which will play a function of
a negative number. . . . It holds x ⊕ x ′ = 99, where x ′ = 99 − x , or
r (−x) = 99 − x , where x ∈ A2.”

In the subsequent writing, she kept the sections A, B, C and included
another definition of the operation: “z-subtraction of two numbers can be
introduced as addition of the opposite number: ∀x, y ∈ A2, x	 y = x⊕ x ′.”

Thus we have seen a shift of attention from the objects and opera-
tions (treated often as objects and operations from ordinary integer arith-
metic), through increasingly explicit focuses on the relationships between
objects (which are part of a new structure), finally to a clear and ex-
plicitly written attention to part of the structure of A2, namely to z-
subtraction and its relationship with z-additive inverse (the ‘opposite
number’).

This same sequence of representational redescription occurs as Molly
shifts attention from objects and operations to relationships in the case of
z-division:

Phase 1: Initially in working on multiplicative equations like x ⊗ 6 = 9,
she did not consider the possibility of z-division and worked with the
SIR procedure. Her focus was on objects and operations (and often as
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Figure 4. Z-division as solving equations.

Figure 5. Noting different categories in z-division.

objects and operations familiar from ordinary arithmetic) (in interviews
2 and 3).

Phases 2–3: When she was prompted to consider z-division, she changed
the problem into solving equations (Figure 4, interview 6) and noted
that certain situations produce multiple answers (Figure 5, interviews 6
and 7).
She also noted the importance of the zero-element in A2 by stating
that in these types of equations “x must not equal 99”. It was not until
version 3 of her writing, that she also explicitly included divisors of 99.
Molly’s understanding of z-division at this stage is confirmed by her
concept map where this operation is directly connected to the closure
property and equations only.

Phase 4: While it took her longer to get to the final stage than with
z-subtraction, by version 6 of her mathematical writing she had both
a procedural approach to z-division (converting into a multiplicative
equation, with provisos about zero-divisors) and a clear focus on
interrelationships within A2, by attending to z-division as multiplication
by the z-multiplicative inverse.

There is a gap in time between her working with z-division and being
able to explicitly discuss the link between z-division and multiplicative
inverses. This might well be because she did not encounter any need to
go beyond this procedural approach which worked for her. We suggest
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that getting to the final stage of her apprehension of z-division was also
facilitated by the need to structure her mathematical knowledge about A2

for her diploma thesis.

6.2. Zero-divisors

The idea of inverse operations is one which Molly would have met in famil-
iar algebraic structures such as integer addition and rational multiplication.
In order to apprehend A2 as an algebraic structure, however, she has to shift
her attention from the familiarity and specificity of the objects and opera-
tions to the interrelationships between the objects caused by the operations
– in the case of A2 many new interrelationships are formed between the
elements of 1, . . . ,99. One such relationship which will be of importance
in later consideration of abstract ring theory is that of zero-divisor.

Molly was not asked any specific questions about zero-divisors: the
concept appeared slowly and naturally from her work with the initial objects
and operations. In the first few interviews she began to notice that certain
of the objects behaved differently from others, particularly when working
with specific multiplicative equations. She noticed that 3, 6, 9, 12 and 15
“cause the equation to have several solutions” (later adding 11 to this list).

In preparation for interview 4, she produced a classification of numbers
according to the number of roots to a multiplicative equation involving
them (Figure 6) which she later made more precise.

A set of numbers identified as the multiples of 3 appeared in interview
6 as numbers which present “problems when cancelling [multiplicative
equations] by them”. By interview 8, she extended this problem set to
include multiples of 11 and at this stage she began to explicitly refer to
them as “special numbers” or “basic numbers” because of their status in
multiplicative equations.

In interview 8, when solving a quadratic equation of the form
a ⊗ x ⊗ x ⊕ b ⊗ x = 99, she changed it to x ⊗ (a ⊗ x ⊕ b) = 99

Figure 6. Classification according to numbers of roots of a multiplicative equation.
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and adapted her knowledge from ordinary arithmetic that a product is zero
if and only if one of the factors is zero (with 99 as the zero element in this
structure) with no obvious sense of the possibility of zero-divisors at this
stage (Figure 7).

In version 2 of her writing, however, there is a stress on multiples of
3 and 11 in the section of multiplicative equations, and in the section on
quadratic equations we see a table which addresses zero-divisors (Figure 8
– note that in her typed written work, she uses ‘\∗’ for z-multiplication and
‘\+‘ for z-addition).

Here, there seems to be some implicit attention to the divisors of 99 (the
zero of A2 under these operations) though it may not be clear whether the
link between 99 being simultaneously the zero and having divisors is clear
to her explicitly at this point. In subsequent versions of her writing, however,
she talked explicitly about ‘divisors of 99’ (Figure 9, writing version 3).

Thus again we see, for a structural conception, the shift from a focus
on objects and operations (perhaps initially seen as objects and operations

Figure 7. Lacking reference to zero-divisors.

Figure 8. Zero-divisors and quadratic equations.



364 ADRIAN SIMPSON AND NADA STEHLÍKOVÁ

Figure 9. Explicit reference to zero-divisors.

from ordinary arithmetic) to a focus on an important inter-relationship
(zero-divisors) caused by the operations and that shift appears to have
followed the general pattern of representational redescription: from the
implicit to the explicit.

6.3. Apprehending A2

We can consider the apprehension of structure on a number of levels. In
the previous two sections, we saw Molly shift her focus from numbers and
the defined operations to seeing particular interrelationships in A2: inverse
operations and zero-divisors. However, the implicit pedagogical intention
of the examples-to-definitions approach is that a fully worked out example
is meant to prepare the student for subsequent shifts of attention, first to
the definitional properties of the abstract structure and then to proofs and
theorems as simultaneously general and applicable to all examples of the
structure. The student needs to see a wide network of interrelationships
which form the structure as a whole.

Thus we are interested not just in Molly’s shift of attention from ob-
jects and operations to inverse operations and zero-divisors, but in how she
comes to apprehend A2 as a preparatory example of a commutative ring.
The long period over which Molly works on the structure and the intensity
with which she engages on the tasks are unusual, but they allow us to map
her changing view of what she thinks she is working with. The vast amount
of data gives considerable detail of her development (Stehlı́ková, 2004)
and, as we mentioned earlier, the act of disentangling specific pieces of her
development is somewhat artificial. However, we can give a sense of the
general direction of her apprehension of the structure by looking, with a
wider focus, on the ways in which she engaged with tasks across the whole
period of the study. We suggest that this, too, shows a form of larger scale
representational redescription in which she moves from working with the
specific (and, in this case, familiar) objects and teacher-given operations,
through an increasing, but unarticulated sense of the interrelationships be-
tween the objects which are consequences of the operations, to a sense of
A2 as a new mathematical structure.
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There are a number of stages which we highlight here in the process of
Molly’s apprehension of the structure of A2. They are roughly chronolog-
ical, but overlapping, showing the longer term and slow development she
went through.

• Initially her attention was on concrete mathematical tasks given by the
interviewer. This involved solving equations, identifying z-divisibility
tests, much of which was discussed above. (Interviews 1 to 7.)

• She moved on to working more generally: finding general solutions (or
general solving strategies) by solving multiple concrete tasks which she
posed herself (Interviews 3 to 9).

For example, when given the task “classify multiplicative equations
according to the number of their roots” she had to pose a number of
particular multiplicative equation problems for herself to be able to
discern the numbers which are important to the classification. After
solving some equations which she got from the interviewer, she solved
the equation c ⊗ x = d for c = 1, 2. . . 13 each time noting for which d
the equation had a solution and how many solutions it produced. While
doing it, she noticed that multiples of 3, 11 and 9 played the key role.
She then explored some other equations for d = 18, 27, 30, 33, 66, etc.
and gradually came to a complete classification.

• As time went on, she began exploring the problem situations given by
the interviewer by solving specific tasks where it appears her burgeoning
sense of the structure of A2 enabled her to choose tasks wisely. (Interview
8 and investigations.)

For example, when given the quite open task to “consider quadratic
equations” she had the opportunity to choose from a wide variety of
initial strategies.

She chose to consider a general equation a ⊗ x2 ⊕ b ⊗ x ⊕ c = 99
(where x2 means x ⊗ x) and distinguished subtypes a ⊗ x2 ⊕ c = 99
(and further into a = 1 and a �= 1) and a ⊗ x2 ⊕ b ⊗ x = 99. For each
subtype, she suggested a solving strategy in general and illustrated it
on examples of equations. The strategy tended to involve changing the
problem into solving linear equations. Then she solved some particular
examples of general quadratic equations using the quadratic formula.
Finally, she distinguished equations where a was a zero-divisor and
showed how to change the formula so that we did not divide by zero-
divisors (again by changing it into a linear equation). She looked into
the problem of the number of roots and their mutual relationships and
got some partial results.

• As she became further involved in the study, she began suggesting and
elaborating her own problem situation. (Investigations.)
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Figure 10. Pythagorean Triples in A2.

In week 135, she suggested that she would like to investigate
Pythagorean triples (PT) and their behavior in A2. She first transferred
the definition of PT into A2 and using her table of z-squares listed all
possible triples for which m ⊕ n = z, where m, n and z were z-squares,
in a long and unorganized table. In the second table, she showed how
these equalities can be used for generating all Pythagorean triples in
A2. For example, from the equality 1 ⊕ 99 = 1, we get 48 triples (e.g.
12 ⊕ 332 = 12, 102 ⊕ 332= 12).

She went on to make the presentation of them more concise by a
table (shown in Figure 10) in which she worked with sets (z-square
roots) rather than individual numbers.

The last table enabled her to see whether properties of PT that hold
in N also hold in A2 and to suggest new properties of PT which only
hold in A2. Finally, she formulated them.

• When she began to write drafts of her diploma thesis, she tended to
order the mathematical concepts in what we could call a chronological
and psychological way: that is, she tended to write the ideas in the order
she had developed them or in the order of her own conceptual difficulty.
(Writing versions 1–4.)

In these early drafts, for example, she had initial sections titled ‘addi-
tion of numbers’ and ‘multiplication of numbers’, followed by sections
on ‘z-zero’, ‘subtraction’ and ‘division’. These reflected the order in
which she had encountered these ideas.

• As she moved to the end of the study, with her later drafts of her thesis
and with advice from others, she reorganized the structure to order the
mathematical concepts in what we could call a mathematical or logical
way: considering the logical dependence of concepts on each other and
ensuring that the foundational issues appear prior to the derived ones.
(Writing versions 5–8.)

In the later drafts, she began with a section on z-addition, but included
in it subsections on z-zero and z-subtraction. Similarly, a section on
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z-multiplication had subsections dealing with z-division. These appear
to reflect a much greater sense of mathematical structure.

• One final aspect which we suggest highlights the larger scale apprehen-
sion of structure in Molly’s work is the movement from procedure, to
partial justification to near-formal proofs. (Writings 1–8.)

In the earliest work and in the first version of her writing, she stated
results and provided only some accompanying examples (albeit increas-
ingly generic ones). For example, she stated that x ⊕ 99 = x with only
one accompanying example.

In version 2 of her writing, there was an attempt at the proof of some
divisibility tests.

By writing version 6, she had a number of more formal proofs (in-
cluding proving that x ⊕ 99 = x using inverse reduction).

7. DISCUSSION AND CONCLUSIONS

Across the data collected over the three and a half years of Molly’s work,
we can see the gradual development of a structural sense of A2. She has
moved from adding numbers in A2 through using (without articulating)
some relationships, finally to explicating and partially proving these re-
lationships. Her attention has shifted from the (teacher-given) objects and
operations to the general interrelationships between those objects which are
consequences of the operations. She has begun to apprehend the structure
of A2.

Recall, however, that this study was focused on just one shift
of attention from a number of shifts needed to move along the
route intended by examples-to-definitions pedagogies towards abstract
algebra.

To get beyond apprehending the structure of an example to working
abstractly, Molly still (at the time of her diploma submission) needed
to:

• see the signs used by the teacher in defining the abstract structure as
abstractions of the objects and operations, and see the names of the
relationships amongst signs as the names for the relationships amongst
the objects and operations.

• see other sets and operations as examples of the general structure and
as prototypical of the general structure.

• use the formal system of symbols and definitional properties to derive
consequences and seeing that the properties inherent in the theorems are
properties of all examples.
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However, one of the aspects of Molly’s case which is interesting is
that, over the course of the 188 weeks of work on A2, she obviously did
a considerable amount of other mathematical activity as part of her de-
gree. Much of that activity was very formal and some of it was abstract
algebra!

At the same time as her detailed exploration of A2, Molly took formal
mathematical courses which covered groups, rings and fields. Thus, she
had access to the teacher-given signs used to define a commutative ring
with identity and had at least seen the formal derivations of the central
theorems and had important ideas highlighted. So Molly would appear to
have access to the stimulus to make at least one further shift of attention:
linking together her example structure and the formal, general mathemat-
ics. What surprised us most is that – despite Molly’s enthusiasm, hard
work and apparent level of intelligence – there is no evidence that she did
so.

The way that Molly was encouraged to work with the structure was
deliberately designed to downplay the role of the teacher as authority.
While the structure itself, and the initial tasks, were set by the teacher, the
direction her exploration took, the later choice of tasks and, importantly,
what she chose to attend to were her own concern. The ‘teacher’ (the
interviewer) tried, as much as possible, not to influence her.

We suggest that it is this which may be at the heart of both the time
it took for Molly to attain a suitable apprehension of the structure of A2

and the lack of what were, for us, obvious links between the A2 structure
and the formal mathematics she was learning simultaneously. One might
argue that there was something deliberate in Molly’s inability to link her
detailed work with the A2 structure to her knowledge of formal abstract
algebra, but we argue that without guidance about what to attend to, Molly
(like many other students) was unable to spontaneously shift her attention
in an appropriate direction.

Attention can easily shift in many different directions. Particularly after
the initial explorations, Molly could choose to attend to any aspect of
A2 that she wished. The choice to investigate Pythagorean triples and ‘z-
pyramids’ (neither of which would appear to be an obvious fruitful line of
enquiry to an algebraist) indicate that her attention may still be guided by
her thinking about the arithmetic of natural numbers. What seems important
in the development of an examples-to-generality pedagogy is not the free-
for-all of unguided discovery, but an emphasis on the guidance of joint
attention: on teacher and learner making sense of structures together, with
the teacher able to explicitly guide attention to, first, those aspects of the
structure which will be the basis of later abstraction and, then, to the links
between the formal and general with the specific example.
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NOTES

1. We make the distinction between inter-relationships between objects and properties of

objects. A property of an object is something which pertains to it, in and of itself or

its constituent parts, and not in its relationship to other objects. Thus being a complete

linearly ordered field is a property of the reals, since it is a consequence of the structure

of R and its elements. The statement ‘17 is prime’, however much it might look like a

statement about a property of 17, is either properly thought of as a property of N or as a

relationship between 17 and other naturals and which is a consequence of the operation

of multiplication.

2. We use the word ‘apprehend’ advisedly and in its original meaning of ‘to lay hold of in

the mind’. Sierpinska (1994) links Dewey’s use of apprehension to Piaget’s assimilation

and comprehension to accommodation. In contrast, as part of the new term we are

defining here (‘apprehending structure’ as a particular shift of attention) we associate

‘apprehending’ with laying hold mentally in part against ‘comprehending’ as ‘embracing

or understanding in all its compass and extent’.

3. Where appropriate, Molly’s work is either translated into English, or (in scanned exam-

ples of her work) translations of important words are written in cursive script beside her

Czech language originals. Also note that the Czech letter ‘č’ appears regularly. This is

the first letter of the Czech word for ‘number’ – čı́slo – and would be used as English

speakers would use ‘n’.

4. In the Czech language, the additive inverse is also often called “opačné číslo” (opposite

number) in mathematics textbooks.

5. She only appeared to mean negative numbers which can result from subtracting two

z-numbers.
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Department of Mathematics and Mathematical Education
Faculty of Education, Charles University
M.D. Rettigove 4
116 39 Praha 1
Czech Republic
E-mail: nada.stehlikova@pedf.cuni.cz


