
Introduction

PME SPECIAL ISSUE: BODILY ACTIVITY AND IMAGINATION IN
MATHEMATICS LEARNING

The use of manipulatives in mathematics education is part of a long tra-
dition enriched by noted educators such as Maria Montessori, Georges
Cuisenaire, Caleb Gattegno, and Zoltan Dienes. Like many teachers, these
educators have observed that numerous students get engaged with materials
that they manipulate with their hands and move them physically around,
with an intensity and insight that do not seem to be present when they just
observe a visual display on a blackboard, a screen, or a textbook. While
one should not expect that students’ experimentation with manipulatives
and devices would automatically cause them to learn mathematics,1 there
must be something valuable that sustains their use even at the present age
when it is simple to simulate them on a computer. It is not the same ex-
perience, for instance, to watch a movie displaying a geometrical object
and to touch or walk around a plastic model of the same object. Clearly
both experiences can be useful, but even if one could argue that they both
reflect the same mathematical principle, they are not mere repetitions. One
difference is that the use of materials and devices facilitates the inclusion
of touch, proprioception (perception of our own bodies), and kinesthesia
(self-initiated body motion) in mathematics learning. A key reason for the
frequent dismissal of this difference is that visual perception is ordinarily
conceived as self-contained and passive. Given that mathematical ideas get
expressed mostly in visual form – strings of symbols, graphs, diagrams,
etc. – other types of action and perception appear to be of little significance.
For example, following this assumption, whether one is shown a cube turn-
ing or one walks around a cube, the cube’s retinal images, except for the
background being static in the former case, are the same and therefore one
would see the same.

However, there is an emerging perspective, sometimes called
“Exploratory Vision,” which describes vision as fully integrated with all

1This thesis has been extensively criticized by many researchers; see, for example,
Ball (1992); Cobb et al. (1992); Lesh et al. (1987); Meira (1998) and Teasley (1993).
Meira (1998), for instance, asserts: “the transparency of devices follows from the very
process of using them. That is, the transparency of a device emerges anew in every
specific context and is created during activity through specific forms of using the device,”
(p. 138).

Educational Studies in Mathematics 57: 303–321, 2004.
C© 2004 Kluwer Academic Publishers. Printed in the Netherlands.



304 INTRODUCTION

the body senses and actions. Our eyes are constantly moving in irregular
ways, momentarily fixing our gaze on a part of the environment and then
jumping to another one. It is as if we are constantly posing questions to
the visual environment and making bodily adjustments that might answer
them.

On this view, no end-product of perception, no inner picture or description is ever
created. No thing in the brain is the percept or image. Rather, perceptual experience
consists in the ongoing activity of schema-guided perceptual exploration of the
environment. (Thomas, 1999, p. 218)

The notion of Exploratory Vision is not new in itself; for instance, it
was described in 1905 by Poincaré, who wrote, “when it is said that we
‘localize’ such an object in such a point in space, what does it mean? It
simply means that we represent to ourselves the movements that must take
place to reach that object” (Poincaré, 1905/1952). Poincaré argued that one
conceives of a localization in space by means of the “muscular sensations”
that accompany our real or imaginary movements around or toward such
location.

Another reason drawn on to set aside touch, kinesthesia, etc. in mathe-
matics learning is that mathematical entities cannot be “materialized”, one
cannot touch, say, an infinite series or the set of even numbers. While true,
the fact that these entities are imaginable is profoundly connected to per-
ception and bodily action. It is increasingly becoming evident that there is
a major overlap between perception and imagination (Decety, 1996a, b). If,
for example, we imagine a house, the inner bodily processes are strikingly
similar to what would happen if one would actually see the inexistent house.
To imagine, for instance, a limit process, one extends perceivable aspects to
physically impossible circumstances and conditions. In this regard, touch
and kinesthesia can be instrumental to imagining. It is not unusual that to
imagine inexistent objects and events one gestures shapes and motions or
takes hold of an object, say a cardboard box, to help see them from different
sides.

This special issue includes four videopapers, each examining different
aspects of how bodily activity and imagination participate in mathematics
teaching and learning. They are:

1. Approaching Functions through Motion Experiments
Ferdinando Arzarello and Ornella Robutti

2. Incorporating Experiences of Motion into a Calculus Classroom
Marty Schnepp and Daniel Chazan

3. On Forms of Knowing: The Role of Bodily Activity and Tools in
Mathematical Learning
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Chris Rasmussen, Ricardo Nemirovsky, Jennifer Olszewski, Kevin
Dost, and James L. Johnson

4. Coordination of Multiple Representations and Body Awareness
Marcelo Borba and Nilce Scheffer

RICARDO NEMIROVSKY

MARCELO BORBA

Guest Editors

CARA DIMATTIA

Technical Editor

FERDINANDO ARZARELLO and ORNELLA ROBUTTI

APPROACHING FUNCTIONS THROUGH MOTION EXPERIMENTS

According to current research, some of students’ most serious difficulties
in conceptualizing the function concept are related to the interpretation
of graphs, particularly those in which a variable is time-dependent: for
example, space–time or velocity–time graphs. This paper presents a part of
an ongoing project conducted from the first years of secondary school (9th
grade up), where Calculus is approached early within different learning
contexts. Our videopaper is based on a teaching experiment which we
designed to approach the function concept. For the experiment, we used a
motion sensor and a symbolic-graphic calculator, which students (14–15
years old) use to produce and interpret graphs and number tables aimed at
describing different kinds of motion (either of their own bodies or of other
objects) (for more details about the experiment, see Ferrara and Robutti,
2002). The didactic aim of the teaching experiment was the construction
of the concept of function (e.g. linear or quadratic functions), as a tool
for modeling motion (uniform and accelerated, respectively). The aim of
the research was to analyze students’ cognitive processes involved in the
construction of meanings of mathematical objects.

The analysis was developed using several theoretical frameworks, in
order to capture the different dimensions of the students’ activity. The so-
cial dimension, representing the mathematical discussion orchestrated by
the teacher (Bartolini Bussi, 1996) was captured using a general Vygot-
skian framework, whose emphasis is on the social construction of knowl-
edge and the mediation by cultural artifacts. The role of artifacts was then
studied using the concepts of instrumental analysis proposed by Rabardel
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(1995). Theoretical elements for taking into account the role of the body
in cognition were provided by the embodied cognition approach (Lakoff
and Nuñez, 2000). Analysis of students’ discussions was helped by the
semiotic-cultural analysis of language (Radford et al., 2003), and an anal-
ysis of gesture, that illuminates the cognitive processes of subjects (e.g.
McNeill, 1992; Edwards, 2003). Gestures, together with language, help
constitute thought and they reflect the imagistic mental representation that
is activated at the moment of speaking (“gesture plays a role in thinking”
Alibali et al., 2000).

In this paper, we will go over the elements of the framework (em-
bodied cognition, instrumental analysis, cultural-semiotic analysis), seek-
ing an integration between the cognitive aspects and the instrumental
one, through the gesture and linguistic analysis. We shall describe how
students’ conceptualization consists in a complex process that, following
Radford et al. (2003) we have called objectification of knowledge: start-
ing from their perceptions and interacting with cultural artifacts through
gestures and language, students can successfully build up mathematical
concepts.

The conceptual genesis of function is considered in our experiment
from different points of view: as covariance, namely when one variable
is changing with respect to another (Slavit, 1997), and as descriptions of
time-depending variables, through the visualization of graphs (Monk and
Nemirovsky, 1994). A working hypothesis is the following: the meaning
of function is deeply featured in the mediation of the artifact used in the
learning process.

The classroom activities described in the present paper involved work-
ing groups, class discussions, and final remarks made by the teacher. The
students of the class were divided in small groups of three to four students,
each group with one calculator. Each group has carried out an experiment
connecting its calculator with the motion sensor.

The first set of protocols shows the graph and table interpretations made
by students working in small groups. It can be seen that the students go back
and forth between the graph on the screen and the description of the motion
experiment, trying to connect them. Concentrating their attention on the
first horizontal line in a space–time graph (corresponding to an absence
of motion), they begin the objectification of the knowledge, evidenced by
many deictic words, accompanied by similar gestures. This step culminates
later in the conceptualization of the relationship between space and time,
namely velocity, marked by an intensification of generative action terms, re-
lated with iconic gestures. The successive interpretation of the space–time
data table related to the motion graph takes place with another use of the ar-
tifact calculator: scrolling the two columns both horizontally and vertically.
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This approach to the instrument is very similar to the one experienced with
the graph. The interpretation begins from the part of the table correspond-
ing to stillness and is later extended to the other parts, corresponding to
uniform motions; as they considered the latter ones, the students built a
deeper and clearer meaning of the velocity concept. Scrolling has made
visible the two variables, space and time, not just that the only variable
that had been explicit so far, namely the distance. This scheme of use
(the scrolling) conveys reasoning along the covariational way of interpret-
ing a function. The motion experience and the graph representation alone
had not been enough to foreground the two covariational variables in this
phenomenon. Scrolling is used in different ways: first with an explorative
attitude to find a pattern in the data and later to verify a conjecture and to
explain it to the classmates. This marks a relevant aspect of signs in accor-
dance with Vygotsky’s theory: the evolution from the immediate intellec-
tual processes (typical of the graph interpretation) to the operations medi-
ated by sign (e.g. the number table with the scrolling modality). Scrolling
might have transformed the calculator into a psychological tool (in the
sense of Vygotsky), by which the students realized the objectification of
knowledge.

The second set of protocols shows a part of a classroom discussion, in
which a student describes the interpretation of the graph and the table, as it
had been shared within her group. This description is very rich in gestures
accompanying words. Her words and gestures can be divided into different
types according to what they are referring to. They can refer to the motion
or to its graphical representation. A new element of our research is the
distinction among three different ways to communicate an idea relative to
a body motion activity.

(1) Both language and gesture refer to a physical situation.
(2) Both language and gesture refer to a representation of the physical

situation.
(3) Language refers to the physical situation, and gesture to its represen-

tation.

A gesture which refers to a physical situation (case 1), and thus simu-
lates it, is called iconic gesture (McNeill, 1992; Radford et al., 2003) or,
more precisely, iconic-physical gesture (Edwards, 2003). In the other two
cases, the gesture simulates a representation of a phenomenon: so it can be
considered at another cognitive level, and it can be called iconic-symbolic
(Edwards, 2003). In order to distinguish the levels of symbolization refer-
ring to a graphical environment (as in this case) or to an algebraic environ-
ment (for instance through a formula), we introduce the notions of iconic-
representational gesture (a gesture refers to a graphical representation of
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a phenomenon), and iconic-symbolic gesture (gesture refers to a symbolic
representation).

The third set of protocols shows similar experiments with a sonar and
a calculator, taken from another class, in which the students first use their
body motion to reproduce some graphs sketched by the teacher on the
blackboard, and then discuss what happened. The main element examined
is the way in which gestures (which are iconic-representational, according
to the previous definition) incorporate in a compressed way the features of
the time law. In fact, when the speed is increasing, the hand moves faster,
and when the speed decreases, the hand moves slower. Two features are thus
compressed in the same gesture: the first (namely the trajectory made by the
hand) expresses how the function varies (the space–time graph); the second
(the speed of the hand) incorporates the velocity of the moving body. This
double embodiment of information seems to be a ‘natural’ representation
of the movement: it is a mediating tool, in order to grasp the situation in a
more viable way.

Our claim is that the scientific concepts can be grasped by the students
in a deep way, provided students can live and share their conceptual genesis
from experiences in contexts suitably designed by the teacher. Hence our
tasks are conceived so that the students:

• can have meaningful sensory-motor experiences;
• are supported in interpreting/interacting with suitable representations of

the phenomena they perform;
• are encouraged to communicate with each other the meaning of the

representations in group discussions.

Anticipating, predicting, preparing, and selecting are the main processes
through which students can start constructing the meaning of scientific con-
cepts, as they work with and on their perceptions and bodily motion. The
roots of scientific concepts are blends, metaphors, and gestures insofar as
these bodily experiences are permeated by the practices of our culture. They
can accumulate and concentrate in clusters of experiences, into which stu-
dents enter with their bodies (their actions), which are described through
their language and gestures, and through suitable representations. These
clusters of experiences allow students to deepen their different experiences
and to make connections with others, in an interactive and reflective atti-
tude. In different ways, such concrete interpreting clusters can evolve and
compress into abstract scientific concepts.

FERDINANDO ARZARELLO

ORNELLA ROBUTTI

Università di Torino, Italy
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MARTY SCHNEPP and DANIEL CHAZAN

INCORPORATING EXPERIENCES OF MOTION INTO
A CALCULUS CLASSROOM

In an exchange with a fellow mathematician, Jean Dieudonné, about the
teaching of secondary mathematics, the mathematician René Thom (1973)
asserts, “Whether one wishes it or not, all mathematical pedagogy, even if
scarcely coherent, rests on a philosophy of mathematics” (p. 204). We find
support for Thom’s assertion in Brousseau’s (1997) analysis of mathematics
teaching. Brousseau’s notion of the didactical contract attempts to explain
how the role of mathematics teacher is shaped by its institutional context. In
his view, the role of mathematics teacher is shaped by the responsibility of
teaching mathematics; justification of activity in mathematics classrooms
must include an explanation for how the activity is mathematical. In that
sense, pedagogy of the mathematics classroom rests on a philosophy of
mathematics.

This paper is designed to stimulate reflection on relationships between
teachers’ beliefs about mathematics and the nature of the instruction that
seems justifiable to them. In particular, we are interested in the question of
relationships between teachers’ beliefs about mathematics and the introduc-
tion of bodily experience and imagining into the mathematics classroom. If
mathematical abstractions grow, to a large extent, out of bodily activities,
and mathematical understanding and thinking are perceptuo-motor activ-
ities, what sorts of implications are there for the learning of mathematics
in classrooms? We examine these implications in the context of Calculus
instruction at the high school level. We are interested in interrelationships
between a teacher’s conceptualization of instructional goals (for example,
what it means to understand motion and the role of such understandings
in a Calculus course) and issues (for example, challenges in learning and
teaching the mathematics of motion) and the instructional possibilities the
teacher entertains as plausible or reasonable ways to reach these goals.

Our paper is centered on the examination of the teaching of one teacher,
the lead author of the paper, Marty Schnepp. Marty’s teaching of Calculus
is not standard (for more details about his Calculus instruction, see Schnepp
and Nemirovsky, 2001; Chazan and Schnepp, 2003); his teaching involves
discussion of shared experiences with motion into a high school Calculus
class. Rather than describe his teaching as the teaching of Calculus, Marty
conceptualizes his Calculus instruction as designed to teach the mathemat-
ics of motion. In this instruction, he uses line becomes motion (LBM) tech-
nology to bring experiences of motion into the mathematical conversations
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he has with his students. Marty uses this device (and others) to teach his
students to develop their understandings of motion, to learn to associate
mathematical calculations with aspects of motion, and to see and under-
stand velocity graphs in a disciplined (mathematical) way. In our view, this
is one attempt to develop mathematics instruction that takes bodily activity
seriously as a source of mathematical understandings and insights.

A central claim of our paper is that Marty could not in good conscience
take this approach to the teaching of Calculus, if he felt that he was teaching
students about motion, rather than the mathematics of motion. If he felt that
his work with students could be divided into two components, contextual
matters related to motion and the mathematics of the Calculus, then, as a
mathematics teacher, he would not be able to teach as he does; he would
have to leave the matters of motion to the physics teacher.

With this examination of one teacher’s use of activities with motion in
his Calculus class, we hope both to illustrate Thom’s quote and to suggest
that the introduction of bodily experience into the classroom requires much
more than an argument for its potential in improving student learning. We
caution that widespread use of bodily experience in classrooms will depend
on teachers being able to articulate how such activity is mathematical activ-
ity that is legitimate for the mathematics classroom. Our suggestion is that
bodily experience cannot be brought into the mathematics classroom with-
out addressing teachers’ views of what Schoenfeld (1990) calls “formal and
informal mathematics” or what Kaput (1993) calls “the math/experience
linkage.” As such, it is important that curriculum developers, teacher ed-
ucators, professional developers, and technologists articulate the views of
mathematics and of learning and teaching which inform their commitment
to integrate bodily experience into the mathematics classroom. And, beyond
articulating such views, it is important to find a language to communicate
with others, most crucially teachers, who may not share those points of view.

Our paper is organized in three parts. The first two sections of the first
part of the paper outline a conceptualization of the challenges of learning
and teaching the mathematics of motion. These two sections concretize
what Marty Schnepp means by the mathematics of motion, how he sees
understandings of motion as inextricably linked with mathematical ana-
lyzes of motion. Using material from textbooks, we highlight the kinds of
issues he hopes to address with his students.

For example, the task of teaching students to read velocity–time graphs
is in part helping students learn to imagine the types of motion that particular
graphs may describe, consistent with Noble et al.’s (2004) argument that
“interpreting a graph or a table entails perceiving a range of possibilities
distributed across its spatial layout” (p. 2). This is a part of what they view
as learning a “disciplined” way of seeing, mathematical vision. In this way
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of thinking, learning to interpret a velocity over time graph is inextricably
linked with understanding what velocity is. One cannot read such a graph
simply as the graph of a function. One must read it as a graph of a velocity
function and understand the field of possible motions that such a graph
might describe. As they argue:

Such gradual mastering of visual interpretations is not achieved by the performance
of isolated and self-contained sequence of steps, but by interpretive efforts that
encompass ways of doing things and domains of familiarity. Experimenting with
partial interpretations based on familiar contexts leads, not to a ‘blind’ set of
procedures, but instead, to a complex way of seeing that summons explicit and
tacit expectations. (Noble et al., in press).

Noble et al.’s point of view suggests that there is much more to learn-
ing to interpret velocity graphs than simply understanding that negative
velocities suggest speed in an opposite direction. Such an understanding
is important. But, those who read velocity graphs effectively also appreci-
ate the ways in which such negative velocities interact quantitatively with
positive velocities. And, they also appreciate that a velocity graph does not
imply a particular starting place. This is a view of the learning of mathe-
matics where mathematics and lived experience are always in contact, and
not just at the beginning and the end of problem solving as is suggested by
the words “applying mathematics.”

In order to incorporate activity predicated on such views into the math-
ematics classroom, however, Brousseau’s theory suggests that an argument
must be made for the mathematicalness of such activity. Fortunately, for
the adherents of such classroom activity, there is a range of views of math-
ematics, including ones that conceptualize a role for experienced motion
in the development of mathematics. For this reason, in the third section of
the first part of the paper, we move back from the teaching of Calculus and,
using Kitcher’s (1983) perspectives on mathematics as an idealizing the-
ory, explore philosophical support for viewing motion and mathematics as
inseparable. Kitcher offers an evolutionary theory of mathematical knowl-
edge. He suggests that the origins of mathematics lie in sensory perception
and the world around us. He then suggests that built on this substratum of
experience mathematics grows as an idealizing theory of the world. Math-
ematics consists in idealized theories of ways in which we can operate on
the world. To produce an idealized theory is to make some stipulations – but
they are stipulations which must be appropriately related to the phenomena
one is trying to idealize (Kitcher, 1983, p. 161).

Such a theory describes the world not as it is, but as it would be if
accidental or complicating features were removed. “Thus we can conceive
of idealization as a process in which we abandon the attempt to describe
our world exactly in favor of describing a close possible world that lends
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itself to much simpler description” (p. 120). An important aspect of the
development of such simpler descriptions is, in Kitcher’s view, a desire to
make such descriptions internally consistent.

. . .It would be futile to deny that observation is one source of scientific change.
The burden of the last paragraph is that observation is not the only such source.
There are always “internal stresses” in scientific theory, and these provide a spur
to modification of the corpus of [scientific] beliefs. . .. To oversimplify, we can
think of mathematical change as a skewed case of scientific change: all the relevant
observations are easily collected at the beginning of inquiry; mathematical theories
develop in response to these and all the subsequent problems and modifications
are theoretical. . . (p. 153).

From this point of view, rather than being surprising or inexplicable,
the effectiveness of mathematics in the natural sciences is support for the
idealizing nature of mathematical theory and for its origins in the world of
our senses.

Returning to the classroom, such a perspective on mathematics sug-
gests that if a Calculus teacher spends time on students’ conceptions of
motion, by watching or physically experiencing it in other ways, he has
not abandoned mathematics for physics. Instead, by doing so, the teacher
is allowing students to built an important proto-mathematical (Kitcher’s
word!) substratum of experience and vocabulary upon which the mathe-
matics of motion can be built. Similarly, when the use of LBM software
reverses the arrow of representation, and examines the degree to which the
world of motion represents idealized mathematical theories, the idealized
theory is being made accountable to the world it is meant to idealize.

The second part of our video paper is comparatively short. It gives
background on Marty’s instruction during the first month of a Calculus
class and, in preparation for the rest of the paper, indicates the task relevant
to the video clips analyzed in the third part of the paper.

The third part of the paper analyzes two clips from one session during
the third week of instruction in one of Marty’s Calculus classes. In the first
clip, students attempt to verify a conjecture about the average velocity of
one car whose displacement in time should match that of one traveling
at a variable rate. While struggling with the terms “position,” “distance
traveled,” and “displacement,” they give evidence of understanding that the
same velocity graph can describe motions with different starting points. In
the second clip, at the instigation of a student who can imagine a trip with
a velocity at each point, but an average velocity of zero, the class works on
clarifying usages of the terms “speed” and “velocity.” With each clip, we
first connect the clip with challenges of learning the mathematics of motion
as articulated early in the paper and then with challenges of the teaching
of the mathematics of motion.
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Our analysis focuses on students’ interaction with the LBM devices,
their capacity to imagine alternative motions to those that they see in front
of them, and the ways in which they hold the world accountable to their
mathematical theories. Throughout this analysis, there are many instances
of issues related to language as a vehicle for capturing individual intuitions
related to a common demonstration; there are conflicts that arise among
student usages and the teacher also plans instruction purposefully to raise
issues that he hopes will lead to shared understandings of accepted usages.

To reiterate, we believe that in order to teach in this way, he must be
able to argue that the understandings of motion he seeks to have students
develop are mathematical, not extra-mathematical. Otherwise, these issues
and the mathematical insights they generate could not have a place in the
mathematics classroom.

MARTY SCHNEPP

Holt High School, Holt, Michigan, U.S.A.

DANIEL CHAZAN

University of Maryland, Maryland, U.S.A.

CHRIS RASMUSSEN, RICARDO NEMIROVSKY, JENNIFER OLSZEWSKI,
KEVIN DOST and JAMES L. JOHNSON

ON FORMS OF KNOWING: THE ROLE OF BODILY ACTIVITY
AND TOOLS IN MATHEMATICAL LEARNING

In this paper we characterize how bodily activity and emerging tool fluency
combine in mathematical learning and how this combination suggests an
alternative view on the nature of knowing. In particular, we develop the
idea of knowing-with, which characterizes aspects of meaning making as
it relates to developing expertise with tools.

Our analysis examines a total of eight, 90–120-minute open-ended in-
dividual interviews with three undergraduate students, Jake, Monica, and
Kenny. Each student had completed three semesters of calculus and had
taken or was taking differential equations. In the interviews students worked
with a physical device called the “water wheel” that was first used in an
earlier study with high school students to investigate their intuitive ideas
of chaotic behavior (Nemirovsky, 1993; Nemirovsky and Tinker, 1993).

Our ideas in this paper are closely related to the work of Polanyi (1958)
and his way of conceptualizing the use of tools. For Polanyi, an important
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aspect of tool use is that the user typically does not distinguish between
the tool and herself. This subsidiary awareness is an act of making the tool
form a part of one’s own body. The significance of Polanyi’s perspective for
our analysis lies in the centrality of “dwelling” in the tool and the interplay
between subsidiary and focal awareness. Certainly there are times when we
analyze tools to decide, for example, which tool best suits a current need,
but the point that Polanyi made is that when a person uses a tool, like a
cane or a water wheel, she “pours herself” into the tool, becoming the tool.

We propose that the idea of knowing-with a tool is not a different
type of knowing to be contrasted with the well-known distinction between
knowing-how and knowing-that (Ryle, 1949), but rather a distinction in-
dependent of these other forms of knowing. The opposite of knowing-with
is knowing-without. We all have had experiences of knowing-without em-
bedded in feelings of something being alien, foreign, and belonging to
others. If, say, we travel to a country where people speak a language we
do not understand, our listening to their talk will elicit some perceptions
in us, such as how smooth or sharp are their sounds, how profusely they
gesture, or how incongruent their body language might be with the tone of
their utterances. The difference between knowing-with and without is not
absolute but contextual. A native speaker of, say, English, may experience
a partial knowing-without English when he encounters users of a certain
slang or speakers with different accents. Similarly, when one is using a tool
one is familiar with – a tool that participates in our subsidiary awareness
and therefore in who we are – one may drift into a context in which the
tool comes to be alien and behaving strangely.

For example, in the analysis of Jake’s interview we discuss how the
encounter with an unexpected result prompted a fundamental shift in Jake’s
focal awareness. From using the water wheel as a tool, and therefore as
part of his subsidiary awareness to generate graphical shapes conforming
to his assumptions on basic properties of circular functions and derivatives,
the water wheel ceased to be tool and became an object of observation and
study, which called for a new background of ideas and properties, such as
weight, forces, vibrations and so forth.

Our analysis of these students’ interaction with the water wheel also
highlights how bodily interaction with a tool affords a certain way of
knowing a mathematical idea such as acceleration that is different from
knowing that acceleration is the slope of the tangent line at a point. For
example, when sensing and feeling the water wheel, Jake’s way of know-
ing acceleration grows in him as he physically moved the wheel with his
hand. By carefully attending to variations in the force he had to apply, Jake
distinguishes when and why the wheel would experience a maximum ac-
celeration. Much as knowing, say, humor or poetry with a foreign language,
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entails developing particular cultural subtleties and nuances that enable one
to grasp humor or poetry, Jake’s knowing-with the water wheel enables him
to develop certain views and sensitivities to force and angular position that
enable him to grasp acceleration. As dwelling in the wheel and emerging
tool fluency combine, Jake knows acceleration with the wheel.

In the final section of the paper we reflect on our analysis to under-
score how knowing-with (1) engages multiple and different combinations
of dwelling in the tool, (2) invokes the emergence of insights and feel-
ings that are unlikely to be fully experienced in other ways, and (3) is
in the moment. We conclude this introduction by highlighting these three
characteristics of knowing-with.

Dwelling in the Tool. Illustrated in the analysis are multiple and different
forms of dwelling in the tool, including touching and sensing the water
wheel, imagining what it is like to be the water wheel, and personifying
the water wheel. These forms of dwelling in the tool recruit a variety of
different perceptuo-motor, linguistic, and imaginative resources and often
play out together in combination as students construct new insights into the
ideas being talked about. All of these forms of dwelling in the tool connect
with Polanyi’s insight that when using a tool, “We pour ourselves out into
them and assimilate them as parts of our own existence. We accept them
existentially by dwelling in them” (Polanyi, 1958, p. 59).

For example, we characterize one of the forms of dwelling in the tool
as animating or personifying the tool. The most prominent example of this
form of dwelling in the water wheel is evident in the following excerpt
in which Monica gives the water wheel a voice, complete with likes and
dislikes. “Man, I’m no longer being pushed down. Now you want me to go
back up? I don’t want to go up. So I’m unhappy.” Monica’s dwelling in the
tool in this way fostered a subsequent exchange between the water wheel
being at her focal awareness and the water wheel being at her subsidiary
awareness as she developed a certain view or sensitivity to the role of
gravity on the motion of the water wheel’s heavy spot.

Emergence of Insights. Similar to the way in which humor or poetry is
difficult or impossible to translate, knowing an idea with a tool invokes the
emergence of insights and feelings that are hard or difficult to fully sense in
other ways. Students in this study knew much about derivatives, forces, and
graphing, for example, but these competencies were not immersed in their
sense-making efforts with the water wheel. For example, Monica knew
that the acceleration is zero when there is a local maximum or minimum
on the velocity graph, but she had to recognize anew this relationship in
the motion of the wheel.

In the Moment. The third characteristic of knowing-with is that it tends
to be in the moment or in the circumstances of a particular experience.
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By dwelling bodily and imaginatively in these circumstances one develops
sensitivities rooted in the nuances of momentary events. These sensitivi-
ties open up new possibilities for understanding in subsequent situations
where the circumstances are different. For example, Jake’s analysis of cer-
tain terms in the differential equations included critical aspects that he
imaginatively re-constituted from his past experiences of dwelling in the
water wheel. Since knowing-with tends to be attached to evanescent cir-
cumstances, this may account for why, although essential, it has often gone
unnoticed in mathematics education.

There is a widespread tendency to assume that, once a concept has been
formally articulated and students have at one time proven fluent with the
corresponding notation, the learning of this concept has been accomplished
and a degree of readiness has been achieved for more advanced ones.
Through the episodes with Kenny, Monica, and Jake we illustrate that often
these assumptions do not hold. Ideas such as rate of change or linearity are
not encapsulated by definitions or formal derivations. Each time we grapple
with a new context we need to re-encounter them in a different light or in
relation to unfamiliar circumstances. We are never “done” with them. The
fact that Kenny, Monica, and Jake struggled with ideas that had presumably
been taught to them years earlier does not speak of a teaching failure per
se, but points to a pervasive neglect of bodily and imaginative dimensions
of mathematics learning.
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COORDINATION OF MULTIPLE REPRESENTATIONS
AND BODY AWARENESS

The main objective of this paper is to bring back the discussion about
multiple representations into the landscape of research related to function.



INTRODUCTION 317

Much research was developed during the 1980s and early 1990s regarding
ways to integrate the coordination of graphs, tables and equations into the
teaching and learning of topics related to the conceptual field of function.
It is our intention to relate this approach to the discussion regarding dif-
ferent interfaces linked to computer technologies, as well as the discussion
regarding the role of the body in mathematics education. We believe that
new discussion regarding body, interface and theoretical constructs such as
humans-with-media shed some light over the previous discussion regarding
multiple representations.

To ground the discussion, we describe three teaching experiments, in
which 8th graders used CBR, a motion detector linked to a graphing calcu-
lator, and LBM, a device developed at TERC that also has a motion detector,
to generate mathematical ideas related to the motion concepts associated
with their movements. The second author conducted the teaching experi-
ments with pairs of students who had been introduced to the calculators in
their classroom beforehand. The students connected their body expression
to the Cartesian graphs generated by the motion detector. Discussions re-
lated to geometry, kinesthetic action, graphs and functions emerged from
the students’ narratives. Data are presented based on the videotaping con-
ducted throughout the teaching experiments and the analysis developed by
the authors with the help of GPIMEM, the research group to which they
belong. Results suggest that the use of the sensor can expand what has
been labeled the epistemology of multiple representations. Framing the
analysis of this episode there is a theoretical view based on the notion of
humans-with-media, which emphasizes the role of media in constructing
knowledge, thus breaking away from the polemical internal-external di-
chotomy in the epistemological debate regarding knowledge production.
We present a perspective on the nature of the relationship between technol-
ogy and humans which is basically opposed to the view of technology and
humans as a dichotomy. Although distinctions between humans and tech-
nology will be made, we hold that the relationship between them is much
closer, from their epistemological perspective, than previously proposed.
Secondly, we show how the discussion about multiple representations is
transformed within this perspective, and how the role of body is paramount
in such a view.

Tikhomirov (1981), a Russian psychologist, proposed that computer
technology will reorganize human thinking, as it extends memory and
alters the class of problems that are posed for humans. He refutes views
that the computer can simply be placed in juxtaposition to humans, or
merely extends human capabilities; he proposes the notion of a system
composed of a human and a computer. He argues that computers play a
qualitatively different role than language plays in relation to humans, as
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is traditionally asserted in Soviet psychology. Tikhomirov, who developed
his ideas prior to the advent of personal computers, was able to see ahead
of his time, as he considered that the focus of our concern should not be on
what was being lost as computers come into play, but rather on the nature
of the problems which could be solved by this kind of system.

Within our research group, GPIMEM, we have expanded this notion of a
human-computer system in two ways (Borba and Penteado, 2001). First, we
propose that the notion of computer itself should be transformed to incor-
porate all of the different kinds of interfaces that are interconnected. Thus,
devices such as calculators, graphing calculators, printers, modems, video,
etc., should be incorporated into this broader notion of computer. These
different interfaces, which are transforming our daily lives, no longer allow
us to think in terms of a single computer as an isolated unit, as Tikhomirov
did at the time, with good reason. We also believe that it is important to em-
phasize that, for the most part, computers have invited interaction among
humans, and therefore we propose thinking in terms of several humans in-
teracting with many different computer interfaces, as opposed to individual
humans. Some members of our research group have been using the notion
of humans-with-media to develop research. In such a perspective, it is the
system as a unit that generates knowledge; neither humans alone, nor me-
dia alone. From this perspective, computers cannot produce knowledge by
themselves, nor can humans; both medium and human must be present in a
given system. In addition to the different types of technologies and humans,
it is important to consider the socio-cultural-physical environment, since
both humans and technology produce the environment and are shaped by
it. Knowledge is not produced by “a lonely knower”, nor by collectives of
humans. It is produced by collectives of humans-with-media. Technology
is not external or internal to us. Technology is full of humanity and humans
are impregnated with technologies of intelligence.

Building on this theoretical perspective, we want to investigate how
students coordinate their body motion with graphical representations. We
believe that answers to this question may have implications for the teach-
ing of function in late middle school and early high school, especially
as interfaces like those used in this research become available to a larger
public.

The case which is presented illustrates how technologies of informa-
tion can create links between body activity and representations which are
officially recognized by the mathematics academy. We want to claim that
open-ended tasks with the use of sensors connected to calculators and
mini-cars can add new dimensions to the discussion regarding multiple
representations which was popular up to the mid 1990s. In this way, co-
ordination of multiple representations would encompass more than just



INTRODUCTION 319

the academically recognized representations of mathematical objects such
as tables, algebra and graphs. Such representations would also have to be
coordinated with body actions allowing for the expression of the being.
We claim that this new aspect of coordination expands the epistemology
of multiple representations proposed by Confrey and Smith (1994). In our
theoretical framework, knowledge is constructed by collectives that include
humans and technologies of intelligence, such as orality, writing and com-
puter technology. As mentioned before, knowledge is always produced by
collectives of humans-with-media, and it is transformed as different media
or humans join a given collective.

The analysis presented in the paper is focused on the theme of body
movements articulated with the representations attributed to them, i.e., the
graphs on the Cartesian plane represented by the software and the calculator,
taking into consideration the significant contribution of the gestures, the oral
communication, and the interpretation of the students’ narratives regarding
their experience with that activity.

The fieldwork involved teaching experiments composed of sessions car-
ried out with six students, with the researcher interacting with one pair of
students at a time, in a combination of interviews and teaching-learning
situations based on several authors. The teaching experiments were con-
ducted in a computer laboratory at UNESP – a university in Rio Claro,
São Paulo, Brazil – in at least six sessions per pair during the year 1999.
The sessions, lasting 60 minutes each, involved ten different activities re-
lated to the theme of movement which were carried out with the use of
devices, such as CBR and LBM, which connect standard mathematics rep-
resentations with movements developed by humans or things. The sessions
were video-taped by a technician. The research subjects were 8th-grade
students, between the ages of 13 and 15, from a public school in the city of
Rio Claro, São Paulo, Brazil. Prior to the teaching experiments, they had
participated in classroom activities involving calculators, computers and
sensors.

We saw the format of a videopaper as particularly suitable to convey
data regarding students’ actions, body motion and its link to standards
mathematical. We suggest that new media, such as the videopapers, not
only transform knowledge, but also the way we can communicate with
others who read a research paper or read-see-listen to a videopaper.
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