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Nowadays there is growing interest in the use of semiotic ideas for math-
ematics education. Some examples are provided by the work presented at
the Psychology of Mathematics Education conferences (Ernest, 1993; Vile
and Lerman, 1996), and those carried out from the symbolic interaction-
ism perspective (e.g., Cobb and Bauersfeld, 1995), which emphasize the
ideas of meaning and negotiation of meanings. Works relating to repre-
sentation (Duval, 1993), symbolization and communication (Pimm, 1995;
Cobb et al., 2000), mathematics as semiosis (Anderson et al., 2003), and, in
general, to the role of language (Ellerton and Clarkson, 1996) in the teach-
ing and learning of mathematics, as well as research into understanding
of mathematics (Sierpinska, 1994; Godino, 1996), cannot avoid concern
about meaning either.

This interest is a natural consequence of the essential role played by
the expressive tools in thinking processes. Thus Vygotsky (1934/1993)
considers the meaning of words as the basic unit for thinking activity, and
Cassirer (1971) suggests that signs are not mere eventual covers of thought,
but they are essential and necessary to it.

All of this suggests that we need to analyze the role of signs and the
idea of meaning itself, from the mathematics education perspective, and to
articulate the semiotic and epistemological components of mathematical
activity. It is urgent to reflect on the nature and type of objects involved
in mathematical activity: “What we understand by meaning and under-
standing is far from being obvious, in spite of being two central terms in
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any discussion on the learning and teaching of mathematics at any level”
(Pimm, 1995, p. 3).

Mathematical symbols (signifiers) refer or replace conceptual entities
(meanings). In addition to the mathematical symbolic syntax, its semantics,
and pragmatics – that is, the nature of mathematical concepts, propositions
and their relationship to contexts and situation-problems – is crucial in
instructional processes. It is, therefore, necessary to build theoretical mod-
els that articulate the semiotic, epistemological, psychological and socio-
cultural dimensions in mathematics education. This involves taking into
account the following elements and assumptions:

• Diversity of objects involved in mathematical activity, on both the ex-
pression and content planes.

• Diversity of semiotic acts and processes (interpretation) among the dif-
ferent types of objects and in the production of signs.

• Diversity of psycho-social contexts and circumstances that determine
and relativize the semiotic processes.

In this paper we summarize and extend the theoretical notions proposed
by Godino (1996) and Godino and Batanero (1994, 1998), which represent
an ontological and semiotical approach to mathematics cognition, partic-
ularly adapted to the study of teaching-learning processes and where we
incorporate pragmatic and anthropological assumptions about mathemati-
cal activity.

We also apply this theoretical framework to analyze and explain the dif-
ficulties found by university students with high-level mathematical training
when solving simple combinatorial problems. The empirical data and the
problems analyzed are taken from Roa (2000). This author gave a question-
naire with 13 simple combinatorial problems to a sample of 118 students
majoring in Mathematics (4th or 5th year of university study), who gener-
ally found it difficult to solve the problems (each student only solved an
average number of 6 problems correctly).

The article is structured in the following sections:

• Theoretical model for mathematics cognition and its background
• Meanings of mathematical objects. Elementary combinatorics and its

basic elements.
• Dual dimensions in solving combinatorial problems and mathematical

activity.
• Comparative analysis of four students’ personal meanings of elementary

combinatorics. Implications for teaching.
• Other applications of semiotic analysis and implications for mathematics

education.
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1. BACKGROUND

In this paper we describe an ontological and semiotic model, as a the-
oretical tool for jointly analysing mathematical thinking, the ostensives
that support it and the situations and factors conditioning its develop-
ment. Our approach is ontologic and semiotic, given the essential role
we attribute to language and our categorization of the different types of
objects that emerge in mathematical activity. We conceive of mathemat-
ical language in a wide sense, that includes a variety of expressions and
consider as mathematical object any kind of real or imaginary entity to
which we refer when performing, communicating or learning mathematics.
The model comes within social-constructivist philosophy (Ernest, 1998),
whereby mathematics is conceived of as a human activity and the ob-
jects emerging from this activity are seen as cultural entities. One central
problem for any philosophy of mathematics is the existence and nature of
mathematical objects. As Ernest said, we should recognize the objectiv-
ity of mathematics, without assuming an existence independent of people.
In social constructivism mathematical objects are social constructs de-
rived from mathematical discourse: “Mathematical signifiers and signifieds
are mutually interacting and constituting, so the discourse of mathematics
which seems to name objects outside of itself is in fact the agent of their
creation, maintenance, and elaboration, through its use” (Ernest, 1998,
p. 193).

We start from previous theoretical notions (Godino and Batanero, 1994,
1998) about institutional and personal meaning of mathematical objects,
where, basing on pragmatic assumptions, we focused on institutional math-
ematical knowledge, without forgetting the individuals, which are the focus
of educational effort.

In that work, we conceive the meaning of a mathematical object (e.g.,
real number, function, etc.), as “systems of practices carried out to solve
certain types of problems.” These operative and discursive practices can
either be attributed to individuals – and then we speak of personal meaning
of the object, or be shared in an institution – and then we consider the
corresponding institutional meaning.

We also adopt Hjemslev’s (1943) vision of meaning, as the content of a
sign function, which is described by Eco (1979) as “semiotic function”, and
interpreted as that to which a subject refers at a given time and circumstance,
and not just as a mental entity (basic assumption in Saussure’s semiotic,
1916). We refer to “systems of practices”, in some communicative acts,
while at other times we refer to the constituent elements of such systems.
Even ideas or abstractions can symbolize other ideas, in consonance with
Peirce’s semiotics (Eco, 1979).
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In the following we summarize this ontological model, which is
proposed as an analytical and explanatory tool for mathematical knowl-
edge and includes six types of primary entities and five dual facets from
which those primary entities can be considered.

Primary entities:

(1) Language (terms, expressions, notations, graphics);
(2) Situations (problems, extra or intra-mathematical applications, exer-

cises, etc.);
(3) Subjects’ actions when solving mathematical tasks (operations, algo-

rithms, techniques, procedures);
(4) Concepts, given by their definitions or descriptions (number, point,

straight line, mean, function, etc.);
(5) Properties or attributes, which usually are given as statements or propo-

sitions;
(6) Arguments used to validate and explain the propositions (deductive,

inductive, etc.).

These six types of objects are primary constituents of more complex
mathematical objects or organizations, such as conceptual systems or the-
ories. We conceive them as functional entities, in such a way that the distinc-
tion between concept, property, action, argument is not absolute but relative
to the language game: “The objects of mathematics are taken to exist only
within systems of thought and culture. They are semiotic objects brought
into being by conversation rooted in forms of life” (Ernest, 1998, p. 255).

Language is the focus of attention for didactics, without forgetting math-
ematical activity and the non-linguistic cultural objects emerging there-
from. The systems of operative and discursive practices identified in a pre-
vious article (Godino and Batanero, 1998) are still considered the essential
theoretical objects of didactical analysis. Concepts are entities defined by
mathematical discourse, whereas properties/propositions should be proven
or justified (Brown, 1998). Linguistic entities play a representational and in-
strumental role. Even when part of mathematical activity is mental, it would
be hard to perform mathematical work without the resource of writing and
other material registers. Mathematical problems promote and contextualize
mathematical activity and constitute its practical component, together with
actions (algorithms, procedures). Discursive elements (concepts, proper-
ties, arguments) describe, generalize and justify the problem solutions. The
possibility that each of these types of primary entities can be broken down
into other subtypes is open, as suggested in the enumeration given when
describing them: language (terms, expressions, notations, etc.), situations
(problems, exercises, tasks, etc.), etc.
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The ontological model is complemented with five cognitive facets from
which the previous entities can be considered. Depending on the contex-
tual circumstances and the language game, mathematical entities can be
analyzed from the dual facets: personal – institutional, ostensive – non-
ostensive, example – type, elemental – systemic, expression – content. This
is certainly a complex model, but it is also a powerful descriptive and
explanatory tool for analysing mathematical cognition and the semiosis
processes.

Since our approach to mathematical cognition is semiotic, we should
describe knowledge (or lack of knowledge) in semiotic terms. For us, a
semiotic conflict is any discordance, disparity or mismatch between the
meanings attributed to the same expression by two different subjects (peo-
ple or institutions) in the interactive communication. Semiotic conflicts
are identified not by the student himself, but by the lecturer or researcher
who can compare the meanings with a reference point. We try to give an
alternative explanation of students’ misunderstanding and lack of mathe-
matical competence in terms of potential semiotic conflicts. Our ontology
is open to include new entities and facets, whenever they help to identify
the meanings involved in mathematical practice and discourse and explain
the origin of semiotic conflicts in didactical interaction.

In the following sections we first describe our onto-semiotic model us-
ing elementary combinatorics as an example and later apply the model to
analyze the university students’ processes in solving a sample of combina-
toric problems. As a consequence we show the cognitive complexity of the
elementary combinatorics and explain the difficulty of tasks by highlight-
ing semiotic conflicts and incorrect application of elements of meaning that
are not usually taken into account in the teaching of combinatorics.

2. MATHEMATICAL OBJECTS AND ELEMENTS OF MEANING: THE CASE

OF ELEMENTARY COMBINATORICS

In the following we consider a mathematical object as anything that can
be used, suggested or pointed to when doing, communicating or learning
mathematics (Blumer, 1969). Below we analyze the different types of ob-
jects involved in mathematical activity for the specific case of elementary
combinatorics.

2.1. Combinatorial problems

These are those problems and applications in mathematics or other areas
that induce combinatorial activity, and from which combinatorial concepts
have emerged. One example is given below:
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TABLE I
Different possibilities in the selection model

Ordered sample Non-ordered sample

Replacement ARm,n CRm,n

No replacement Am,n Cm,n

Problem 1: In a box there are four numbered marbles (with the digits 2, 4, 7, 9).
We choose one of the marbles and note down its number. Then we put the marble
back into the box. We repeat the process until we form a three-digit number. How
many different three-digit numbers is it possible to obtain? For example, we might
obtain the number 222.

Problem 1 is a typical example of a wider class of selection problems,
where a set of m (usually distinct) objects is considered, from which a
sample of n elements must be drawn. The keyword “choose”, included in
the problem statement, suggests to the student the idea of sampling marbles
from a box. Other key verbs that usually refer to the idea of sampling
are “select” “take”, “draw”, “gather”, “pick”, etc. We might substitute the
marbles with people or objects.

In selecting a sample, sometimes it is permitted to repeat one or more
elements in the sample, as in problem 1 and on other occasions this is not
possible. According to this possibility and whether the order in which the
sample taken is relevant or not, we obtain the four basic combinatorial
operations shown in Table I: ARm,n (arrangements with repetition of m
elements, taken n at a time), Am,n (arrangements of m elements, taken n
at a time), CRm,n (combinations with repetition of m elements, taken n
at a time) and Cm,n (combinations of m elements, taken n at a time). We
should also note that the permutation An,n = Pn is a particular case of
arrangement.

A second type of problem refers to the distribution of a set of n ob-
jects into m cells, such as in the following problem, in which each of the
three identical cards must be introduced (placed) into one of four different
envelopes.

Problem 2: Supposing we have three identical letters, we want to place them into
four different colored envelopes: yellow, blue, red and green. It is only possible to
introduce one letter into each different envelope. In how many ways can the three
identical letters be placed into the four different envelopes? For example, we could
introduce one letter into the yellow envelope, another into the blue envelope and
the last one into the green envelope.

In this case, two different groups of objects intervene (letters and en-
velopes); therefore it is not easy to apply the rule “ordered/not ordered” to
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solve the problem. In the example the letters are identical and cannot be
ordered, although we can order the group of envelopes.

Other key verbs that could be interpreted in the distribution model are
“place”, “introduce”, “assign”, “store”, etc. The solution to this problem is
C4,3, but there are many different possibilities in this model, depending on
the following features:

• Whether the objects to be distributed are identical (as in this problem)
or not;

• Whether the containers are identical or not, as in the example;
• Whether the containers are ordered or not (in case of different contain-

ers);
• Whether we must order the objects placed into the containers; this makes

no sense in problem 2 since the objects are identical;
• The conditions that you add to the distribution, such as the maximum

number of objects in each cell, or the possibility of having empty cells
and so on. In the problem proposed you may only introduce one letter into
each envelope and there is one envelope left empty, but these conditions
could be changed.

Assigning n objects to m cells is equivalent, from a mathematical point
of view, to establishing an application from the set of n objects to the set of
m cells. For injective applications we obtain the arrangements; in the case
of a bijection we obtain the permutations. Nevertheless, there is no direct
definition for the combinations using the idea of application. Moreover,
if we consider a non-injective application, we could obtain a problem for
which the solution is not a basic combinatorial operation, so there is not a
different combinatorial operation for each different possible distribution.
For example, if we consider the non-ordered distribution of n different
objects into m identical cells, we obtain the second kind Stirling numbers
Sn,m . Consequently, it is not possible to translate each distribution problem
into a sampling problem. The reader may find a comprehensive study of
Stirling numbers in Grimaldi (1989) and for the different possibilities in
the distribution model in Dubois (1984).

Finally, we might also be interested in splitting a set of n objects into m
subsets, that is, performing a partition of the set, as in problem 3.

Problem 3: A boy has four different colored cars (black, orange, white and green)
and he decides to give out the cars to his friends Fernando, Luis and Teresa. In
how many different ways can he distribute the cars? For example, he could give
all the cars to Luis.

We could visualize the distribution of n objects into m cells as the par-
tition of a set of n elements into m subsets (the cells). Consequently, there
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is a bijective correspondence between the models of partition and distribu-
tion considered by Dubois (1984), although for the pupils this might be not
evident. Therefore, we cannot assume that the three types of problems de-
scribed (selections, distributions and partitions) are equivalent in difficulty,
though they may correspond to the same combinatorial operation.

Finally, in compound combinatorial problems, one or more simple
problems are combined by the product or addition rules, as in the fol-
lowing case, where distribution and selection models are combined in a
problem.

Problem 4: A boy has twelve playing cards: nine of them are numbered with the
digits 1, 2, 3, 4, 5, 6, 7, 8 and 9. The three remaining are the figures: jack, queen
and king. In how many different ways can the boy arrange four of these cards in a
row, with the condition that the three figures are always selected? Example: jack,
queen, king, 1.

We note that all the problems to be analyzed in this paper are count-
ing problems, where we are asked to count the number of combinatorial
configurations with a given structure. We will not analyze existence, enu-
meration, classification and optimization combinatorial problems. These
problems are described in detail elsewhere (Batanero et al., 1994).

2.2. Combinatorial language

When solving the above problems, or when describing them to another
person, we use terms, expressions, notations, and graphics. For example, in
the previous section we used the words ‘selection’, ‘partition’, ‘repetition’,
‘combinations’, ‘permutations’, ‘arrangements’, etc.

We represent abstract objects (combinations, combinations with repe-
tition) and concrete situations (groups of two elements in a set with four
elements) with symbolic notation, such as C4,2, CRm,n . We also use these
symbols to represent both specific or variable numeric values, e.g., we can
represent the number 6 by C4,2. Later on, these notations will serve to op-
erate with the represented quantities and variables and therefore, symbols
play a representational and instrumental role.

Other useful representations are tabular arrangements (Pascal’s combi-
natorial triangle is a typical example), tree and Venn diagrams, figurative
and iconic elements. In Figures 1 and 2 we reproduce the solutions given
by a student (Pedro, case 1) to problems 1 and 2 in Roa’s research, which
were incorrect, since the use of figurative elements was unproductive. In
problem 1 (Figure 1), Pedro lacked the systematic enumeration ability to
complete the tree diagram. In problem 2 (Figure 2), the representation used
did not take into account the fact that the letters were indistinguishable.
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Figure 1. Pedro’s solution to problem 1.

Figure 2. Pedro’s solution to problem 2.

In the above examples, linguistic elements are given in written or graphic
form within a text, although we also use oral and gestural registers in
mathematical work; for example, a deaf student might use sign language.

2.3. Subjects’ actions when confronted with mathematical tasks

When faced with a mathematical problem, subjects need to carry out diverse
actions (algorithms, techniques, computations, etc.) to obtain the solution.
Let us consider problem 3, which was the most difficult problem in Roa’s
research (only 9.4% of students provided the correct solution).

In the problem statement, it is easy to identify the partition scheme (dis-
tributing the group of four different cars into one or several subsets, to give
them to one, two or three of the children, which are also distinguishable).
There are no additional conditions about the distribution of cars. We there-
fore have to divide a group of 4 distinguishable elements (the cars) into
3 distinguishable sets (the children), one of which at least is not empty,
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and the union of them should produce the original set. The order of the
elements within each subset of the partition is not considered.

In Spanish schools and textbooks combinatorial operations are defined
by means of the selection scheme, using Table I. Students in our research
were familiar with these definitions. Therefore, we expect them to carry
out the following actions to solve problem 3:

• Translating the problem statement (partition model) into an equivalent
problem in the selection scheme, where it is easier for students to apply
the combinatorial formulae. In doing this translation, students need to
exchange the parameters m and n.

• Identifying the sampling conditions: this is a sampling with a replacement
situation, since the same child can receive more than a car; the selection
order is relevant, as it influences the result: the first child chosen receives
the black car; the second the orange car and so on.

• Recognizing the conditions in which it is possible to apply the concept
of “arrangements with repetition of 3 objects taken 4 at a time.”

• Remembering and operating with the formula R3,4 = 34.
• Carrying out the arithmetic operations 34 = 3 × 3 × 3 × 3 = 81.

This is one possible way to solve the problem. Those students who have
studied advanced combinatorics might directly apply the partition scheme
and find a direct formula. Students without any previous instruction or
students who forget the formula might apply a direct combinatorial or
arithmetic reasoning, or carry out a systematic enumeration of the different
possibilities.

2.4. Combinatorial concepts

In the previous description of mathematical activity, it is easy to note that
students should not just carry out actions on the symbols or material objects
they operate with, but that they also need to evoke the definitions of differ-
ent mathematical objects, such as combinatorial configuration, partition,
selection, arrangement, group, subset, parameters, permutations, combina-
tions, etc. These concepts emerge as a result of people carrying out some
types of actions (e.g., ordering a group of objects, selection samples, doing
partitions) and reflecting about these actions.

2.5. Properties or attributes

Concepts are specified by different properties and attributes that refer to the
conditions for carrying out the actions, the specific characteristics of the
situations and the relationships between objects. For example, the selection
of samples may be with or without replacement, the samples may be ordered
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or not; combinations are obtained as the quotient between arrangements
and permutations.

2.6. Arguments

Finally, all these actions and objects are linked by arguments or reasoning
that are used to check the problem solutions and to explain these solutions to
others. These arguments are not limited to deductive proofs. For example,
a student might carry out a partial or total enumeration of all the ways
in which it is possible to distribute the cars in problem 4 to validate the
solution obtained by a combinatorial formula.

The six types of objects described intervene in mathematical activity
as the basic primary constituents for other more complex mathematical
objects, such as conceptual systems or theories.

Mathematical problems promote and contextualize mathematical activ-
ity, and together with actions, constitute the praxemic or phenomenological
component of mathematics (praxis) as proposed by Chevallard (1997). The
three remaining components (concept-definitions, properties, arguments)
are produced by reflective practice, and constitute the theoretical or discur-
sive component (logos).

This grouping of mathematical entities in praxis and logos does not
mean their mutual independence. Language is an intrinsic element of both
praxis and logos; the logos is justified by praxis, and the latter is developed
and governed by logos.

3. FACETS OF MATHEMATICAL KNOWLEDGE

In addition to the different types of mathematical entities described in
the previous section, we consider different dual facets, when analyzing
didactical processes.

3.1. Personal – institutional

In each category above we may refer to a personal or institutional object.
Problems, language, actions, concepts, properties and arguments might
be idiosyncratic to a particular person or be shared inside an institu-
tion. For example, we might be interested in the personal point of view
when analyzing the students’ answers to problems 1 and 4. When prepar-
ing the tests to evaluate the students’ knowledge, when analyzing text-
books or curricular documents, we focus on the institutional point of view,
which is the reference to understand and evaluate the teaching and learning
process.
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Figure 3. Pedro’s solution to problem 3.

From the institutional point of view, the cars to be distributed in prob-
lem 3 are distinguishable, and this fact conditions the problem solution, and
therefore, the combinatorial operation that solves the problem. This inter-
pretation was not obvious, however, for the students in Roa (2000) who
found problem 3 to be very difficult. To explain the difficulty of this and
other problems, Roa carried out a semiotic analysis of the students’ written
answers, which was complemented with interviews. Below, we analyze
Pedro’s solution to problem 3. Pedro’s personal meaning for this problem
does not coincide with the foreseen institutional meaning.

Pedro found great difficulty in combinatorial problems (he only solved
correctly 5 out of the 13 problems in the questionnaire, in spite of having
studied combinatorics both at high school and at university – as part of a
course on Probability and Statistics). In the interview, he was unsure about
the definitions of combinatorial operations, and confused their formulas,
being unable to apply them to solve the problems. In general, he tried to
solve the problems by total or partial enumeration of the configurations.
We reproduce and analyze his solution to problem 3 in Figure 3.

Pedro introduces a notation to indicate the number of cars that each child
can receive, but he does not take into account which car each child receives.
He was unable to identify the configurations to be counted. Although he
does not specify this explicitly, the groups of three digits used to represent
the number of cars that each child receives suggest that he is implicitly
using the partition scheme suggested in the problem statement.

Pedro correctly produces all the ordered decompositions of number 4
in three addends. However, he considered that the objects to be distributed
were indistinguishable and this is an incorrect interpretation, from the insti-
tutional point of view, as is shown in the following extract of his interview:

Researcher: Did you understand the problem statement?
P: Yes, there are four cars and it is necessary to distribute them to three

children. You can give as many of these cars as you prefer to each child.
Researcher: What do you need to find out?
P: The number of different ways in which I can distribute the cars to the

children.
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Researcher: Are there some superfluous data?
P: The colors, for example.
I: The colors? Could we omit the fact that the cars have different colors?
P: Yes, this does not change the solution.

3.2. Elementary/systemic

In the study of combinatorics, the concepts of arrangements, combinations
and permutations are compound entities, with a given structure. Therefore,
we can consider these concepts as systems. For example, we study the re-
lationships between combinations and arrangements without replacement,
the properties of combinatorial numbers, the generation of these numbers
from the Pascal’s triangle, and their relationship to the coefficients in the
binomial power.

In other cases, we just consider the concept as a unitary entity, for
example, in the expressions “the combinations of 4 elements taken 2 at
a time.” This elementary – systemic (or unitary-compound) distinction is
also applicable to the other types of elements.

3.3. Ostensive/non-ostensive

Any object has an ostensive facet, which is perceptible and another non-
ostensive facet. Usually the ostensive facet of concepts, properties, prob-
lems, arguments and actions is given by language, which is just one way
to express the non-ostensive objects, and also a tool for its constitution and
development. In principle, linguistic objects are directly perceptible and
are ostensive (writing, sound and gesture). Nonetheless, from a personal
point of view, linguistic objects can be imagined: for example, we can think
about the word “permutation” or the notation “n!” and such mental objects
constitute the non-ostensive facet of linguistic elements. This paradox is
solved by assuming that linguistic objects (the various language registers)
are primary functional entities, and then can be considered to be ostensive
or non-ostensive from both the personal and institutional points of view.

In the previous example, we assume that Pedro used the partition
scheme, because this is suggested in the layout of the symbols he used
in the enumeration. For example, we assume that Pedro is imagining all
the different partitions of the four cars among the three children, with the
condition that all the cars are given to the same child (Fernando, Luis or
Teresa), when he writes 400 040 004 in the first line. We also assume
that 400 indicates that Fernando is the one receiving all the cars. Identical
interpretation may be given to the remaining enumeration presented by
Pedro. While the student uses the numerals 0 and 4 – perceptible notation –
to refer to the corresponding numbers (non-perceptible concepts), in this
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example he also uses other concepts (partition) and phenomenological ob-
jects (children, cars) that are not directly perceptible in his answer.

It is typical of mathematical activity to operate with both ostensive and
non-ostensive objects and, in particular, language is the ostensive facet
of mathematical objects. Praxemic and discursive entities are intrinsically
different from language, although they need language for their constitution
and operation. On the other hand, even when linguistic entities are mainly
ostensive, a person might just imagine or think about a linguistic object
without making it perceptible to others.

3.4. Example – type

The example/type distinction is classical in language theory. We use this dis-
tinction here to propose a linguistic interpretation of the concrete/abstract
duality, which is frequent in mathematical work, in which it is applied not
just to conceptual objects but to any of the six different types of primary
entities (as well as to the secondary types). This notion might be used to
describe the mathematical tendency to generalize and to explain some con-
flicts in the teaching and learning of mathematics, as confusion between
example and type. In analysing mathematical activity or a particular math-
ematical study process, we should specify in each circumstance whether
we refer to a concrete object (which intervenes by itself) or to the said
object as a representative of a wider class, that is, an example of a given
type.

In the study of mathematics we are always interested in generalizing
the problems, the solutions found and the discourse we use to describe and
organize them. We are not interested in solving isolated problems but rather
we solve types of problems and develop general techniques. Such solutions
are organized and justified in progressively more global structures.

Let us consider another student’s solution (Adolfo, case 2) to problem
4 that we have split into analysis units. This student did not remember the
formulas or the definitions of combinatorial operations (in units U1, U6
he refers to permutations as combinations, that is, this students’ language
does not match the institutional language). This student however is able to
provide a correct solution (he was able to correctly solve 12 out of the 13
problems, although he never used the combinatorial formulas).

Adolfo uses actions such as enumeration (U2), arguments, such as gen-
eralization (U5), mathematical properties, such as the product rule (U4, U7)
and a variety of expressive tools, including numbers, words and symbols.
We also observe the coexistence of ostensive and non-ostensive entities
(such as some of the mathematical properties he uses, and the pack of
cards that are supposed to be arranged).
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The student has obtained a concrete solution to problem 4. Moreover,
once he understood the process for reaching the solution, he was able to
generalize it to other situations, as we can see in the following transcript:

Researcher: How would you solve the problem if there were many more
cards, for example thirty different numbers and the four figures, and you
had to arrange them in groups of seven, instead of four?

A: Just as I did it here. The only difference is that there are thirty different
numbers and there would be seven cards in the groups. This is not a
problem, since I would write the combinations of the four figures, and
would put three more numbers between them in the different positions.
The solution would be similar and, if I remembered the formulas, I would
give you a quick solution.

As shown in this example, in mathematical activity we sometimes refer
to concrete objects (something that is interesting in itself, like Adolfo’s
solution to problem 4). On other occasions (like in the interview), we
consider this object to be a representative of a wider class of objects. This
distinction between concrete and abstract, that is, between an example
(something determined in itself) and the type (a class or group of objects)
is essentially relative to the language game.

3.5. Expression – content (signifier – meaning)

Mathematical activity is essentially relational. The different objects de-
scribed are not isolated, but rather they are related in the mathematical
language and activity by means of semiotic functions.

According to Hjemslev (1943/1971), there is a semiotic function when
a person or institution establishes a correspondence between an antecedent
(expression, significant) and a consequent (content or meaning), according
to some correspondence criteria. These criteria may be habits or agreements
about the terms (functive) that should be put in correspondence in certain
circumstances.

We add the aforementioned mathematical ontology to the notion of
semiotic function and then postulate that each of the entities considered
can play the role of expression or content. Besides, the dependence re-
lationships between expression and content can be representational (an
object is replaced by another), operative (an object is using other objects
as tools), or cooperative (two or more objects compose a new system from
which a new object emerges). Therefore, the semiotics proposed radically
generalizes the notion of representations, as currently used in mathematics
education and cognitive research. The objects put into correspondence may
be personal (mental) or institutional (this includes Saussure’s semiotics);



18 JUAN D. GODINO ET AL.

Figure 4. Adolfo’s solution to problem 4.

they may be linguistic entities, which may participate as exemplary ones
or types; they may be particular representations or registers (this includes
Duval’s theory).

For example, in the transcription of Adolfo’s solution to problem 4
(Figure 4), we can identify examples of semiotic functions, where different
entities perform the expression and content roles.

U1: the word ‘combinations’ (linguistic element) refers to the different
possible arrangements of the three given cards (arrangement concept). The
words jack, queen, king refer to physical objects, in this case, the cards to
be arranged in the problem.

U2: The student has produced an enumeration of all the permutations
of the words jack, queen and king. Each one of these permutations of the
three words makes reference to a permutation of the three real cards; that
is to say one problem (producing all the permutations of three words)
is put into correspondence with another (permutations of three physical
objects). Equally the group of all the permutations of three words is put into
correspondence with the group of all the permutations of the three objects.
The student’s action (writing down the enumeration) makes reference to
another action (carrying out the permutations physically).
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Throughout the interview, the student describes the solving process
he would perform in the event of increasing the number of letters. This
solution refers to the real solution that the student would carry out in the
new problem.

In these examples, we may see that any of the diverse entities described
in the previous sections can play the expression or content role (signifier
and meaning) in semiotic functions, e.g., when we speak of “proving the
relationship between combinatorial numbers and the binomial power”, the
verbal expression refers to an argument.

On the other hand, the relationships between expressions and contents
can be representational, instrumental and cooperative. In some cases, one
object replaces another, such as in the words “jack” “queen” “king” in U2,
and the relationship is representational. On other occasions, an object uses
others as instruments, such as in U7, where the student carries out operations
with the symbols in the expression 9.24 = 216, instead of operating directly
with the objects. Instead of really repeating a given number of objects
a certain number of times, this action is replaced by the algorithm for
multiplication, which is automatically carried out.

In unit U2, each group of the three words “jack, queen, king” is used
in a componential or cooperative way. Here, two or more objects (words)
compose a system from which new objects (permutations of three words)
emerge.

3.6. Synthesis of the model

As we have shown in the previous paragraphs, our model (summarized in
Figure 5) generalizes the notion of representation, which is receiving great
attention in mathematics education cognitive research.

In our model we interpret knowledge and understanding of any mathe-
matical object O by a subject X (a person or an institution) in terms of the
semiotic functions that X is able to establish as regards O . Each semiotic
function constitutes a knowledge (we speak of a meaning).

Beyond procedural (techniques) and conceptual knowledge (concepts
and propositions), we also consider phenomenological (problems, tasks),
linguistic – notational (language, representations) and argumentative (ar-
guments) knowledge. We introduce a variety of types of knowledge, in
correspondence with the diversity of semiotic functions.

On the other hand, we distinguish personal from institutional knowl-
edge. “Personal knowledge” emerges from an individual’s thinking and
actions when faced with a class of problems, while “institutional knowl-
edge” is the result of agreement and regulation within a group of individu-
als. The study of the complex dialectical relationships established between
personal and institutional knowledge is essential to mathematics education.
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Figure 5. Components and facets of mathematical knowledge.

In our previous works (Godino and Batanero, 1994, 1998), we defined
a meaningful practice for a person (or an institution), as that which is
carried out to solve the problem, to communicate, validate or generalize
its solution. We considered the meaning of an object as the system of
meaningful practices related to that object. That notion is widened and
specified in the present work, in which we also postulate a typology for
mathematical objects and facets.

4. AN APPLICATION TO ANALYZE THE PROCESS FOR SOLVING

A COMBINATORIAL PROBLEM

As a result of the previous sections, assessing understanding should be
considered as the study of the correspondence between personal and insti-
tutional meanings. In the following, we introduce an analytical technique
based on the ideas of semiotic function and the types of objects and facets
described. We also apply this technique to analyze some students’ solutions
to problem 3 in Roa (2000).

4.1. Adolfo’s case

First, we analyze Adolfo’s correct solution (the student analyzed previously
as case 2) to this problem that is transcribed in Figure 6. Adolfo interpreted
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Figure 6. Adolfo’s solution to problem 3.
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the problem as the partition of a set (the cars to be distributed) into subsets
(groups of cars each child receives), without additional conditions. That
is to say, he uses the scheme suggested in the problem statement, without
trying to make a translation to the selection scheme. He identifies all the
problem data correctly.

In his solution Adolfo uses the diverse types of objects described. Adolfo
needs mathematical language to represent the problem data (the numeral 4
to represent the number of objects to be distributed, letters to represent the
objects), the actions he carries out (the words gives and to be distributed,
the sum symbol), and even the results of such actions (tabular arrangement
to represent the possible distributions). He also needs language to operate
with the objects; for example, to produce each partition in U2.

Adolfo carries out actions to solve the problem: he applies algorithms
(such as systematic enumeration) and strategies (such as analyzing all the
different partitions of number 4). In each step he set some problem variables.
For example, in U2 he sets the number of cars that each one of the two
children receives, which may be 3 and 1, 2 and 2 or 1 and 3. For each one of
these cases he solves a related subproblem by means of recursion (which
is used to produce the permutation of the four objects to be distributed).
In each subproblem the technique of systematic enumeration is applied,
supported by a symbolic notation to represent the cars and a tabular display
to prove systematicity.

Throughout the solving process, the student poses new problems related
to the initial problem, although less complex, such as finding the differ-
ent forms of distributing the cars to the same child. In steps U1, U2 and
U6 Adolfo uses the strategy of breaking down the problem into simpler
subproblems: distributing all 4 cars to the same child (case 1), distributing
them between two children (case 2) and among all three (case 3).

Adolfo applies properties: in step U9 Adolfo recognizes and applies the
sum rule. Finally he is able to produce arguments to validate his solution. In
step U6 he generalizes the number of ways to distribute the cars so that one
child receives 1 car and the other 3, which is independent of the particular
children. Generalization is also used in steps U4 and U5, as well as in steps
U7 and U8.

We noted the complexity of Adolfo’s solution, as compared to applying
the variations with repetition formula directly. We also highlight Adolfo’s
ability to divide the problem into subproblems, to enumerate and in using
recursion.

In addition to words and symbols (ostensive entities), we identify in
Adolfo’s solution a variety of non-ostensive objects that are evoked by
semiotic functions, both elementary (the word Fernando makes reference
to an imaginary child) and systemic (in the expression “case A has 12
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possibilities,” he refers to a group of partitions). In this example, the objects
are used in a concrete way, it is a specific partition, a concrete number of
cars and children to be distributed. However, the student is able to consider
this concrete example as a prototype for an abstract type of problem:

Researcher: How would you solve this problem, if instead of four cars and
three children, we had thirty cars and seven children?

A: I would apply the formula.
Researcher: What would you do if you did not remember the formula?
A: I would repeat the process. I would try to divide it into smaller problems

as I did here. It is the same type of problem, then I would try to find all
the cases. However, it would be more complicated because the number
of possibilities is greater.

We have just analyzed Pedro’s and Adolfo’s solutions from a global
point of view, since we only tried to show the diversity of objects they used
in their solutions. However, a more detailed analysis would show how these
objects are related by semiotic functions, and would reveal semiotic con-
flicts, where the teacher and the student give different meanings attributed
to the same expression.

One such semiotic conflict appears between the meaning we gave to
problem 3 and the meaning assigned by Pedro (case 1) to that problem in
his solution. These types of conflicts may appear in the linguistic interaction
between people or institutions, and they frequently explain the difficulties
and limitations of teaching and learning mathematics. Below, we will apply
this analytical technique to the solutions given to problem 4 by two other
students.

4.2. Luisa’s case

In Figure 7 we transcribe Luisa’s solution (case 3). This girl had studied
Combinatorics at high school, as well as in the first course at University, as a
part of a course on Statistics. She remembered the combinatorial formulas,
although it was hard for her to find the solution to the problems, since the
combinatorial scheme that was used in the definitions of the combinatorial
operations in her studies was that of selection. She had not studied the
distribution scheme or the applications that were related to combinatorial
operations in her studies.

Luisa correctly solved 12 out of the 13 problems, by directly applying
the definition of the combinatorial operations she learnt and by translating
the problem statement when needed to the selection scheme. In fact, she
only failed to solve problem 4 correctly, for which she was unable to make
an appropriate translation of the problem that allowed her to identify the
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Figure 7. Luisa’s solution to problem 3.

combinatorial operation. In this case we will analyze each step in her so-
lution to show the points at which she needed interpretative processes and
semiotic conflicts took place that presumably originated an erroneous final
solution.

U1: Luisa begins to interpret the data in the problem statement and she
introduces a symbolic notation (language) to designate the four cars to
be distributed (problem situation). There is a correspondence between
each letter and each verbal expression of the objects to be distributed in
the problem, as well as between them and the real cars. For example,
the letter B (language) is used in the representation of the expression
‘black car’ (language) and this expression is used in the representation
of a real physical object.

U2: Luisa continues to interpret the statement and she recognizes that the
objects to be distributed are distinguishable (a property). This property
is not explicit in the problem statement, and the student should recognize
it by considering the objects’ color, which is important in this problem,
because it induces an order (property) in the group of objects (definition
of ordered and non-ordered set). This affects the problem solution.

U3: To start solving the problem, Luisa breaks it down into new subprob-
lems that should be correctly identified (new problem situations). Each
of them corresponds to a possible partition of number 4 into addends.
Therefore, she was able to formulate and solve a new auxiliary problem,
which consists of the enumeration of all the possible partitions of the
number 4, which she did by using systematic enumeration (action). We
observe that Luisa did not translate the problem statement, but rather she
used the partition scheme (concept) suggested in the problem statement
directly.
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She tried to solve each problem using the formulas she already knew,
although she addressed some problems by interpreting the problem data.
Below, we analyze her reasoning.

“Suppose only one child receives all 4 cars: 4 possibilities.” We
observe she is confusing the number of children (3), with the number
of cars to be distributed (4) since the number of possibilities of giving
all the cars to the same boy is only 3. A first semiotic conflict has
taken place when interpreting the problem data, which will lead to an
erroneous solution. We also observe the complexity of the partition
problem, where two different sets intervene: the set of cars and the
set of children. Each of these sets may be formed by distinguishable
or indistinguishable objects, whether ordered or not. All these data, as
well as the number of objects in each group, are only implicit in the
problem statement and require interpretive processes from the student.

We will not take into account this first error and will continue our
analysis considering that in fact there are four children.

“Suppose one child receives 3 cars: 4. C3
4.” Luisa suggests it is neces-

sary to select (action) the boy to which one car will be given, giving the
rest to another of the children (4 cases according to the interpretation
given). She uses linguistic elements ‘one’, ‘car’, ‘4’, ‘3’ that refer to a
boy, the cars and also to concepts (the numbers 1, 3, 4). We also observe
that Luisa suggests the different forms of selecting 3 cars among the
four (a new action, and a symbolic notation C3

4 ), which in this case has
a systemic meaning, because she refers both to a differentiated group
of possibilities, the action of distributing the cars, and the results of the
distribution.

This notation also refers to the concept of combination and its defini-
tions: the idea of combination as the selection of a sample of 3 objects
among 4 given objects, without taking the order into account. The stu-
dent was able to interpret this definition and to apply it to the problematic
situation she has posed herself (giving three cars to one of the children
and one to another of them). She assigned an appropriate value (action)
to the parameters (concept) and also identified and correctly applied
(action) the rule of product (property). She also expressed her solution
with the help of symbols (language) to represent the combinations and
their parameters, as well as the product of combinations by an integer.

“Suppose we give one child 2 cars and the other 2 cars to another 2:
C2

4.4.3.” Luisa’s reasoning and her interpretive processes are similar to
those in the previous step, and therefore we only summarize them. Luisa
again applied the product rule (property) and the idea of combination
(definition) C2

4 assigning appropriate values to the parameters (action
and definition) (selecting 2 out of 4 cars); she also applies recursion
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(action), so there are 4 cases to choose the first boy and there are only
3 to choose the second one. Finally, she correctly applies the property
Cn

m = Cm−n
m . She used linguistic elements to express her solution again.

“A child receives 2 cars and two other children receive one car each:
C2

4. 4. 3. C2
3.” She continues with similar reasoning, although now a

semiotic conflict arises. In selecting the two cars that she would give
to the first child, she correctly uses the idea of combination C2

4 ; the
number of possibilities to choose the child (4 cases) is also correct.
However, in choosing the two other children to whom we would give
the remaining cars, there is confusion in the combinatorial operation C2

3 ,
which should be the arrangements and not the combinations, since the
children are distinguishable. Here, there is an incorrect identification of
the relevance of order (concept), which is also necessary to take into
account in the group of children, and not just in the group of cars, as the
student assumed.

This semiotic conflict has probably been induced by the teaching re-
ceived by Luisa, since, when learning the definition for combinatorial
operations she was taught to use the selection scheme to differentiate
between combinations and arrangements. In the selection scheme there
is only a reference to one group of objects and therefore only one possi-
ble order is relevant, while in the partition scheme two groups of objects,
each of which may be ordered or not, are considered. Again the student
correctly uses the notation of the combinations that is a linguistic object.

“Each child receives one car: P4.” The student uses the idea of per-
mutation (concept) and her notation, which are correctly applied in the
case she interprets that there are 4 children. She uses linguistic elements
to refer to concepts, actions and phenomenological elements.

U4: “We add up all the possibilities.” The student identifies the sum rule
(property) and makes a correct application of the same. To do this, she
needs to recognize that the previous partitions (concept) are exhaustive
and incompatible (properties).

U5: The student tries to check her solution (therefore we can consider
this step as an argument). For this purpose, she enumerates (action)
the different partitions (the total number of partitions was not finally
computed in the previous steps). She uses a new notation and a tabular
arrangement to refer to the children and possible partitions of the objects.
The student enumerates the different decompositions of the number 4
into addends (concepts); each of them represents a possible partition of
the cars to be distributed (result of an action).

The enumeration carried out is not systematic, although it is complete.
One semiotic conflict is that this enumeration is not consistent with the
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interpretation that there are four children, that is, with the previously con-
tributed solution. Another semiotic conflict is that she does not use the fact
that the cars are distinguishable that was recognized in unit U2. She just
takes into account the number of cars that each child receives.

To sum up, diverse semiotic conflicts have contributed to an erroneous
solution of the problem, even when Luisa has shown her good combi-
natorial ability, when posing new subproblems, identifying concepts and
properties (sum and product rule, set, subset, combinations, permutations,
selection, partition, order, parameters), using language and symbolic nota-
tion for combinations and permutations, linking all of these by arguments
which were generally correct. The student’s enumeration is not system-
atic and there were semiotic conflicts in interpreting the number of ele-
ments in the two groups, as well as in the need for taking the order into
account in the group of children. In spite of not having found the cor-
rect solution, this student’s combinatorial knowledge and ability is high,
which coincides with the fact that she correctly solved the 12 remaining
problems.

4.3. Juan’s case

In Figure 8, finally we present the solution given by Juan (case 4) to prob-
lem 3. In the interview this student said he remembered the definitions of
combinatorial operations and he tried to solve all the problems using them,
although he was only able to solve four problems correctly. When asking
him the definitions he had difficulty remembering them and he only gave
one correct definition for permutations. Below we analyze his solution.

U1: Juan introduces a double symbolic notation to designate the different
elements in the problem, that is, the cars, whose color is represented
by letters, and the siblings, who are represented by the abbreviations of
their names (language making reference to phenomenological elements
in the problem). This notation suggests that Juan interprets the problem
statement correctly.

Figure 8. Juan’s solution to problem 3.
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U2: Juan tries to solve the problem by directly applying the selection
scheme where he studied the combinatorial operations definition, which
is consistent with his general technique of trying to directly identify the
combinatorial operations to solve the problems. To do this, he first trans-
lates the problem statement (action) into a selection scheme (concept).
He was the only one of the four students analyzed who performed this
translation.

Juan translates the condition of the cars being different (property) to
taking the order (concept) into account in selecting the cars (action).
This is a correct and nontrivial translation, since the order idea does not
appear explicitly in the problem statement. He also identifies correctly
the fact that the elements are distinguishable (property).

U3: Juan tries to directly identify the combinatorial operation (concept)
that solves the problem, by applying its definition. The identification
of the combinatorial operation is incorrect (there is a semiotic conflict
with respect to the use of an incorrect definition). The student correctly
discriminates the relevance of order (concept) in the definitions of vari-
ations and combinations (concepts).

But there is a semiotic conflict in not identifying the possibility of
replacement in this problem, which makes arrangements with replace-
ment instead of simple arrangements be the appropriate operation in
this case. We should acknowledge that it is not easy to recognize this
condition in the problem statement, because the student should trans-
late the condition that the same child can receive more than one car (the
cars are never repeated) to a new equivalent condition, that each child
may be selected more than once in the distribution (and thus, the chil-
dren may be “repeated”). Again the fact of dealing with two different
groups (children and cars) in each of which it is possible to repeat or not
the elements, makes the definition the student knows useless (selection
model), that refers to a single group, thus producing semiotic conflicts,
when applying this definition in a partition context.

There is also another semiotic conflict in the incorrect identification
of the parameters (concept), since the parameters should be exchanged
(property) when translating from the partition scheme into that of se-
lection. Juan did not exchange them, that is, he is imagining sampling
from the group of cars, instead of sampling from the group of children.
He does not identify the population and sample that intervene in the
problem (concepts). The problem solution involves selecting 4 out of 3
children with replacement, VR3,4, instead of selecting 3 objects out of
4, without replacement V4,3 as Juan has erroneously assumed.

Juan tries to develop the formula of variations to do the computations
(actions). Here, a potential conflict is that the denominator is not needed
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in the development of the formula. Its use suggests that the student is,
in fact, insecure, as regards the formulas, but he finally obtains a correct
number of variations of four elements taking three at a time.

4.4. Synthesis of knowledge used by the students in solving the problem

The analysis carried out allows us to identify the knowledge used correctly
or incorrectly by the students in solving problem 3, which is summarized in
Table II, to show the complexity of solving this apparently simple problem.
It also suggests the varied combinatorial ability of these four students that
reflects the variety of personal meaning of elementary combinatorics for the
same. In solving the problem, semiotic conflicts leading to errors arise, due
to the disparity between the selection scheme, where these students learned
the definitions for combinatorial operations and the various situations (such
as a partition problem) where these definitions should be applied.

Only one student (Juan) directly tried to apply the definition of combi-
natorial operations he studied in the selection scheme, where he was taught
to remember a mnemotechnic rule (taking into account – not taking into ac-
count order) to distinguish between arrangements and combinations; (there
is or not replacement) to distinguish between the two types of arrangements
and the two types of combinations. These rules are unproductive for prob-
lems presented in a different scheme (partition or distribution), such as
problem 3, if the student is unable to translate the problem to the selection
scheme.

In partition and distribution schemes the essential fact for distinguishing
between arrangements and combinations is the fact that the objects to be
distributed are identical or different, and also repetition is translated by the
fact that each group in the partition or arrangement is allowed to have more
than one element. This is not intuitive for three of the students analyzed
(Luisa, Juan, Pedro).

Since in problem 3, each child (subset of the partition) can receive more
than one car (objects to be distributed) the arrangement should be with
replacement. In partition and distribution situations, the rules to identify
the values of the parameters are also unproductive, since the parameters are
exchanged, as regards the selection scheme. This is the reason why Juan
was unable to give correct values for the parameters.

Given the impossibility of identifying the combinatorial operations di-
rectly, the students have recourse to dividing the problem, and formulate
new, related and simpler problems, as well as the problem of partition of
the number 3 into addends (Adolfo, Luisa and Pedro). Only one was able
to correctly solve all these subproblems, by correctly identifying the con-
ditions in the original problem and in each subproblem. Failures in taking
into account that the persons receiving the objects (Pedro) or the objects
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TABLE II
Knowledge used by the students in solving problem 3

Adolfo Luisa Pedro Juan

Problems:

Posing similar problems with
lower size

Correct Incorrect

Posing the problem of partition
of number 4 into addends

Correct Correct Correct

Linguistic elements:

Algebraic or numerical
symbolizing of elements to
count

Correct Correct Partial Correct

Tabular arrangements Correct Incorrect Correct

Combinatorial notations to refer
to combinatorial operations

Correct Correct

Combinatorial formulas Correct

Correspondence between the
problem data and the
parameters of combinatorial
formulae

Correct Incorrect

Expression of addition, product
and quotient rules

Correct Correct

Expression of arithmetical
operations

Correct

Actions:

Translation of combinatorial
schemes

Incorrect

Developing combinatorial
formulae

Correct

Enumeration Systematic Non Systematic

Setting variable values Correct systematic

Recursive solution of
combinatorial problems

Correct Correct

Carrying out arithmetical
operations

Correct Correct

Definitions and properties:

Partition scheme Correct Correct Correct

Conditions given (influence
of order, replacement)

Correct Incorrect Incorrect Incorrect

Sampling scheme Correct Incorrect

(Continued on next page.)
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TABLE II
(Continued)

Adolfo Luisa Pedro Juan

Combinatorial operations (variations,
permutations, combinations,
arrangements)

Correct Incorrect

Addition, product and quotient rules Correct Correct

Combinatorial properties Correct

Arguments:

Justifying the model conditions Incorrect

Enumeration to check the solution Incorrect

Generalization Correct

to be distributed (Luisa and Pedro) are distinguishable lead to incorrect
solutions for problem 3.

When solving the original problem or the subproblems, the students
carry out different types of actions. The first one is translating the partition
scheme in the problem statement to the selection scheme, that only Pedro
incorrectly carries out. The other students recur to enumeration that it is
not always systematic as in Luisa’s solution.

Adolfo and Luisa are able successfully to set values in the problem
variables to state simpler problems. Adolfo correctly solves the series of
problems generated using recursion. Luisa tries to solve the intermediate
steps with combinatorial formulas, although she does not develop them or
compute their value. While Juan develops and computes the value of the
combinatorial operation, he made an incorrect identification of the same,
and therefore his solution is incorrect.

Depending on the solving procedure, the students use different defi-
nitions and properties. Only Adolfo and Juan use concepts related to the
selection scheme (Juan incorrectly), while three students use concepts re-
lated with the partition scheme. Since only Adolfo correctly identifies the
conditions of the scheme given into problem statement, this point will be
highly relevant to the solution obtained. Adolfo and Luisa correctly link
partial solutions by means of the sum rule and Luisa also uses a property
of the combinatorial numbers.

The students need ostensive representations to visualize the concepts
and data they are working with, such as algebraic or numeric symbol-
ization of the elements to be combined, according to their nature, use of
tabular arrangements, notations for the combinatorial formulas and their
parameters, expression of sum, product and quotient rules and arithmetic
operations. Here semiotic conflicts also appear.
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Finally the students use arguments, such as correct generalization
(Adolfo), enumeration (Luisa) and justification of the scheme conditions
(Juan); incorrectly in these last two cases.

It is clear from the analysis of these students’ protocols that problem
solving activity involves a diversity of objects that we have made explicit in
our analysis; these objects vary from one student to another, as summarized
in Table II. Even when, due to space limitations, we present the analysis of a
single problem here, this same process was repeated with the 12 remaining
problems in Roa’s research. That served to show the plurality of knowledge
used by the students in solving combinatorial problems and the diversity
of students’ personal (idiosyncratic and systemic) meaning for elementary
combinatorics.

The notion of semiotic function we have introduced, allows us to re-
member the essentially relational nature of mathematical activity and teach-
ing/learning processes. In the semiotic functions, the correspondence be-
tween the expression and the content is fixed by explicit or implicit codes,
rules, habits or agreements, about what and how knowledge elements
should be put into correspondence, according to different circumstances.
An agreement that in our example was made explicit in the teaching is to
associate the expression V4,3 to the arrangements of 4 elements taken 3 at a
time. In the problem analyzed there are also implicit agreements, such as the
fact that the partition is exhaustive; this agreement is not explicit in the prob-
lem statement, however, it was recognized and applied by all four students.

In the above section, we applied our theoretical model of mathematics
cognition to describe the mathematics activity of a sample of university
students when solving elementary combinatoric problems. As a result we
provided original and relevant information to better understand the stu-
dents’ combinatorics thinking. Our theoretical tools served to identify the
variety of mathematical objects involved in combinatorial problem solv-
ing, the cognitive dualities from which they can be considered, and the
semiotic functions that can be established among them. The students’ er-
rors and difficulties were explained by semiotic conflicts, i.e. as disparities
between the subject’s interpretation and the meaning in the mathematics
institution. This interpretation suggests some ways to improve the teach-
ing and learning process and also help to overcome certain “transparency
illusions” in the practice of teaching combinatorics and in assessing the
students’ combinatoric reasoning ability.

5. IMPLICATIONS FOR FURTHER RESEARCH

The notion of meaning, in spite of its complexity, is essential in the foun-
dation and orientation of mathematics education research. We then give



SEMIOTIC ANALYSIS OF COMBINATORIAL PROBLEMS 33

an affirmative answer to Ernest’s question (1997) about whether semi-
otics can offer the base for a unified theory of mathematics education (and
mathematics), whenever we adopt appropriate semiotics and supplement
it with an ontology that take into account the multiple objects involved in
mathematical activity.

The theoretical model described in this paper incorporates elements
from the pragmatic (operational) and realist (referential) theories of mean-
ing. The meaning of terms and expressions is found in their use in in-
stitutional contexts and language games although these do not hinder the
possibility of considering prototypical uses that would be denoted with
new terms and expressions, and considered as new emergent objects. As
suggested by Ullmann (1962, p. 76), researchers should first gather an ap-
propriate sample of contexts and approach them later with an open mind,
thus allowing the meaning or meanings to emerge from these contexts.
Once this phase has been concluded, we can safely enter into the “refer-
ential” phase and try to formulate the meaning or meanings identified in
this way. Our meaning begins by being pragmatic, relative to the context,
but there are typical uses that allow us to guide mathematical teaching and
learning processes. These types are objectified by language and constitute
the referents of the institutional lexicon.

The model for mathematics cognition described in this paper results
from extended work, starting from 1994 (Godino and Batanero, 1994, 1998,
1999; Godino, 2002). This work was useful as a theoretical framework in
various doctoral theses and publications, intended to characterize elemen-
tary and systemic meanings involved in teaching and learning mathemat-
ics. Likewise, it provided explanations for the difficulties and limitations
in mathematical learning based on the nature and complexity of different
mathematical objects. At a more theoretical level it allowed confrontation
of tools proposed by other theoretical models for mathematical knowledge.
Some examples are given below:

(a) In our model we can interpret the notion of scheme as the interiorized
(non-ostensive) facet of the personal practices system, and concept-in-
acts, theorem-in-acts and conceptions (Vergnaud, 1990) as partial com-
ponents of this system (corresponding to primary entities, concept-rules
and properties). All these notions play an important role in cognitive
analysis, although the theoretical notion “system of personal practices”
is an instrument with more descriptive and explanatory possibilities
because it includes an organized system of operative, situational, dis-
cursive and linguistic components.

(b) The sense notion in the Theory of Didactic Situations (Brousseau, 1997)
is restricted to the correspondence between a mathematical object and
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the class of situations from which it emerges, and “receives its sense”
(our “situational meaning”). This correspondence is certainly crucial
in our theoretical model since it gives the “reason of being” of such
an object, its justification or phenomenological origin. However, we
also take into account correspondences or semiotic functions between
that object and the other operative and discursive components of the
system of practices from which we consider the object emerges. For
us, the meaning of a mathematical object is the content of any semiotic
function and, therefore, can be an ostensive or non-ostensive, concrete
or abstract, personal or institutional object; it can refer to a system of
practices, or to a component (situation-problem, a notation, a concept,
etc.), depending of the communicative act.

(c) The notions of representation (Goldin, 1998) and semiotic register (Du-
val, 1993) refer in our model to particular types of semiotic represen-
tational function between ostensive and not ostensive mental objects.
The notion of semiotic function generalizes this correspondence to any
type of objects and, it also considers other types of dependences among
objects (instrumental and componential).

The theoretical notions described in this article are centered in the cog-
nitive dimension (individual and institutional) of mathematics education
processes. However, we are aware that it is necessary to extend this theo-
retical model to include the instructional, affective (beliefs, attitudes and
emotions), axiological (values and ends of mathematical education), pol-
itics, and curricular dimensions that globally condition the teaching and
learning of mathematics. These dimensions should be objects of attention
in a unified approach to mathematics education.
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