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ABSTRACT. The paper is a reflective account of the design and implementation of math-
ematical tasks that evoke uncertainty for the learner. Three types of uncertainty associated
with mathematical tasks are discussed and illustrated: competing claims, unknown path
or questionable conclusion, and non-readily verifiable outcomes. One task is presented in
depth, pointing to the dynamic nature of task design, and the added value stimulated by
the uncertainty component entailed in the task in terms of mathematical and pedagogical
musing.
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1. INTRODUCTION

In this paper I elaborate on the nature and potential of mathematical tasks
that evoke to some extent a state of uncertainty for the learner, and point
to the cognitive demands that such tasks put forth.

This paper is a reflective account of longitudinal work attempting to
enhance learning and teaching processes of diverse populations – students,
teachers, and teacher educators – using tasks that are intended to bring
about uncertainty. Most of the tasks served a dual purpose: (a) for learn-
ing – as a vehicle to elicit meaningful learning and foster mathematical
understanding, and (b) for research – as a means to identify dispositions
towards, conceptions of and beliefs about mathematics, and mathematical
concepts, principles and problem solving (the role of tasks in eliciting such
cognitions is discussed by Goldin, 2000). The learning processes evoked
by mathematical tasks were documented via journal keeping, in which I
included detailed descriptions of numerous workshops with secondary in-
service and pre-service mathematics teachers. In addition, for a number of
tasks there were sessions that were videotaped and some of the participants
were interviewed. Several tasks were tried out by these teachers in their
own classes. The teachers, in return, provided me with detailed accounts
of their experiences, which helped us gain more insights into the learning
potential of the tasks.

With respect to mathematics educators’ learning – these tasks served
also as means to enhance both their mathematical and pedagogical power
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(Cooney, 1994, 2001), by engaging them in genuine learning experiences
through which they became aware of their own learning processes and drew
connections to their students’ needs and difficulties. The vast majority of
the tasks that were designed and tried out were challenging for teachers as
well as for students, thus a teacher who dealt with these tasks as a learner
would need to make very minor modifications, if any at all, in order to
begin using them with his or her students.

Interestingly, the tasks that were found particularly worthwhile in terms
of meaningful learning were all associated with elements of uncertainty. In
the following sections, I discuss theoretical perspectives that support the
use of tasks that elicit uncertainty, provide examples of different kinds of
mathematical tasks that actually created much uncertainty, and distinguish
between three types of uncertainty evoked by mathematical tasks. I elabo-
rate on one example of a task, pointing to the iterative nature of and possible
sources for the design of such tasks. Through this task I illustrate the kinds
of mathematical and pedagogical learning enhanced by uncertainty.

2. WHY DEAL WITH TASKS?

The significant role that tasks play in the interplay between teaching and
learning has been widely recognized (e.g., Leinhardt et al., 1990; Krainer,
1993; Sullivan and Mousley, 2001). Sierpinska (2004) maintains that the
“design, analysis and empirical testing of mathematical tasks” is “one of
the most important responsibilities of mathematics education” (p. 10, ibid).
Kilpatrick et al. (2001, p. 9) claim that “The quality of instruction depends,
for example, on whether teachers select cognitively demanding tasks, plan
the lesson by elaborating the mathematics that the students are to learn
through those tasks, and allocate sufficient time for the students to engage
in and spend time on the tasks.” Stein et al. (2000) developed a three phase
framework of mathematical tasks used in classrooms for analyzing mathe-
matics lessons. Their framework provided a tool for describing how tasks
unfold during classroom instruction as well as for highlighting the signifi-
cant influences tasks have on what students actually learn (Henningsen and
Stein, 1997). In Jaworski’s teaching triad (Jaworski, 1994) the important
role of the task is expressed in the demand for mathematical challenge.
Zaslavsky and Leikin (1999, 2004) take the teaching triad a step further
and discuss the role and nature of tasks for professional development of
mathematics educators (teachers and teacher educators), to whom they re-
fer as facilitators of learning. Zaslavsky and Leikin (ibid) point to the dual
nature of tasks for mathematics educators’ learning: On the one hand, tasks
are the content by which direct learning is facilitated. On the other hand,



CREATING UNCERTAINTY 299

through a reflective process of designing and implementing tasks, they turn
into means for indirect learning of the facilitator.

In light of the important function tasks have in facilitating both math-
ematical and pedagogical understandings, in general, and the special po-
tential contribution of tasks entailing uncertainty, in particular, this paper
is an attempt to conceptualize the latter kind of mathematical tasks.

3. UNCERTAINTY, COGNITIVE CONFLICT, AND LEARNING

The grounds for creating learning situations that involve elements of uncer-
tainty and doubt are rooted in Dewey’s (1933) notion of reflective thinking.
According to Dewey, “the origin of thinking is some perplexity, confusion,
or doubt” (p. 15, ibid). Furthermore, reflective thinking entails: “1. a state
of doubt, hesitation, perplexity, mental difficulty, in which thinking orig-
inates, and 2. an act of searching, hunting, inquiring, to find material that
will resolve the doubt, settle and dispose of the perplexity” (p. 12, ibid).
Fischbein (1987) asserts that the need for certitude is a strong driving force
for learning. This need for certitude is commonly expressed in the devel-
opment and persistence of intuitions.

Perplexity, confusion and doubt are often associated with and evoked by
cognitive conflict. Although some psychologists have considered conflict
as more disruptive than beneficial (e.g., Miller, 1944), there are many who
consider conflict a positive contributing factor in rational thinking and the
genesis of knowledge (e.g., Berlyne, 1960; Dewey, 1933; Festinger, 1957;
Piaget, 1985).

Most research on cognitive conflict has been inspired directly or in-
directly by Piaget’s equilibration theory. Piaget viewed equilibration as a
process that was stimulated by conflict or “disequilibrium”, either between
the individual and the environment or among the individual’s own activities.
It could be between an individual’s action schemes and external realities or
among different schemes within an individual. The source of disequilibrium
could be either interpersonal conflict or intrapersonal conflicts that arise
by social interactions. Piaget (ibid) and Vygotsky (1978) shared to some
extent the idea that certain aspects of individual cognition originate in the
“internalization” of social interactions. According to Vygotsky, all higher
cognitive processes occur first as social relations before being internalized
by the individual.

The role of conflict in cognition is expressed in Festinger’s (1957)
theory of “cognitive dissonance.” According to this theory, the discomfort
caused by logical inconsistency or contradiction motivates the individual to
modify his or her beliefs in order to bring them into closer correspondence
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with reality. It should be noted that studies in mathematics education
document reverse cases, where rather than modifying beliefs to come
closer to “reality”, beliefs are so overwhelming that reality is modified
instead to fit beliefs.

Cognitive conflict also plays a considerable role in the acquisition of
knowledge in Berlyne’s (1960) theory of “conceptual conflict”. In addition
to logical contradiction Berlyne includes other types of conceptual conflict
such as doubt – a conflict between the opposing tendencies to believe or
not to believe a given statement; and perplexity – as a conflict among
tendencies to accept mutually exclusive beliefs. According to Berlyne, the
various types of conflict may result in a search for new knowledge.

In the work presented in this paper I use the word uncertainty as a
unifying term to encompass the various constructs mentioned above, such
as conflict, doubt, and perplexity. Additionally, inspired by Vygotsky’s
theory, my work builds on social interactions and communication as critical
features for learning and constructing shared meaning. More specifically,
as shown later on, social interactions may play a central role in creating
uncertainty surrounding certain mathematical tasks as well as in leading to
resolving uncertainties.

4. TASKS, UNCERTAINTY, AND LEARNING MATHEMATICS

In the following section, I describe three interrelated types of uncertainty
entailed in certain mathematical tasks and relate them to the dynamic pro-
cess of learning mathematics.

4.1. Competing claims

One type of uncertainty can be characterized as involving two (or more)
compelling competing claims. In this context, claims are viewed in a broad
sense, to include outcomes, definitions, beliefs, a priori expectations, as-
sumptions, and assertions offering different points of view of the same ob-
ject. These competing claims may be contradicting statements with which
the learner is confronted or an outcome that contradicts a well known
(to the learner) mathematical truth (e.g., most tasks in Movshovitz-Hadar
and Webb, 1998). For example, the question of how to define (−8)1/3

raises competing assertions (Tirosh and Even, 1997; Movshovitz-Hadar
and Webb, 1998). The first assertion could be that (−8)1/3 is defined as
(−2), because (−8)1/3 = 3√(−8) = −2; The second assertion could be that
(−8)1/3 is defined as 2, because (−8)1/3 = (−8)2/6 = 6

√
(−8)2 = 6√64 = 2;

A third possible assertion is that (−8)1/3 is indefinable. These options can
be seen as competing claims that contradict each other. In the case of choice
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of definition, uncertainty raised by competing claims need not be connected
to correctness. It could be related to personal preferences, beliefs, values
or the theoretical framework or context to which one refers. For example,
in the case of (−8)1/3, different theoretical frameworks suggest different
approaches for dealing with rational exponents. One approach is defining
rational exponents only for rational numbers r , r = m

n , that are reduced to
their lowest terms. Accordingly, (−8)1/3 = −2 and (−8)2/6 is undefined.
Another approach is limiting the definition of rational exponents only to
positive bases. The latter approach implies that (−8)1/3 is undefined.

Uncertainty of competing claims may also occur when one of the
“claims” is a (mis)conception or belief held by the learner which is in
conflict with another claim. The other claim may be one with which he or
she is confronted or one that is obtained by the learner in the course of the
task. It could also be a competing belief or conception of the learner.

Such an example appears in Zaslavsky et al. (2002), who designed a spe-
cial task that challenged a common implicitly held assumption regarding
the representation of graphs in a coordinate system (Figure 1 is a variation
of their task). The task poses questions, for which there are two competing
answers to each of them. The slope task elicited much confusion concern-
ing algebraic and geometric aspects of slope, scale, and angle, leading to
a deep mathematical musing regarding properties of graphical representa-
tions of functions that remain invariant under non-homogenous change of
scale. The degree of uncertainty people encountered (students, teachers,
and teacher educators) varied considerably, depending on the assumptions
and conceptions they held.

Figure 1. The slope task.
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The uncertainty evoked by competing claims concurs to a large extent
with the kinds of conflicts described in the previous section. However,
in the context of learning mathematics we consider another two types of
uncertainty.

4.2. Unknown path or questionable conclusion

The second kind of uncertainty is associated with inquiry, exploration tasks
and open-ended problems. The very nature of exploration and inquiry is
a search for findings (e.g., patterns, connections, relationships) that are
unknown to the learner, for which he or she may or may not have an
intuitive feeling regarding what to expect. I refer to this case as an un-
known path or questionable conclusion type of uncertainty. Exploration
tasks that create this type of uncertainty are particularly common in tech-
nologically enhanced learning environments (e.g., Hadas and Hershkowitz,
2002). Typical paths that students go through in tackling such exploration
tasks are described by Hadas and Hershkowitz (ibid). These paths demon-
strate movements from an (interim) conjecture, through experimentation
aimed at checking several instances of the conjecture, leading to either (1)
a refutation of the conjecture followed by a shift to an alternative one, or
to (2) reinforcement of the conjecture, followed by the need to support it
by explanation and proof. Each shift from one conjecture to another is a
result of a state of uncertainty about reaching a valid conclusion.

Another kind of unknown conclusion is associated with existence tasks.
Many exploration tasks are closely related to existence tasks, since they
present the need to check if certain cases are at all possible. Consider,
for example, the task in Figure 2 (taken from Zaslavsky and Leikin, in
progress).

This task lends itself rather naturally to explorations in a dynamic ge-
ometry environment, as in fact occurred in several workshops conducted
with pre-service and in-service teachers (ibid). It turned out that for such a
task the use of the technologically enhanced environment presented some

Figure 2. An existence task.
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Figure 3. Uncertainty evoked by a “free search” strategy.

unforeseen obstacles adding new dimensions of uncertainty to the task.
Most teachers began this task by employing “free search” strategies. One
strategy that they used was “moving a random point (in the triangle) to fit
the condition”. However, this strategy did not yield a point on the screen
that precisely fulfilled the condition; thus, they remained with a “question-
able conclusion.” Figure 3 depicts the position of a very “close” but not
“exact” point. Thus, they remained uncertain whether the anticipated point
really existed. (Note that the areas of the three triangles are almost equal:
S�ADC = 20.10, S�DCB = 20.90, S�ADB = 20.87.)

Another, more structured “free search” approach, which some teachers
employed, was based on their analysis of the ratio between the distances
of the anticipated point from two sides of the triangle. They tried to find
a point position for which the ratio of its distances from two of the given
triangle sides was inverse to the ratio of the lengths of the respective sides.
Although they were able to prove that for such a point the areas of the
two relevant triangles were equal, on the screen this still did not yield the
intended point. Those who were confronted with this result were perplexed
by the fact that the ratios appeared to be of inverse values, but still the areas
measures produced by the computer were close but not exactly equal (see
Figure 4, in which S�AKC = 22.44 and S�AKB = 22.35).

On top of leading to alternative problem solving strategies, the uncer-
tainty involved in this existence task enhanced teachers’ awareness of the
limitations of the media with respect to “free search” strategies, opposed
to its potential with respect to more structured approaches (ibid).
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Figure 4. Uncertainty evoked by another “free search” strategy.

4.3. Non-readily verifiable outcomes

A third type of uncertainty has to do with the lack of confidence one may
have regarding the correctness or validity of an outcome (e.g., solution to
a problem) which requires verification. When one lacks readily available
verification methods for the specific outcome in question, I consider it
a case of non-readily verifiable outcomes. This type of uncertainty is
particularly common to some specific domains of mathematics, such as
the areas of probability and combinatorics. In the case of combinatorial
tasks uncertainty is associated with the difficulty to verify the result and
to estimate the number of cases under question (Fischbein and Grossman,
1997; Mashiach-Eizenberg and Zaslavsky, 2004). Although there are ways
to verify solutions to combinatorial problems, seldom are they readily
available to the problem solver. Thus, in such cases, people usually feel
as if the result they got is non-verifiable. This difficulty is expressed in a
quote from an interview with Joel – an undergraduate student – in response
to the interviewer’s prompt concerning how Joel checks his solutions to
combinatorial problems:

This is the problem in Combinatorics that you can’t check. I have no tools, or at least
I never learned how to check what I do. That is, I use formulas that were proven,
and with them I try to solve all kinds of problems. But I don’t have any indication
for checking myself. Even now, if you ask me, I would have no indication except
your expression. (Mashiach-Eizenberg, 2001).

This type of uncertainty, which is associated with a subjective lack of
available verification tools, is not restricted to certain topics. It could be a
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personal feeling, even in cases for which there are well established methods
of verification (e.g., in the case of solving linear equations); if one does not
know how to verify a solution to a problem, he or she may feel a sense of
uncertainty, even if there are no competing solutions at question.

Note that the three types of uncertainty discussed above are interre-
lated. Thus, for example, uncertainty regarding a questionable conclusion
(second type) could (though need not) be enhanced by the lack of veri-
fication tools (third type); or uncertainty regarding non-readily verifiable
outcomes may be triggered by two competing claims.

4.4. The dynamic and subjective nature of uncertainty

Figure 5 encapsulates the three types of uncertainty that could be entailed in
mathematical tasks, as discussed and illustrated earlier. Within a particular
task there could be movement from one type of uncertainty to another. This
kind of movement, which is exemplified in the following section, indicates
the dynamic nature of uncertainty. A resolution of one state of uncertainty
could lead to another state of uncertainty.

It should be noted that the state of uncertainty or doubt is entirely sub-
jective. The same task may stimulate doubt for some people but none for
others. What may be an unknown path or questionable conclusion for one

Figure 5. Types of uncertainty evoked by mathematical tasks.
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person may be obvious to another. A result may seem non-verifiable at one
point and turn verifiable at a different stage. A person can be very doubt-
ful regarding a provable conjecture that he or she proposed, until he or
she are able to fully support it by logical inference. Moreover, uncertainty
may lead a person to abandon a (correct or incorrect) conjecture, in the
course of dealing with a task. For those who do not encounter a state of
doubt when dealing with the task alone, doubt may occur as a result of
social interactions with another person who reached a different conclusion
or encountered confusion over the same task.

In the next section I elaborate on one task that repeatedly evoked uncer-
tainty which led to meaningful learning. It illustrates the dynamic nature
of uncertainty as well as the iterative aspect of task evolution. I focus on
mathematical subtleties and cognitive demands that underlie the task and
present its added value compared to a more commonly used version.

5. THE ADDED VALUE OF TASKS EVOKING

UNCERTAINTY – AN EXAMPLE

The task on which I focus in this section, to which I refer as the square
task, originated from a regular textbook task that stated what the measure
of the angle α in Figure 6 is supposed to be, and requested the proof for that
assertion.1 As I further illustrate, a small change in the task led to an unex-
pected cognitive conflict encountered by a group of pre-service secondary
mathematics teachers within the framework of an undergraduate geometry
methods course. Based on the conflict that arose and the conflict resolution
encountered by this group, the task was modified once again, to recreate

Figure 6. The first modification of the square task.
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such conflict in future occasions. Consequently, the square task turned into
a source of uncertainty that led to understandings that would not have been
reached in its original form. In this section I present some anecdotes of
actual experiences with the square task and point to the iterative process of
task development as an outcome of my own (indirect reflective) learning
through practice as facilitator of leaning.

5.1. The square task-first iteration

In the first iteration, the modification of the textbook task removed the
disclosure of the measure of the angle α (Figure 6), in order to create
some degree of uncertainty of an unknown path. A group of pre-service
students were asked to solve the problem in Figure 6 as part of a homework
assignment within the framework of an undergraduate geometry methods
course. On the day when they were supposed to hand in their assignment, an
argument developed spontaneously between a student and a teacher namely
Bob and Ruth during the lesson. (All names in this paper are pseudonyms.)

Bob claimed that he was able to prove that α = 60◦. However, Ruth
argued that his proof must have a flaw, since she could produce a coun-
terexample in which α = 55◦. In order to convince Bob, she sketched on
the board the case in Figure 7, and showed how all the angle measures in
the square fit well with each other.

At this point, Bob was not able to refute Ruth’s claim although he was
convinced that she was wrong. Similarly, Ruth was not able to find a flaw
in Bob’s proof, yet she was convinced that she had generated a counter-
example that disproved his proof. This became an extremely perplexing
situation for all the student-teachers in the class, for now they were con-
fronted with two competing claims and could not come up with compelling
arguments to settle their state of uncertainty. Both cases in Figure 7 and in
Figure 8 seemed equally possible.

Figure 7. Ruth’s “counter-example”.
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Figure 8. The case that Bob proved.

Figure 9. The auxiliary construction in Bob’s proof.

The proof that Bob presented was a direct proof that he had found in a
textbook, based on an auxiliary construction (see Figure 9). This did not
satisfy Ruth. She felt that the construction was not a natural thing to do and
could not imagine how one would think of this idea on his own. Actually,
the direct proof that Bob presented was not convincing for her, since it did
not offer her an explanatory reason why the measure of α must be 60◦.

It took Ruth three days to resolve the conflict to her satisfaction.
Part of the time was devoted to the question whether the two cases in
Figures 7 and 8 were both possible. She encountered conflict regarding
the two competing claims accompanied by uncertainty of non-readily ver-
ifiable outcome which was manifested by her feeling that she lacked the
means by which to check whether α could really be 55◦. She was deter-
mined to find a way to verify or refute this case. This persistence led to a
moment that was particularly notable for her. It was when she realized why
the case she had regarded as a counter-example actually did not exist. By
constructing the square more accurately, she learned that it really looked
very different (see Figure 10) – the points O and P did not coincide. That
led her to try to sketch the case of α = 65◦. This again was an enlightening
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Figure 10. Ruth’s resolution of her “counter-example”.

discovery – if the points O and P coincide and the measure of α is 65◦, then
it must be a 3-dimensional body.

Ruth kept sharing with me some milestones along this path, and was
grateful that she had to work it out for herself the hard way. At the end she
reached a deep understanding of the problem and how to resolve it. For
years later, even after she graduated and got her degree, Ruth would refer
to this learning experience of hers as one of the most powerful that she had
encountered.

5.2. The square task – further iterations

The above class event and what followed provoked much re-thinking about
and appreciation of the task and the subtleties that it entails. These thoughts
led to a second variation that aimed at recreating in other groups what
occurred spontaneously in the first group, namely, uncertainty of competing
claims. Thus, the second iteration was intended for a class activity (contrary
to the first time when it was given as a home assignment). This time half the
group got the task with 55◦ and the other half got it with 60◦ (see Figure 11).
At the beginning the work was done individually and the participants were
not aware of the different versions. Only after spending some time dealing
with the task alone, they were grouped into pairs each having worked on a
different version.

Indeed, the second version evoked much debate and conflict very similar
to the authentic situation. This version of the task led to some additional
observations. For example, in several subsequent occasions it was argued
that if both 55◦ and 60◦ were possible then judging by angle calculations
many other measures were possible too, as illustrated in Figure 12.

The latter observation led to the question of whether at all α is
uniquely determined – which expresses uncertainty of an unknown path



310 ORIT ZASLAVSKY

Figure 11. A second modification of the square task.

Figure 12. A common observation.

or questionable conclusion. To one group of student-teachers it seemed
that the measure of α was not unique. Thus they tried to figure out
the possible range of measures. They tried to examine extreme or spe-
cial cases, such as 0◦, 45◦ and 60◦, and concluded that it could prob-
ably be any measure between 45◦ and 60◦, yet they were somewhat
uncertain about this speculation. For a while they felt that they had
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no accessible way to verify their supposition. Thus, at this point they
encountered uncertainty of a non-verifiable nature. However, after a
short period of time their doubts led some of them to turn to the
computer for support. They sketched the given square in a dynamic
geometry environment, and then examined many different squares, sat-
isfying the same conditions, that were generated by dragging one of its
vertexes. This move contributed to their belief that the measure of α was
unique for all squares and that it would always be 60◦. Yet they still re-
mained puzzled as to the reason for this result – why 60◦? Interestingly, it
seemed as if the way the task was set up and the uncertainty that it evoked
resulted in a need to better understand the problem and not to suffice with
formal deductive arguments.

There were a number of student-teachers who turned to their knowledge
of trigonometry to get an answer to the question what the measure of α

must be. By means of trigonometry they reached a confirmation that α must
be 60◦. Yet, they questioned the right to use trigonometry in a geometry
methods course. In their discussion of this dilemma they acknowledged
the legitimacy to use any valid method to solve a mathematical problem.
However, they also expressed a strong need, as prospective teachers, to
be prepared to incorporate such a geometric problem in their future class-
room before their students learn trigonometry. Most of them felt that the
trigonometric solution did not provide any insight to the problem situation.

At an in-service workshop, after struggling over the task for a while,
one teacher pointed to a contradiction stemming from the assumption that
α = 55◦ (see Figure 13). She actually generated an indirect proof that could
apply to any measure of α other than 60◦. Another indirect proof was

Figure 13. A proof by contradiction that α �= 55◦.
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Figure 14. Another proof by contradiction that α �= 55◦.

suggested by a different teacher (see Figure 14). The latter used an auxiliary
construction that seemed much more plausible to the participants than the
one in Figure 9.

Both proofs by contradiction, that emerged for a specific measure (55◦)
and continued to the more general assumption that α �= 60◦, seemed very
convincing. They provided explanatory grounds for resolving the earlier
uncertainty regarding the two competing claims (55◦ or 60◦?).

There was a group of teachers who were bothered by the uncertainty
that the square task evoked and were not satisfied with “just” a formal proof
that α �= 55◦. They searched for additional grasp of the problem by starting
out with an isosceles trapezoid ABCD (see Figure 15), again in a dynamic
geometry environment, applying a continuous translation of its side DC
parallel to AB. That is, by dragging the side DC and monitoring the kinds
of quadrilaterals that appear, it became clear that the family of quadrilaterals
that was constructed in this way included many isosceles trapezoids, one
rectangle, but no square. This approach provided a dynamic demonstration
of the problem and of the fact that α could not be 55◦. Instead of looking
at the case of α = 55◦ as Ruth did (see Figure 10), that is as a square in
which points O and P do not coincide, they looked at it as a rectangle (that
is not a square).

It is interesting to point out that the direct proof that Bob proposed (see
Figure 9) was suggested in other incidents mostly by people who had seen
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Figure 15. A dynamic explanatory demonstration why α �= 55◦.

this proof in a textbook. In the in-service workshops some teachers pointed
to what seemed to them a bit “shaky” in the direct proof – how does one
know for sure that the constructed point M is located in CBO? Unlike
the indirect proof that developed naturally in the course of dealing with the
task, the direct proof hardly emerged. Moreover, although the direct proof
gave a formal confirmation which could settle the case, it left people with
an inner drive to search for additional explanation of the problem situation.

Following the evolving experience surrounding the square task another
version of the task was designed, in which everyone was asked to consider
both possibilities for α. The two modifications have been successfully used
numerous times, always yielding most of the above considerations and
questions.

Looking back at the original textbook version of the problem (see
Figure 16), it seems rather obvious that the main difference between the
two tasks is the degree of uncertainty associated with them. The three

Figure 16. The original textbook problem.
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modifications of the task emerged in response to the facilitator’s desire to
create uncertainty. The first iteration was designed to create an unknown
path and questionable conclusions type of uncertainty. In the course of im-
plementing it, a competing claims type of uncertainty arose accompanied
by a non-verifiable type of uncertainty. Consequently, the second and third
iterations were designed to evoke all three types of uncertainty.

Although the above anecdotes refer mainly to pre-service and in-service
mathematics teachers, the square task was also tried out with secondary
students in a number of classes of 9th and 12th grade top level students. Ron
(1996) used the second modification as a homework assignment, but gave
all the students the same part (Figure 11, for Group 2). The homework was
used to facilitate in the following lesson whole group discussion surround-
ing the task. Apparently, the students encountered the same conflicts as the
teachers. However, they needed more assistance in resolving the conflict,
and expressed less inner motivation to get at the roots of the problem. The
focus of their activity was primarily on their tendency to lean on supposed
(counter-)examples that in fact do not exist due to excessive constraints (as
discussed by Peled and Zaslavsky, 1997; Zaslavsky and Ron, 1998).

5.3. The square task – teachers’ reflections

The above account provides an idea of the mathematical musing that took
place and that may be stimulated by the uncertainty involved in the square
task for diverse populations of students and mathematics educators. With
respect to mathematics educators, there was another dimension to this learn-
ing experience – the pedagogical aspect in its broad sense. This experience
seemed to contribute to their awareness of and sensitivity to ways in which
students may learn. Following are a few excerpts illustrating teachers’ re-
actions to the second modification of the task (Figure 11) from a learner’s
perspective, as came up at whole group reflective discussions.

Miriam: At first when I worked on the problem by myself, I felt like a student.
I felt unconfident and said to myself: “this can also happen to me. It’s
not always possible to find the correct answer.”

I observed my colleagues struggle with the problem, and that made
me feel better about the possibility to hesitate or err. It became
legitimate. I felt that I was in the process of learning. I wondered how
I, as a teacher, could create such situations in my classroom and how
I could change regular questions into questions that stimulate discussion.

Sara: I first checked the angle 55◦, and didn’t reach a contradiction. I also
tried 60◦ and again didn’t reach contradiction. So I concluded that the
statement is false, that is, that the measure of α is not necessarily 55◦.
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Later on, during the discussion, I realized that �COD was uniquely
determined and was angry at myself for not checking how two different
angles fit the same triangle. As a teacher I always teach my students
to be critical about what they do. When I realized that I did not act
accordingly it bothered me.

Joseph: I enjoyed this a lot. It caused me to be much more involved by raising
my curiosity. The activity called for integration between people and
between domains and I liked it, because when someone faced an
impasse there was hope that someone else would help move this
process, and this it neat.

Rose: I left last week with a clear decision not to confront my students with
uncertainty and not to leave them hanging in the air. But after giving
it more thought I decided to dare and tried something similar with an
algebraic problem. I was very surprised by how well it went and how
enthusiastic and cooperative the children were. They came to see me
every day and shared with me their progress.

The following excerpt is from an interview with Mike, an in-service
teacher who worked on the square task with another teacher – Ronit. As
Mike dealt with the problem and thought that he had solved it, Ronit kept
raising a question to which he was not sure how to respond. He tried
working on a system of equations that did not lead him to any result. It was
a new experience for him not to be able to offer a convincing explanation.
As expressed in the excerpt below, Mike compared this situation to his
teaching experience.

Mike: . . . It’s not because I’m not a good teacher, it’s just that this
“student” [Ronit] asked me a question that I am never asked in my
class.

Interviewer: So maybe you should educate your students to ask such questions?

Mike: Maybe, but it can lead to questions with no answers.

Interviewer: Is that bad?

Mike: It’s difficult. I can’t recall being in such a situation in which I am
asked a question that I can’t answer and need to think about it at
home. If she were a young student, I’d convince her. It’s possible to
convince by changing your voice and tone. That’s how it goes in my
classroom – you see that you are right and they [the students] don’t
understand, so you repeat your explanation over and over until they
are convinced.
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The excerpts above convey the potential of uncertainty in evoking teach-
ers’ reflections on their practice in light of their personal learning experi-
ences. They also indicate the role of social interactions in making the most
of the learning opportunity created by the task.

6. CONCLUDING REMARKS

In this paper I tried to point to two kinds of interrelated dynamics: The dy-
namic movements and interplay between the different types of uncertainty
that may be evoked by a task (as depicted in Figure 5), and the dynamic it-
erations in task design as a response to uncertainty that occurs in the course
of implementation of the task. These two kinds of dynamics are presented
in Figure 17.

A key factor in identifying opportunities for creating uncertainty and
translating these opportunities to task design is reflection. As mentioned
earlier, the paper is an account of my own learning from a reflective prac-
titioner’s perspective (Schön, 1987), in and on action. For me, the process
of planning and implementing the kind of tasks discussed earlier provided
meaningful learning situations both mathematically and pedagogically. For
example, Bob and Ruth’s authentic debate which I had overheard created
a moment of uncertainty for me. It led me to deep mathematical musing
which I would not have encountered otherwise. In addition, as a mathe-
matics teacher educator it drew my attention to the learning potential of the
problem for many different learners, similarly to the experience discussed
in Zaslavsky (1995).

Doing mathematics often involves establishing mathematical truths by
checking conjectures, and deciding whether to reject or accept them. The
process of establishing truth in mathematics entails an act of explaining

Figure 17. The dynamics underlying task design and types of uncertainty.



CREATING UNCERTAINTY 317

and convincing, an act that is central to mathematical thinking (Burton,
1984; Mason et al., 1982). The mathematical thinking that was fostered
through just one doubt provoking task – the square task – encompassed
issues related to validity and certainty, multiple proof methods, existence
and uniqueness, examples and counterexamples, and connections, mostly
initiated by the learners. Moreover, in this context the indirect method
of proof, that is considered problematic and arose much debate among
mathematicians (Courant and Robbins, 1996), emerged iteratively in a nat-
ural setting, as a manifestation that this method may be at times rather
convincing. As shown in Figures 13 and 14, the two proofs by contra-
diction developed spontaneously, in contrast to the common direct proof
that Bob suggested (Figure 9). It seems that this may be the case par-
ticularly when the direct proof is based on an auxiliary construction that
does not come to mind naturally. Students are known to feel that such
constructions are beyond their capability of thinking on their own, and
their role in such cases is usually limited to accepting a construction that
is suggested by an expert (a book, a teacher or an excelling student) and
figuring out how to use it for proving. Especially interesting is how the
state of uncertainty developed doubtfulness that led to a genuine need
for proof and a search of multiple sources of explanations much beyond
the “right answer.” More specifically, in terms of Hanna (2000), it en-
hanced an inner need for proofs that explain. Overall, these are the kinds of
mathematical understanding that secondary mathematics teachers should
develop.

Tasks are usually constructed or adapted by mathematics educators in
order to provide learning opportunities for others. It may seem like the
dynamics of task development portrayed in this paper is particularly sig-
nificant for mathematics teacher educators, since there are far more re-
sources of learning materials for students than for mathematics pre-service
and in-service teachers. Nonetheless, the ongoing process of seizing the
opportunity to create uncertainty in learning mathematics may be in itself
a powerful source for both teachers and teacher educators’ learning and
teaching. It follows that teacher education programs should aim at increas-
ing mathematics teachers’ awareness of the potential of learning situations
involving uncertainty and enhancing their ability to design and adapt such
tasks for their students.

Many worthwhile mathematical tasks are associated with elements of
uncertainty. Once a teacher or teacher educator has the mindset to in-
corporate doubt provoking tasks, the sources for such tasks may vary, as
exemplified earlier, including: (1) common textbook problems that could
be slightly modified to create uncertainty; (2) widespread students’ mathe-
matical difficulties and misconceptions that could be confronted by the
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task; (3) mathematical subtleties throughout the curriculum that could
form the basis to question implicit assumptions or beliefs; (4) authentic
classroom events that entail debate and conflict that may be recreated by the
task.

A critical factor in successfully implementing a task with the poten-
tial of generating unforeseen elements of uncertainty and doubt relies on
appropriate classroom setting and climate. This paper provides support-
ing evidence of the significant role that social interactions and exchange
of personal viewpoints and preferences play in fully exploiting the poten-
tial of such a task. Clearly, it is unlikely that the full scope of solutions,
approaches, and additional concerns would have been reached by one in-
dividual alone.

In spite of the value and potential of uncertainty as a driving force for
learning mathematics, a word of caution needs to be said - uncertainty
should be treated with care. A state of conflict may easily lead to frustra-
tion and fragility (Movshovitz-Hadar, 1993). Additionally, Behr and Harel
(1995) point to evidence that conflict resolution is often accomplished by
application of erroneous procedures. They raise two important questions.
The first relates to the need to create situations that involve an appropri-
ate level of cognitive conflict for the individual learner. The second has
to do with the need to guide the learner to “conflict resolutions through
the construction of knowledge structures which are consistent with domain
principles” (p. 83, ibid). An attempt to create uncertainty by confronting
a learner with a mathematical contradiction may not necessarily lead to
cognitive conflict as appears to be the case in many examples of people liv-
ing at peace with mathematical inconsistencies (Tall, 1990; Tirosh, 1990;
Vinner, 1990). Even when conflict is evoked, it may not be effective, as in
the case of intuitive rules that to a large extent are stable and resistant to
change (Tirosh et al., 1998).

In light of the above, the effect of the square task, in its wide scope,
on learning should not be taken for granted. The dynamics described in
section 5 illustrate how interweaving uncertainty in the square task hand
in hand with promoting social interactions (in the spirit of Cobb et al.,
1993), elicited an authentic need to prove and convince. The social con-
text was critical for this to develop, concurring with Vygotsky’s (1978)
view that all higher cognitive processes occur first as social relations. In
addition, the different kinds of uncertainty led to a refinement of the par-
ticipants’ understanding of what valid arguments and inferences are. They
engaged in a comparison between different suggested proofs and evaluated
each one’s merits and limitations. In this sense, the task led to manifes-
tations of higher order thinking and abstraction, which are not commonly
exhibited.
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NOTE

1. At this point I prefer not to disclose the original textbook task in order to leave the reader
who may not be familiar with this problem uncertain with respect to the measure of α.
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