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Abstract Self-explanation is a process by which learners generate inferences about causal
connections or conceptual relationships. A meta-analysis was conducted on research that
investigated learning outcomes for participants who received self-explanation prompts while
studying or solving problems. Our systematic search of relevant bibliographic databases
identified 69 effect sizes (from 64 research reports) which met certain inclusion criteria. The
overall weighted mean effect size using a random effects model was g = .55. We coded and
analyzed 20 moderator variables including type of learning task (e.g., solving problems,
studying worked problems, and studying text), subject area, level of education, type of
inducement, and treatment duration. We found that self-explanation prompts are a potentially
powerful intervention across a range of instructional conditions. Due to the limitations of
relying on instructor-scripted prompts, we recommend that future research explore computer-
generation of self-explanation prompts.
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Self-explanation is a constructive cognitive activity learners can enact, at will or in response to
a prompt, to comprehend new information or learn skills (Fonseca and Chi 2011). When self-
explaining, it is theorized that learners generate inferences about causal connections and
conceptual relationships that enhance understanding. The content of self-explanations ranges
widely; for example, explanations can describe how a system functions, the effects of serial
steps in a procedure, the motives of characters in a story, or concepts presented in expository
text (Chi 2000; Siegler 2002).

It has often been observed that students learn steps in a procedure without understanding
how each step relates to others or contributes to the goal of the procedure (Siegler 2002).
Consequently, learners are less able to transfer the procedure to tasks with differing conditions.
Similarly, students studying an expository text may read each sentence but neither connect new
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information to prior knowledge nor consider implications arising from new information. Both
situations can be characterized by absent or ineffective metacognition whereby a learner fails
to recognize (metacognitive monitoring) and repair gaps (metacognitive control) in
understanding.

Self-explanation is conceptualized as a tactic some students spontaneously use to fill in
missing information, monitor understanding, and modify fusions of new information with
prior knowledge when discrepancies or deficiencies are detected (Chi 2000). Chi considers
self-explanation to differ from summarizing, explaining to another, or talking aloud. Self-
explanation is directed toward one’s self for the purpose of making new information personally
meaningful. Because it is self-focused, the self-explanation process may be entirely covert or,
if a self-explanation is expressed overtly, it may be intelligible only to the learner.

In early self-explanation research, stable individual differences were observed in the
frequency and quality with which students spontaneously self-explained, and positive rela-
tionships were reported between self-explanation and learning (Chi et al. 1989; Renkl 1997).
Renkl found more successful learners tended to self-explain either by predicting the next step
in a problem solution (anticipative reasoning) or identifying the overall goal structure of the
problem and the purpose of its subgoals (principle-based explaining).

Because self-explanation could be an effect rather than a cause of learning, observational
data showing better learning outcomes for learners who self-explain is not evidence learners
benefit from self-explanation training or prompts. Prompts and other exogenous inducements
could lead learners to generate explanations less finely adapted to gaps in their knowledge than
spontaneous self-explanations. Thus, prompted Bself^ explanations may be less effective.

Some research has found teaching or prompting self-explanation produces better achieve-
ment than comparison conditions (e.g., Lin and Atkinson 2013). These studies typically pose a
primary learning activity for all participants and introduce a treatment in which some partic-
ipants are prompted to self-explain during or after the activity. Lin and Atkinson had college
students learn about the cardiovascular system from animated and static visualizations. After
studying each visualization, participants in the self-explanation condition were given open-
ended questions (e.g., BCould you explain how the blood vessels work?^, p. 90) and an empty
text box to provide their response to each question. Participants in the comparison condition
were given an empty text box where they were told they could write notes. Participants
prompted to self-explain performed better on a 20-item multiple-choice posttest than learners
prompted to generate notes.

Although several reviews of relevant self-explanation studies support its use as a study skill
(Rittle-Johnson and Loehr 2017; Chi and Wylie 2014; Dunlosky et al. 2013), we could find no
published report that comprehensively synthesized research investigating the relationship
between self-explanation and learning outcomes. Wittwer and Renkl (2010) conducted a
meta-analysis exploring the influence of instructional explanations on example-based learning.
One moderator variable coded whether participants in the control condition were prompted to
self-explain. No effect for this condition was found among the six studies reviewed. A second
meta-analysis was conducted on self-explanation in learning mathematics (Rittle-Johnson et al.
2017). The results showed prompting students to self-explain had a small to moderate effect on
learning outcomes.

To assess the cognitive effects and instructional effectiveness of self-explanation interven-
tions, we meta-analyzed experimental and quasi-experimental research which compared
learning outcomes of learners induced to self-explain to those of learners who were not. In
the meta-analysis, we examined moderating variables to investigate how learning outcomes
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varied under a range of conditions and to explore their theoretical implications on applying
self-explanations.

Self-Explanation Versus Instructional Explanation

One can speculate self-explanation is effective because it has the potential to add information
beyond what is given to the learner. That is, learning may be enhanced by the product, not the
process, of self-explanation. Hausmann and VanLehn (2010) labeled this the coverage hy-
pothesis, describing that self-explanation works by generating Badditional content that is not
present in the instructional materials^ (p. 303). The coverage hypothesis predicts cognitive
outcomes of self-explanation are the same as those of a provided instructional explanation. An
instructional explanation would presumably be superior in cases where the learner was unable
to generate a correct or complete self-explanation.

Several studies examined various effects of self-explanation and instructional explanations.
Cho and Jonassen (2012) observed instructional explanations were as effective as self-
explanations but outcomes were even better when learners were prompted to compare their
self-explanations to instructional explanations. de Koning et al. (2010) demonstrated equiva-
lence between self- and instructional explanations on measures of retention and transfer but
learners achieved higher inference scores when instructional explanations were provided.
Gerjets et al. (2006) posited both self- and instructional explanations elevated germane load
when students studied worked-out examples presented in a modular format. The coverage
hypothesis was not supported but these researchers noted design issues with content learners
studied. Kwon et al. (2011) contrasted self-explanations to Bpartially^ instructional explana-
tions for which participants filled in small bits of missing information. Self-explaining led to
better outcomes. Owing to these diverse findings, our meta-analysis assessed the relative
efficacy of self- vs. instructional explanations.

Does It Matter How a Self-Explanation Is Elicited?

Although self-explanation can be induced in various ways, theory is equivocal about their
relative efficacy. For example, some researchers induced self-explanation by directions given
before a learning activity (e.g., Ainsworth and Burcham 2007). Others provided self-
explanation prompts during the learning activity (Hausmann and VanLehn 2010) or after it
(Tenenbaum et al. 2008). Supplying prompts periodically during a learning activity may help
learners engage in sufficient self-explanation by signaling when there is suitable content to
explain. Alternatively, allowing learners to apply their own criteria to decide when and what to
self-explain may support constructing explanations better adapted to idiosyncratic prior
knowledge.

Several studies used unvarying prompts to avoid reference to specific content. For example,
learners studying moves by a chess program were repeatedly asked to predict the next move
and Bexplain why you think the computer will make that move^ (de Bruin et al. 2007). In
contrast, most research provided content-specific self-explanation prompts, such as BWrite
your explanation of the diagram in regard to how excessive water intake and lack of water
intake influence the amount of urine in the human body^ (Cho and Jonassen 2012). Providing
more specific prompts might draw learners’ attention to difficult conceptual issues that would
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otherwise be overlooked, but it may also interfere with or override learners’ use of personal
standards for metacognitively monitoring content meriting an explanation.

The format used for self-explanation prompts may affect features of learners’ elaborative
processing of content. Some researchers asked learners to generate open-ended responses
while other researchers provided fill-in-the-blank or multiple-choice questions. As with other
prompt characteristics, prompt format may modulate specificity provided by the prompt
which, in turn, may affect qualities of elaboration generated in the self-explanation. By
containing fewer cues than multiple-choice and fill-in-the-blank formats, an open-ended
prompt format may invite elaborative processing better adapted to each learner’s unique gaps
in knowledge. However, in some contexts, stronger cues present in a multiple-choice question
may signal more clearly a possible misconception the learner should address.

Prompts often convey the purpose or nature of the expected self-explanation. Researchers
have prompted learners to (a) justify or give reasons for a decision or belief, (b) explain a
concept or information in the content, (c) explain a prediction, or (d) make a metacognitive
judgment about qualities of their understanding, reasoning, or explanation. When combined
with the task context, self-explanation prompts may imply the learner should generate a
description of causal relationships, conceptual relationships, or evidence supporting a claim.
Of interest in our meta-analysis is the relative effectiveness of the types of self-explanation the
inducement is intended to elicit.

Does It Matter that Self-Explanation Takes More Time?

Performing a learning task that invites self-explaining usually requires more time than
performing the same learning task without self-explanation. From the perspective of a student
interested in optimizing instructional efficacy, it is important to know whether additional time
spent on self-explanation might have been better spent otherwise, e.g., re-studying a text or
doing additional problems. From a theoretical perspective, the comparative efficiency of self-
explaining may depend on the duration and timing of instances of self-explanation in an
experiment. The theoretical significance of self-explanation duration and timing is apparent in
research by Chi et al. (1994) in which 8th grade students studied an expository text about the
human circulatory system. Participants prompted to self-explain after reading each line of text
showed greater learning gains than those who read each line a second time. However, the self-
explanation group spent almost twice as much time (approximately 1 h longer) studying the
materials. Because students who took longer to study the materials were allowed to return for
an additional session, those students in the self-explanation group may have benefited from the
spaced-learning effect (Carpenter et al. 2012).

In research examining effects of self-explanation prompts on solving mathematics problem
by elementary school students, McEldoon et al. (2013) included a comparison group who
practiced additional problems to equate for additional time required by the self-explanation
group. Over a variety of problem types and learning outcomes in the posttest, there was little
difference between the time-matched self-explanation and additional-problem conditions.
Unfortunately, most self-explanation research does not report the learning task completion
time of each treatment condition and many studies do not even report the mean completion
time of all treatment conditions. Nevertheless, where possible, we compared effect sizes of
studies in which treatment duration was greater for self-explanation groups to those in which
treatment duration was equivalent.
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Another time-related question is whether the duration of learning activities is associated
with the efficacy of self-explanation inducement. It is plausible that self-explanation helps
learners maintain engagement throughout a lengthy task. Alternatively, prompts to self-explain
that are initially effective and are internalized by learners may lose their potency over time if
they interfere with learners’ nascent ability to spontaneously self-explain.

Other Moderators of Interest

Several other variables potentially moderate the benefits of self-explanation inducement.
Self-explanation is most commonly used to support either problem solving (including
study of worked examples) or text comprehension tasks, and it seems likely that the
cognitive effects of self-explanation inducement vary depending on the nature of the
primary learning task. The type of knowledge being acquired through the learning
activity (i.e., conceptual vs. procedural) is a related factor which we also anticipated
may moderate the treatment effects. Because these two variables, task and knowledge
type, are more directly related to cognitive operations, we hypothesized they are more
likely to moderate treatment effects than subject matter (e.g., science, mathematics,
social sciences), a variable we also coded.

Participants learned via several types of instructional media (i.e., digital, print, video),
with digital media allowing three types of interactivity (computer-based instruction,
intelligent tutoring system, simulation). Computer-based instruction (CBI) was defined
as offering response feedback with no student modeling, and intelligent tutoring systems
(ITS) were defined as modeling student knowledge to adapt feedback, task selection, or
prompts (Ma et al. 2014). We investigated whether the interactivity afforded by digital
media, especially the more adaptive forms of interaction provided by intelligent tutoring
systems and simulations, would enhance self-explanation effects. Much of the research
included diagrams in instructional materials and asked participants to explain or interpret
them. We hypothesized explaining diagrams while problem solving may offer opportu-
nities to translate between verbal and visual knowledge representations and thereby
strengthen learners’ ability to retrieve memories and generate inferences from them
(Booth and Koedinger 2012; Chu et al. 2017). We also investigated whether studies that
used visual pedagogical agents (i.e., images depicting fictional tutors) to prompt self-
explanation might show enhanced treatment effects due to a Bpersona effect^ (Dunsworth
and Atkinson 2007; Schroeder and Gotch 2015).

During posttests, particular conditions and requirements of the assessment may allow
participants to demonstrate self-explanation effects more fully. The beneficial effects of self-
explanation may be evident more on transfer tests than recall tests, and more on long-form test
items such as essays and problems than multiple-choice questions. Because interpreting
diagrams often requires a more fully elaborated mental model to support translating between
visual and verbal representations, tests that include diagrams may be more sensitive to self-
explanation effects. To investigate the moderating effects of test characteristics, we coded for
assessed learning outcomes (e.g., recall, transfer), test format (e.g., fill-in-the-blank, essay),
and whether test items included diagrams.

Students’ metacognitive and self-regulatory abilities increase throughout childhood and
adolescence (Gestsdottir and Lerner 2008; Kopp 1982; Raffaelli et al. 2005; Schneider 2008;
Weil et al. 2013). To investigate whether these developmental changes moderate the effect of
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self-explanation inducement, we coded for level of schooling (e.g., elementary, secondary)
which was the most reliable proxy for developmental level reported in the primary research.

There is an increasing awareness of how regional or cultural differences affect student
learning (Frambach et al. 2012; Marambe et al. 2012). Differences have been reported between
geographic regions in students’ learning patterns (Marambe et al. 2012) and metacognition
(Hartman 2001; Hartman et al. 1996), and these have the potential to moderate self-
explanation effects.

Finally, we examined treatment fidelity (Smith et al. 2007), a methodological feature of the
primary research that is a key marker of internal validity. Observing a relationship between
effect size and methodological quality can help in interpreting meta-analytic results. For
example, observing that studies of higher methodological quality tend to find lower effect
sizes should decrease our confidence in the effect sizes found by lower quality studies.

Research Goals

We reviewed research that compared learning outcomes when participants were instructed or
prompted to self-explain to a condition in which participants were not induced to self-explain.
We coded 20 moderator variables to investigate the hypotheses and research questions
discussed in the preceding section.

Method

Following the meta-analytic principles described by Borenstein et al. (2009), Lipsey and
Wilson (2001), and Hedges and Olkin (1985), we (a) identified all relevant studies, (b) coded
study characteristics, and (c) calculated weighted mean effect sizes and assessed their statistical
significance.

Identifying Relevant Studies

Using the term self-expla*, searches of ERIC, PsycINFO, Web of Science, Education Source,
Academic Search Elite, and Dissertation Abstracts were carried out to identify and retrieve
primary empirical studies of potential relevance. These searches retrieved 1306 studies.
Reference sections of review articles (e.g., Atkinson et al. 2000; Chi 2000; VanLehn et al.
1992) were examined to identify candidate studies for inclusion in the meta-analysis. Inclusion
criteria were first applied to abstracts. If details provided in abstracts were insufficient to
accurately classify a study as appropriate for inclusion, the full text of the study was examined.

To be included, a study was required to:

& Include an experimental treatment in which learners were directed or prompted to self-
explain during a learning task. The requirement for self-explanation was not considered
satisfied by observing another person self-explain, explaining to another person (i.e., not a
self-explanation), rehearsing information, making a prediction without an explanation, or
choosing a rule or principle without providing an explanation (Atkinson et al. 2003).

& Provide a comparison treatment in which learners were not directed or prompted to
self-explain.
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& Avoid confounding the effect of self-explanation by combining it with another study tactic
such as summarizing (Chung et al. 1999; Conati and Vanlehn 2000) or providing feedback
(Siegler 1995).

& Measure a cognitive outcome such as problem solving or comprehension.
& Use a between-subjects research design.
& Provide sufficient statistical information to compute an effect size, Hedge’s g.
& Be available in English.

A handful of studies claimed to use think-aloud protocols to elicit self-explanations,
especially when participants were young children. However, as Chi (2000) observed, the
expected outcomes of think-aloud and self-explanation inducements are quite different:

Think-aloud protocols, often collected in the context of problem-solving research, is a
method of collecting verbal data that explicitly forbids reflection. Think-aloud protocols
presumably ask the subject to merely state the objects and operators that s/he is thinking
of at that moment of the solution process. It is supposed to be a dump of the content of
working memory…. Self-explaining is much more analogous to reflecting and elabo-
rating than to Bthinking aloud.^ Talking aloud is simply making overt whatever is going
through one’s memory (see Ericsson & Simon, 1993), without necessarily exerting the
effort of trying to understand. (p. 170)

Furthermore, there is evidence that think-aloud directions can improve performance on some
types of problems (e.g., Fox and Charness 2010).

We decided to include studies identified by authors as using a think-aloud method only if
the method matched our previously described operationalization of self-explanation induce-
ment and did not provide any prompts to talk aloud. Specifically, we excluded talk aloud
studies in which:

& The experimenter reminded participants to keep talking (McNamara 2004; Wong et al.
2002).

& Participants were provided with neutral prompts if they remained quiet (Gadgil et al.
2012).

Applying these criteria, we identified 64 studies reporting 69 independent effect sizes which
are examined in the present meta-analysis.

Coding of Study Characteristics

The coding form included 43 fixed-choice items and 24 brief-comment items cataloging
information about each study in 8 major categories: reference information (e.g., date of
publication), sample information (e.g., participants’ ages), materials (e.g., subject do-
main), treatment group (e.g., prompt type), comparison group (e.g., study tactic), research
design (e.g., group assignment), dependent variable (e.g., outcome measure), and effect
size computation. In an initial coding phase, three of the authors independently coded ten
studies and obtained 86% agreement on the fixed-choice items and 78% agreement on free
comment items. All disagreements in this initial phase were discussed and resolved. In the
main coding phase, each of the three coders was assigned to code approximately a third of
the remaining studies. Bi-weekly meetings were held throughout the main coding phase in

Educ Psychol Rev (2018) 30:703–725 709



which the coders met with the rest of the research team. During these meetings, borderline
cases, discrepancies, and unintended exceptions that arose while coding were resolved. As
well, an online forum was used to facilitate discussion in weeks where a weekly meeting
did not occur. Meetings and the online communications served four purposes: (1) resolv-
ing emerging issues, (2) sharpening category definitions, (3) disseminating definitional
refinements to all coders, and (4) creating an archive showing how the group arrived at
decisions.

After items in the coding form were used to code the studies, we decided several items
should be not be analyzed as moderator variables due to a lack of interpretable variance. For
example, as a measure of methodological quality, we coded the method of assignment to
treatment groups. However, we found 90% of studies randomly assigned individuals to groups
by a method supporting high internal reliability (simple random assignment, block randomi-
zation, etc.). Almost all the remaining studies failed to report the method of assignment, and
only one study reported a quasi-experimental method. Consequently, we decided not to present
further analysis of this variable.

Effect Size Extraction

To avoid inflating the weight attributed to any particular study, it is crucial to ensure coded
effect sizes are statistically independent (Lipsey and Wilson 2001). To this end, when a study
reported more than a single comparison treatment (i.e., treatments in participants were not
trained, directed, or prompted to self-explain), the weighted average of all comparison groups
was used in calculating the effect size. When repeated measures of an outcome variable were
reported, only the last measure was used to calculate the effect size. Lastly, when multiple
outcome variables were used to measure learning, we used a combined score calculated using
an approach outlined in Borenstein et al. (2009, p.27).

Data were analyzed using random effects models as operationalized in the software
program Comprehensive Meta-Analysis (CMA) Version 3.3.070 (Borenstein et al. 2005).
Hedge’s g, an unbiased mean effect size, was generated for each contrast. Statistics reported
are the number of participants (N) in each category, the number of studies (k), the weighted
mean effect size (g) and its standard error (SE), the 95% confidence interval around the mean,
and a test of heterogeneity (Q) with its associated level of type I error (p).

When significant heterogeneity among levels of a moderator was detected, post-hoc tests
using the Z test method described by Borenstein et al. (2009, p.167-168) were further
conducted to compare the effect size of each level with all others. The critical value was
adjusted for the number of comparisons following the Holm-Bonferroni procedure (Holm
1979) to maintain α = .05 for each moderator.

Results

Overall Effect Size for Self-Explanation

As shown in Table 1, a random effects analysis of 69 effect sizes (5917 participants) obtained
an overall point estimate of g = .55 with a 95% confidence interval ranging from .45 to .65
favoring participants who were prompted or directed to self-explain (p < .001). There was
statistically detectable heterogeneity, Q = 196.63 (p < .001, df = 68), a result which warrants
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analyzing moderator variables. Factors other than random sampling accounted for 65% of
variance in effect sizes (I2 = 65.42).

Moderator Analysis

The coverage hypothesis can be evaluated by comparing the effects of self-explanation
prompts to instructional explanation. Comparison treatments were coded as (a) no additional
explanation if they provided no intervention beyond the primary instructional task, (b)
instructional explanation if they provided scripted explanations corresponding to the self-
explanation prompts presented to the self-explanation group, (c) other strategy/technique if
they provided some other intervention beyond the primary instructional task, or (d) mixed if
they provided two or more of the preceding three types of comparison treatments. Results,
shown in Table 1, indicate that each type of comparison treatment was associated with a
statistically detectable effect size (p < .05) and there was a statistically detectable difference
among them. Post-hoc tests indicated studies that provided no additional explanation to the
comparison group had effect sizes significantly greater than those that provided instructional
explanation (z = 2.696, p = .007) and those that provided another strategy or technique (z =
3.119, p = .002).

Researchers used methods and formats to induce self-explanation that vary in specificity.
These ranged from directive prompts, such as multiple-choice questions, to less directive
inducements such as open-ended questions or a general instruction to explain. Researchers also
attempted to engage learners in different types of cognitive or metacognitive processes. We
used four moderators to characterize the self-explanation inducements: inducement timing,
content-specificity, inducement format, and type of self-explanation elicited.

The optimal timing of self-explanation inducements is arguable and may depend on each
learner’s knowledge and self-explanation ability. Although prompts given during a learning
activity model when to self-explain and may induce more frequent self-explanation, compared
with instruction to self-explain given before the learning activity, prompts may inhibit learner’s
choices of content for additional processing. The timing of the self-explanation inducement
was coded as (a) concurrent if prompts or reminders to self-explain were interspersed with the
learning material, (b) retrospective if a prompt was provided after participants studied learning
materials, and (c) beginning if the inducement was training or an instruction to self-explain
was given before participants began the learning activity. If a beginning prompt specified the
participant was to self-explain after each sentence, paragraph, or problem step and there were
no explicit prompts during the learning activity, the inducement was coded as beginning.

Table 1 Overall effect and weighted mean effect sizes for comparison treatments

N k Effect size 95% CI Test of heterogeneity

g SE Lower Upper QB df p

Overall: random-effects model 5917 69 .552* .050 .454 .650 196.630 68 < .001
Comparison treatment 11.648 3 .009
No additional explanation 3141 41 .673* .078 .519 .826
Instructional explanation 573 6 .354* .092 .175 .533
Other strategy/technique 516 7 .304* .091 .126 .483
Mixed 1687 15 .462* .083 .301 .624

*p < .05
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The content specificity of inducements was coded as specific to named content (e.g.,
Bplease self-explain how the valve works^), general (e.g., Bplease self-explain the last
paragraph^), or both if the treatment included both content-specific and content-general
inducements.

Inducement format was coded as (a) interrogative if a prompt asked the participant a
question, (b) imperative if a prompt directed the participant to self-explain, (c) predirected if
the participant was told at the beginning of the activity to self-explain, (d) fill-in-the-blank if
the participant was asked to complete a sentence with a self-explanation, (e) multiple choice if
the participant was to choose a self-explanation from a list of explanations, or (f) mixed if
participants were provided more than one inducement type. Although the overall comparison
of inducement types returned p = .048, post-hoc tests found no significant differences among
them.

Lastly, the type of self-explanation elicited by the inducement was coded as (a) justify if the
participant was asked to provide reasoning for a choice or decision, (b) conceptualize if the
inducement asked the participant to define or elaborate the meaning of a named concept
presented in the material (e.g., iron oxide), (c) explain if the inducement asked the participant
to explain a structural part of the material (e.g., the last paragraph), (d) mixed when the
inducement elicited more than one type of response, (e) justify for another if the inducement
asked the participant to provide reasoning for someone else’s choice or decision, (f)
metacognitive if the inducement asked the participant to self-explain their planning or perfor-
mance, (g) anticipatory if the prompt asked participants to predict the next step in a problem
solution and self-explain why they believed this was the correct next step, and (h) other if the
inducement asked participants to provide another type of self-explanation. Table 2 shows all
categories of inducement were associated with a statistically detectable effect except multiple-
choice inducements and metacognitive self-explanations. The overall comparison of levels
returned p < .001, and post-hoc tests indicated that the prompts eliciting conceptual self-
explanations (z = 3.284, p = .001) were more effective than those inducing metacognitive
self-explanations. Post-hoc tests also suggested that prompts inducing anticipatory self-
explanations were more effective than those inducing metacognitive self-explanations, but
this outcome can be discounted because there was only one study inducing anticipatory self-
explanations and its large effect size could be due to any of its particular characteristics.

The length of time spent utilizing a study strategy and engaging with learning materials
may impact learning outcomes. Therefore, in examining the problem of differences in time on
task between intervention and comparison groups discussed in the introduction, we found most
studies did not report separate mean durations for each group’s study activities nor statistically
compared durations across groups. For studies that did statistically compare duration, those in
which the self-explanation treatment group took detectably longer were coded as greater for
SE group and those in which there was no detectable difference in time were coded equal for
both groups. Second, we coded studies according to the overall duration of the learning
activity. Possibly, a brief learning phase might produce only transitory effects due to novelty
of the intervention, or it might not allow enough time for participants to learn how to respond
to inducements (Table 3).

To capture intended learning goals, three moderator variables were defined to characterize
the learning task and the type of knowledge students were expected to acquire. Researchers
have tended to investigate self-explanation in the context of problem solving (including
worked examples) or text comprehension. Although these two learning activities are usually
treated separately in the wider arena of educational research, and one might anticipate they
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would interact differently with self-explanation inducements, self-explanation theory deals
with and thereby emphasizes their common elements. For example, both learning activities call
for cognitive strategies that require metacognitive monitoring, a process which may detect
gaps in understanding and productively trigger self-explanation. To determine if outcomes

Table 2 Weighted mean effect sizes for self-explanation inducements

N k Effect size 95% CI Test of Heterogeneity

g SE Lower Upper QB df p

Inducement timing 2.685 2 .261
Concurrent 5187 57 .521* .054 .415 .627
Retrospective 533 8 .571* .089 .397 .746
Beginning 197 4 1.241* .449 .361 2.121
Content specificity 1.836 2 .399
Specific 4164 41 .510* .058 .396 .625
General 1419 22 .678* .110 .461 .894
Both 334 6 .511* .183 .152 .869
Inducement format 12.693 6 .048
Interrogative 3177 36 .559* .070 .422 .696
Imperative 720 12 .395* .118 .163 .627
Predirected 441 8 .700* .104 .495 .905
Fill-in-the-blank 279 2 .895* .145 .612 1.179
Multiple choice 204 2 .242 .250 −.247 .731
Mixed 1043 8 .579* .148 .290 .869
Not reported 53 1 1.031* .292 .458 1.604
Self-explanation elicited
Justify 1700 20 .416* .079 .261 .570 27.019 7 <.001
Conceptualize 1678 13 .873* .158 .563 1.183
Explain 628 12 .678* .111 .461 .896
Mixed 677 8 .703* .130 .449 .957
Justify for another 530 8 .426* .103 .224 .628
Metacognitive 241 3 .192 .135 −.073 .456
Anticipatory 62 1 1.372* .328 .730 2.015
Other 401 4 .322* .114 .099 0.545

*p < .05

Table 3 Weighted mean effect sizes for learning task duration

Effect size 95% CI Test of heterogeneity

N k g SE Lower Upper QB df p

Duration differences among groups 4.062 3 .255
Not reported 4230 47 .510* .058 .396 .624
Greater for SE group 1336 16 .722* .120 .487 .957
Equal for all groups 291 5 .411* .124 .169 .653
Greater for non-SE group 60 1 .352* .260 − .158 .862
Duration for all groups 4.309 4 .366
< 30 min 1842 17 .709* .107 .500 .919
30–60 min 880 13 .601* .075 .455 .747
1–2 h 341 6 .444* .143 .164 .724
> 2 h 436 6 .462* .150 .168 .756
Not reported 2418 27 .475* .086 .308 .643

*p < .05
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were affected by type of learning task, the task common to all treatment groups was considered
the primary learning activity and was coded as solve problem, study text, study worked
example, study case, study simulation, or other. Learning activities that combined two or more
of these types were coded as mixed. As shown in Table 4, each type of primary learning
activity was associated with a statistically detectable mean effect size except studying simu-
lation, for which there were only two studies. There was no statistically detectable difference
among the different types of primary learning activity.

The knowledge type was coded as conceptual, procedural, or both. Often students study
texts to develop conceptual knowledge, and they solve problems to develop a combination of
conceptual and procedural knowledge. However, the type of learning task assigned does not
reliably indicate the type of knowledge students are intended to acquire. One can productively
study a text about how to execute a skill, and problem solving can be undertaken solely for
conceptual insights it affords. Learning materials were coded according to their subject area
(e.g., mathematics, social sciences). Associations between inducement to self-explain and
learning outcome were statistically detected for each knowledge type and subject. No differ-
ences were statistically detected among the levels of each variable.

Features of the learning environment have potential to moderate effects of self-explanation
inducement. Prompts may offer greater benefit in learning environments lacking interactive
and adaptive features and, aside from the prompts, present only text to be studied or problems
to be solved. More adaptive environments such as intelligent tutoring systems (Ma et al. 2014)
are designed to detect gaps in individual learner’s knowledge and provide remediating
instruction or feedback, possibly obtaining outcomes similar to self-explanation via a different
route. On the other hand, self-explanation prompts delivered by a visual pedagogical agent
may have amplified effects due to greater salience or inducing greater compliance than
prompts embedded in a studied text or problem. As shown in Table 5, learning environments

Table 4 Weighted mean effect sizes for learning task

N k Effect size 95% CI Test of heterogeneity

g SE Lower Upper QB df p

Task type 10.147 6 .119
Solve problems 1415 20 .476* .094 .292 .660
Study text 772 14 .787* .154 .485 1.089
Study worked examples 649 8 .362* .129 .109 .615
Study cases 324 4 .432* .152 .134 .730
Study simulation 122 2 .241* .199 − .149 .630
Other 1678 13 .552* .088 .381 .724
Mixed 957 8 .773* .147 .486 1.061
Knowledge type .861 2 .650
Conceptual 2540 33 .598* .075 .451 .745
Procedural 204 3 .468* .167 .142 .795
Both 3173 33 .516* .072 .374 .658
Subject 3.855 5 .571
Science 1582 25 .565* .070 .429 .701
Math 1808 16 .441* .097 .251 .632
Social sciences 413 6 .555* .191 .180 .929
Computer science 818 9 .761* .180 .407 1.114
Mixed 93 1 .313* .221 − .121 .746
Other 1203 12 .591* .139 .319 .863

*p < .05

714 Educ Psychol Rev (2018) 30:703–725



were coded and analyzed for four moderator variables: media type, interactivity, diagrams in
materials, and visual pedagogical agent. The medium of the learning materials was coded as
(a) digital when materials were presented on a computer, (b) print if materials were printed on
paper, (c) video when the participants were asked to learn from a video, (d) other when the
learning materials could not be placed in the previously stated categories. The type of
interactivity was coded as computer-based instruction (CBI), intelligent tutoring system
(ITS), simulation, or none. Learning materials were coded for whether or not diagrams were
included. Providing diagrams in learning materials suggests visuospatial processing was a
component of the intended learning goal. Associations between inducement to self-explain and
learning outcome were statistically detected regardless of media type, interactivity, and
whether diagrams were present or not. No differences were statistically detected between the
levels of each variable.

A visual pedagogical agent was defined as a simulated person that communicated to
participants and was represented by a static or animated face. Although the overall comparison
among levels of the pedagogical agent moderator returned p = .004, post-hoc tests found only
that a single study with non-reported pedagogical agent status outperformed studies that did
not use a pedagogical agent to present self-explanation prompts—a difference that affords little
meaningful interpretation.

Guided by the theory of self-explanation as explained in the introduction, we hypothesized
that self-explanation would have a small beneficial effect on measures assessing comprehen-
sion and recall, and a larger beneficial effect on measures assessing transfer and inference. As
shown in Table 6, the learning outcome was coded as comprehension, inference, recall,
problem solving, transfer, mixed (if several outcomes were tested), or other depending on
how it was described by the researchers. For example, the learning outcome in Ainsworth and
Burcham (2007) was coded as inference because they described posttest questions as requiring

Table 5 Weighted mean effect sizes for learning environment characteristics

N k Effect size 95% CI Test of heterogeneity

g SE Lower Upper QB df p

Media type 2.677 4 .613
Digital 4255 42 .550* .062 .428 .672
Print 1223 21 .550* .105 .344 .755
Video 60 1 .833* .284 .276 1.390
Other 335 4 .630* .129 .378 .883
Not reported 44 1 .246 .263 − .270 .762
Interactivity 2.269 3 .519
CBI 1130 7 .587* .155 .282 .891
ITS 692 7 .483* .190 .110 .857
Simulation 301 5 .379* .122 .139 .618
None 3794 50 .575* .060 .458 .693
Diagram in materials .385 2 .825
Yes 1435 23 .588* .102 .387 .788
No 4297 43 .532* .059 .416 .648
Not reported 185 3 .661* .283 .107 1.215
Visual pedagogical agent 11.307 2 .004
Yes 199 3 .641 .336 − .018 1.300
No 5613 65 .533* .050 .435 .630
Not reported 105 1 1.275* .215 .853 1.697

*p < .05
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Bgeneration of new knowledge by inferring information from the text^ (p. 292). The studies
coded as assessing problem solving dealt with problems ranging from diagnosing medical
cases to geometry problems. While not coded as transfer, these could be regarded as assessing
problem solving transfer because they posed posttest problems that differed to some degree
from problems solved or studied in the learning phase. The effect sizes for all types of learning
outcomes, except comprehension, were statistically significant and no differences between
them were detected.

Also shown in Table 6, learning assessments were coded according to test format and
whether the test asked participants to complete or label a diagram. Test format was coded as
essay questions, fill-in-the-blank questions, multiple choice questions, problem questions,
short-answer questions, mixed, and other. The effect sizes for tests with or without diagrams
and all test formats except essay questions were statistically significant. No differences among
the categories of each moderator were statistically detected.

Because participants’ ages (in years) were not reliably reported, we assessed whether the
effect of self-explanation inducements varied with level of schooling. As shown in Table 7,
statistically detectable effects were found at all levels of schooling. No difference was detected
among levels.

Social science research has been criticized for using data gathered only in Western societies
to make claims about human psychology and behavior (Henrich et al. 2010). We were curious
about the extent to which the research we reviewed was subject to similar sampling biases. We
coded the region in which the research took place as North America, Europe, East Asia, and
Australia/New Zealand. As shown in Table 7, most of the studies were conducted in North
America, and most of the remainder was conducted in Europe. A comparison among regions
returned p = .011. Post-hoc tests indicated that studies conducted in East Asia had effect sizes

Table 6 Weighted mean effect sizes for learning outcome assessment

N k Effect size 95% CI Test of heterogeneity

g SE Lower Upper QB df p

Learning outcome 6.072 6 .415
Comprehension 187 3 .282 .151 −.014 .579
Inference 78 2 1.794* .854 .120 3.469
Recall 398 6 .498* .123 .256 .740
Problem solving 1077 14 .445* .111 .227 .664
Transfer 1169 17 .534* .094 .350 .718
Mixed 999 15 .597* .113 .377 .818
Other 2009 12 .596* .118 .365 .827
Test format 5.156 6 .524
Essay questions 176 3 .624 .413 −.185 1.433
Fill-in-the-blank questions 55 1 .624* .293 .048 1.199
Multiple-choice questions 579 7 .410* .092 .229 .591
Problem questions 949 10 .547* .127 .297 .796
Short-answer questions 1217 19 .671* .122 .432 .910
Mixed 1641 16 .436* .100 .240 .632
Other 1300 13 .650* .113 .427 .872
Diagram in test .941 2 .625
Yes 1178 18 .657* .128 .405 .908
No 4613 49 .522* .054 .417 .628
Not reported 126 2 .512 .376 −.225 1.249

*p < .05
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significantly greater than those conducted in North America (z = 3.105, p = .002), Europe (z =
3.275, p = .001), and mixed (z = 3.263, p = .001).

Finally, we coded a treatment fidelity variable that indicated whether researchers ensured
the group induced to self-explain actually engaged in self-explanation. Studies were coded as
(a) Yes, analyzed if the researchers recorded or examined the self-explanations and verified that
participants self-explained, (b) No if participants’ responses were not verified as legitimate
self-explanations, (c) Yes, followed-up if the participant was prompted again when the initial
self-explanation was insufficient, and (d) not reported if it could not be determined whether the
provided self-explanations were verified. As shown in Table 8, all four categories of effect
sizes were statistically detectable and no differences among them were detected.

Publication Bias

Two statistical tests were computed with comprehensive meta-analysis to further examine the
potential for publication bias. First, a classic fail-safe N test was computed to determine the
number of null effect studies needed to raise the p value associatedwith the average effect above
an arbitrary level of type I error (set at α = .05). This test revealed that 6028 additional studies
would be required to fail to confirm the overall effect found in this meta-analysis. This large fail-
safe N implies our results are robust to publication bias when judged relative to a threshold for
interpreting fail-safeN as ≥ 5 k + 10 (Rosenthal 1995), where k is the number of studies included

Table 7 Weighted mean effect sizes for grade level and region

N k Effect size 95% CI Test of heterogeneity

g SE Lower Upper QB df p

Education level 3.051 3 .384
Elementary 849 10 .483* .104 .279 .687
High school 1415 13 .426* .091 .247 .606
Undergraduate 3349 42 .611* .071 .472 .751
Professional program 304 4 .680* .291 .110 1.250
Region 13.135 4 .011
North America 3456 42 .525* .064 .399 .650
Europe 1791 18 .481* .071 .342 .620
East Asia 456 6 1.191* .204 .792 1.591
Australia/New Zealand 121 2 .453 .490 − .508 1.414
Mixed 93 1 .212 .219 − .217 .641

*p < .05

Table 8 Weighted mean effect sizes for methodology

N k Effect size 95% CI Test of heterogeneity

g SE Lower Upper QB df p

Treatment fidelity 4.735 3 .192
Yes, analyzed 2014 31 .613* .085 .447 .779
No 2868 21 .409* .076 .259 .558
Yes, followed-up 682 11 .587* .089 .411 .762
Not reported 353 6 .732* .221 .299 1.165

*p < .05
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in the meta-analysis. Orwin’s fail-safe N, a more stringent publication bias test, revealed 274
missing null studies would be required to bring the mean effect size found in this meta-analysis
to under 0.1 (Orwin 1983). Although there is potential for publication bias in this meta-analysis,
results of both tests suggest it does not pose a plausible threat to our findings.

Discussion

In a review of over 800 meta-analyses relating to educational achievement, Hattie (2009)
identified some of the most efficacious instructional interventions as reciprocal teaching
(d = .74), feedback (d = .73), and spaced learning (d = .71). Our results indicate inducement
to self-explain, with a mean weighted effect size of g = .55, offers benefits similar in magnitude
to interventions such as mastery learning (d = .50) and peer tutoring (d = .55). In almost all the
categories we examined, inducements to self-explain were associated with statistically detect-
able benefits. The only exceptions were categories represented by a small number of studies.
Only three moderator variables showed statistically detectable differences that have implica-
tions for theory or practice: (a) comparison treatments, (b) type of self-explanation elicited, and
(c) region.

Self-Explanation Outperforms Instructional Explanation

Contrary to the coverage hypothesis (Hausmann and VanLehn 2010), which describes the
effects of self-explanation as adding information that instead might be supplied by an
instructor or instructional system, our results showed a statistically detectable advantage
(g = .35) of self-explanation over instructional explanations. We attribute this result to cogni-
tive processes learners use when generating an explanation and/or the idiosyncratic match to
prior knowledge of the new knowledge generated by self-explaining. By retrieving relevant
previously learned information from memory and elaborating it with relevant features in the
new information, we hypothesize that meaningful associations are formed; constructing the
explanation engages fundamental cognitive processes involved in understanding the explana-
tion, recalling it later, and using it to form further inferences. At the same time, since self-
explanation compared to no additional explanation yielded a detectably larger effect size
(g = .67), a substantial portion of the benefit reported for self-explanation appears to be
alternately available from instructor-provided explanations. Considering the difficulties
learners often have in generating complete and correct self-explanations, Renkl (2002) pro-
posed that optimal outcomes might be attained by first prompting learners to self-explain and
then providing an instructional explanation upon request. However, Schworm and Renkl
(2006) reported that participants who received only self-explanation prompts outperformed
participants who received self-explanation prompts plus supplementary instructional explana-
tions on demand. Schworm and Renkl argued making a relevant instructional explanation
available undermines learners’ incentive to self-explain effortfully, thus depriving them of
cognitive benefits they would otherwise receive.

How Self-Explanation Is Elicited

Our introduction discussed how the cue strength associated with different prompt formats
might affect learning outcomes. In the meta-analysis, multiple-choice prompts were associated
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with an effect size (g = .24) not statistically different from zero (Table 2). Although the small
number of studies using multiple-choice prompts (k = 2) warrants caution, it may be that the
greater cue strength of multiple-choice prompts undermines self-explanation effects. To
address the question of optimal cue strength more thoroughly, we recommend that further
research directly compare the effects of multiple-choice prompts, fill-in-the-blank prompts,
and open-ended prompts. Optimal cue strength likely depends on each student’s ability to self-
explain the concepts or procedures they are learning. When first introduced to a topic, students
may benefit more from strongly cued self-explanation prompts, and as their knowledge
increases they may benefit more from less strongly cued prompts.

We found all types of elicited self-explanations yielded a detectable effect size except
metacognitive prompts (Table 2). A metacognitive prompt engages the learner in a self-
explanation of planning or performance, and therefore we speculate that learners might not
address content in these explanations. That is, content measured by the learning outcome may
not be involved in responding to a metacognitive prompt. If so, it is not surprising learning
outcomes are variable. Future research might explore different kinds of effects resulting from
metacognitive prompts, e.g., increased planning when presented additional problems to solve.

Anticipatory self-explanations (g = 1.37) had substantially better learning outcomes than
those in which participants justified their own decisions (g = .42) or the decisions of another
(g = .43). Since only one study induced anticipatory self-explanations, the large effect size
could be due to any of its particular characteristics. We suggest future research should
investigate the efficacy of anticipatory self-explanations.

Findings of our meta-analysis regarding timing, content specificity, and format of induce-
ment (Table 2) as well as the nature of the self-explanation elicited (Table 2) show variation in
these factors rarely matters when learners self-explain. The same was the case for variations of
the learning task (Table 4) and the learning environment (Table 5). As well, variation in
learning outcome and test type rarely mattered. In almost all these cases, self-explaining
benefited learning outcomes. We note that the absence of statistically detectable aggregate
effect sizes in three cases: multiple-choice prompts, metacognitive self-explanations, and
measures of learning outcomes formatted as essays. These invite considerations for future
research.

Self-Explanation Usually Takes More Time. Does that Matter?

Although the effect size for studies in which self-explanation took more time than the
comparison treatment (g = .72) was greater than for studies in which self-explanation took a
similar amount of time (g = .41), the difference was not statistically significant. We interpret
these results as showing that inducing self-explanation is a time-efficient instructional method
but, in some research, its efficiency may be exaggerated because time-on-task was not
controlled or reported. Most research on self-explanation has, regrettably, not fully reported
time-on-task. We advocate reporting the mean and standard deviation of learning task duration
for all treatment groups in self-explanation research.

Why Did Studies from East Asia Return High Effect Sizes?

Looking more closely at the six studies conducted in East Asia, we found that almost all had
participants study texts as the learning task (Table 4) and gave comparison treatments
providing no additional explanation or alternate learning strategies (Table 1). These two
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conditions were associated with relatively large effect sizes, and we speculate their confluence
in the East Asian studies led to a significantly larger effect size for that region. An alternative
interpretation rests on evidence Asian students’ learning strategies, shaped by cultural and
educational contexts, tend toward reproduction-oriented studying aiming for verbatim recall on
tests (Biemans and Van Mil 2008; Marambe et al. 2012; Vermunt 1996; Vermunt and Donche
2017). If, as a result of this orientation, learners in East Asia are less likely to engage
spontaneously in self-explanation, they may receive greater benefit from prompts to self-
explain than learners who are more likely to self-explain without being prompted.

Automatic Generation of Self-Explanation Prompts

In all the research we reviewed, self-explanation prompts or pre-study instructions were
scripted by researchers or instructors. In most cases, the prompts were derived from the
content of the learning task and were not generic statements that could be re-used with other
content. Pre-scripted, instructor-generated prompts may be suitable for instructional settings in
which the same readings or problems are assigned to many students over repeated courses or
modules, but they cannot be delivered at scale when the content is highly differentiated or
personalized. In resource-inquiry models of instruction (e.g., problem-based learning conduct-
ed in an environment with access to the internet and resource databases), students collaborate
to identify information needs that are satisfied by online searches (Nesbit and Winne 2003). In
such settings, computer-generation of content-specific prompts may be the most feasible
method for supporting self-explanation.

Two of the authors have collaborated with computer scientists in developing and evaluating
algorithms that automatically generate questions for expository texts (Lindberg et al. 2013;
Odilinye et al. 2015). The premise underlying this work is that a computer-generated question
can serve as a self-explanation prompt even when the computer has no way of assessing the
correctness of a student’s explanation or when the answer to the question is not explicitly
represented in the source text. Systems like this could be used to scaffold students’ skills in
self-explaining, even if students are engaged in academic tasks where the materials they study
are not controlled, such as researching material for writing an essay. If a learner model is part
of such a system, the prompts could be adapted to match each learner’s subject knowledge,
reading vocabulary, and self-regulatory ability.

Conclusions

Our findings have significant practical implications. The foremost is that having learners
generate an explanation is often more effective than presenting them with an explanation.
Another major implication for teaching and learning is that beneficial effects of inducing self-
explanation seem to be available for most subject areas studied in school, and for both
conceptual (declarative) and procedural knowledge. The most powerful application of self-
explanation may arise after learners have made an initial explanation and then are prompted to
revise it when new information highlights gaps or errors.

Research on self-explanation has arrived at a stage where the efficacy of the learning
strategy is established across a range of situations. There is now a need for clearer mapping of
the unique cognitive benefits self-explanation may promote, the specific effects of different
types of self-explanations and prompts, and how self-explanation might be optimally
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combined and sequenced with other instructional features such as extended practice, explana-
tion modeling, and inquiry-based learning. Future research that investigates these questions
should be designed to directly compare different self-explanation conditions. Effective as self-
explanation prompts may be, the primary goal of future research should be to identify
strategies whereby prompts are faded so that self-explanation becomes fully self-regulated.
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