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Abstract Domain-general cognitive knowledge has frequently been used to explain skill
when domain-specific knowledge held in long-term memory may provide a better
explanation. An emphasis on domain-general knowledge may be misplaced if domain-
specific knowledge is the primary factor driving acquired intellectual skills. We trace the
long history of attempts to explain human cognition by placing a primary emphasis on
domain-general skills with a reduced emphasis on domain-specific knowledge and indicate
how otherwise unintelligible data can be easily explained by assumptions concerning the
primacy of domain-specific knowledge. That primacy can be explained by aspects of
evolutionary educational psychology. Once the importance of domain-specific knowledge
is accepted, instructional design theories and processes are transformed.

Keywords Domain-specific knowledge . Learning . Instruction . General skills . Cognitive
load theory

Psychological studies of cognitive performance have been a focus of research for over
130 years. Paradoxically, much of that research emphasised generic or domain-general
cognitive skills despite domain-specific knowledge held in long-term memory being
arguably the most important factor, and possibly the only factor, determining acquired
cognitive performance. In this paper, we suggest an alternative to the perspective that
teaching generic skills is important. Instead, we argue that all educationally relevant
knowledge acquired during instruction is, and only is, domain-specific. This view provides
the major point of departure of this paper from the nearly universal consensual view that can
best be summarised by the suggestion that knowledge imparted during instruction includes
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some mixture of domain-general and domain-specific information (see, for example, Greiff
et al. 2013).

We will define domain-specific knowledge as memorised information that can lead to
action permitting specified task completion over indefinite periods of time. For example,
there are many different problems that can be solved by using Pythagoras’ theorem. To use
the theorem to solve problems, problem solvers must not only learn the theorem, they also
must learn to recognise the various problems to which the theorem can be applied and the
manner in which it should be applied in each case. We define this set of problems as a
“domain” and Pythagoras’ theorem along with the manner in which it can be used is a
constituent of the domain-specific knowledge required to solve this set of problems. That
knowledge, consisting of large numbers of problem states and the moves associated with
those states, is stored in long-term memory. We will argue that teachable aspects of problem
solving skill are entirely dependent on large amounts of domain-specific information stored
in long-term memory, rather than on other factors such as domain-general skills.

Domain-general skills, by definition, can be used to solve any problem in any area. For
example, learning to solve problems by thinking of similar problems with known solutions is
an example of domain-general knowledge that can be applied to all problems. Such domain-
general knowledge also is stored in long-term memory, although, as will be argued next, it
belongs to a different knowledge category that for biological evolutionary reasons may be
learnable but unteachable because it already will have been acquired automatically without
instruction, outside of an educational context. We will argue that, while people cannot learn
an already learned, domain-general skill, they can learn to apply the skill in a new domain,
thus providing an example of the acquisition of domain-specific rather than domain-general
knowledge (e.g. Youssef et al. 2012).

Geary’s Evolutionary Educational Psychology

Geary (2008, 2012) has proposed an evolutionary educational psychology that transforms
our understanding of many aspects of human cognition relevant to instruction. His proposal
suggests knowledge can be divided into biologically primary knowledge that we have
evolved to acquire over many generations and biologically secondary knowledge that has
become culturally important but that we have not specifically evolved to acquire.

Examples of biologically primary knowledge are learning to listen and speak, learning to
recognise faces, engage in social relations, basic number sense, or learning to use a problem
solving strategy such as means-ends analysis (Newell and Simon 1972). Biologically,
primary knowledge is acquired easily, unconsciously and without explicit tuition. Barring
learning deficits such as those associated with autism, it will be acquired automatically
simply as a consequence of membership of a normal society. For example, it can be argued
that, despite its importance, we do not teach people how to use a means-ends problem-
solving strategy because they have evolved to learn how to use the strategy automatically.
Biologically, primary knowledge is modular (e.g. the modularity of number sense has been
demonstrated by Mandelbaum 2013), with different skills likely to have been acquired at
different evolutionary epochs. For example, we are likely to have evolved the ability to learn
to recognise faces independently of learning to listen and speak.

The acquisition of biologically secondary knowledge is heavily dependent on the prior
acquisition of primary knowledge. It is knowledge that we have not specifically evolved to
acquire but which a particular culture has deemed to be important. Reading, writing and
arguably, all other content taught in modern educational establishments provide examples of

266 Educ Psychol Rev (2014) 26:265–283



biologically secondary knowledge. Schools were invented to teach biologically secondary
knowledge because it is unlikely to be acquired just by engaging in environmental or societal
interactions. Secondary knowledge is acquired consciously, with active mental effort and is
facilitated by explicit instruction.

We suggest that humans may have evolved to acquire very general knowledge that can be
applied to a wide variety of otherwise unrelated areas. Such biologically primary knowledge
is likely to be too important to human cognitive functioning to be left to the biologically
secondary system. If so, domain-general cognitive knowledge will be unteachable because it
will have already been acquired as biologically primary knowledge. Evidence for this
suggestion comes from omission: We are unable to find a domain-general, cognitive strategy
that has been described and tested for effectiveness using randomized, controlled trials
varying one factor at a time with far transfer test tasks to eliminate the effects of domain-
specific knowledge. Until a body of research becomes available demonstrating the existence
of teachable, domain-general knowledge, it may be safer to assume that such procedures are
biologically primary and so already acquired by learners. In contrast, domain-specific
knowledge is biologically secondary and undoubtedly teachable.

While biologically primary knowledge may be unteachable, it does not follow that it is
unimportant to instruction. It can be important in at least two respects. (1) People may learn
the different contexts in which an already acquired generic skill can be applied. Learning the
contexts in which a generic skill can be applied provides another example of acquiring
domain-specific knowledge. In other words, general problem-solving strategies are
"teachable" in a very restrictive sense, i.e. indicating to learners that a primary, general
problem-solving strategy, already acquired by the learner, is usable to solve a specific
academic problem (e.g. Youssef et al. 2012). (2) In addition, biologically, primary
knowledge may facilitate the acquisition of biologically secondary information that provides
the subject matter of instruction. Pointing out to learners that a biologically primary skill that
they have can be used to assist in a biologically secondary task may be useful. Similarly,
instruction that is organized in a manner that facilitates the use of primary skills in the
acquisition of secondary skills may be beneficial (Paas and Sweller 2012). In other words,
while primary skills may be unteachable because they have already been acquired, they may
be useful in leveraging the acquisition of secondary skills.

If domain-general knowledge is biologically primary and domain-specific knowledge
provides the major, perhaps only form of teachable knowledge, we should be able to find
evidence for this suggestion. In the remainder of this paper, we will analyse a variety of
research areas, including historically important lines of investigation that placed an emphasis
on either domain-general or domain-specific knowledge. Our aim is to indicate that learned
skill, especially problem solving skill, derives from acquired domain-specific, rather than
domain-general, knowledge.

In the following sections, we present a description of some results from the very
beginnings of scientific psychology to more recent work in both general and educational
psychology. Those results provide evidence that the effect of domain-specific knowledge,
even in areas where it was assumed to be largely irrelevant, has always been available, but
that its importance has tended to be down-played.

The Problem of Knowledge and Intelligence

Binet’s (1894) study is well known by psychologists who study human expertise (e.g.
Ericsson and Charness 1994; Ericsson and Lehmann 1996; Ericsson 1985; Ericsson and
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Chase 1982) and historians of psychology (Nicolas et al. 2011), probably because it was the
first psychological study to discuss chess expertise. The first part of Binet’s book is about
great mental calculators and is still referenced more than 100 years after its initial publication
(e.g. Dehaene 1997; Rikers 2009). Binet studied the case of Mr. Inaudi, a great mental
calculator who could carry out seemingly impossible tasks of mental calculation. Binet
asked him to perform a large number of operations and measured how long Inaudi required
to carry out the calculations. He compared the calculation times with several cashiers who, in
the days before mechanical or electronic calculators, were required to carry out mental
calculations as a major component of their employment. Table 1 replicates a table Binet
provided, dealing with mental multiplication of large numbers. The table includes the results
of several participants multiplying numbers mentally without recourse to pen and paper, but
we are primarily concerned with the results of Inaudi and the “1st Cashier”, referred to as Mr.
Lour in Binet’s (1894, p. 97) quote below. (Mr. Diamandi was another prodigious mental
calculator. The gaps in the table are Binet’s gaps.)

"We see that while Mr. Inaudi usually has a marked superiority, it is less, for the
multiplication of small numbers, to a cashier, Mr. Lour. He is the best and fastest “Bon
Marche” cashier, who takes only 4 seconds in a case where Mr. Inaudi takes 6.4
seconds to solve the same problem. These are small operations. Mr. Lour could not
continue his superiority for more complex operations, because his memory failed him.
The discussion of these numerical results raises an interesting question of
psychology.”

It is fascinating to observe that Binet was, on the one hand, an ingenious and creative
psychologist, a pioneer in the history of scientific psychology, and, on the other hand,
seemingly blind, unable to see that, for 7,286×5,397, the cashier performed much faster than
Inaudi. For Binet, Inaudi was a highly intelligent freak of nature who had to be superior to a
mere cashier. Binet incorrectly interpreted his results accordingly.

It is also interesting to note that, in a previous publication about Inaudi, Binet (1892)
reported a well-known anecdote about Mozart and his ability to remember Allegri’s
Miserere. When visiting Rome as a 14-year-old, Mozart heard the piece during a Sistine
Chapel Wednesday service. Later that day, he wrote it down entirely from memory, returning
to the Chapel that Friday to make minor corrections. According to Binet, this feat is
explained by Mozart’s musical memory, which Binet attributed to a natural disposition in
the same manner as he interpreted Mr. Inaudi’s ability to mentally calculate. (Binet also
thought that painters like Doré and Vernet have a naturally superior visual memory.)

There was little sign that Binet was able to think in terms of expertise due to domain-
specific knowledge. Such knowledge can readily explain Mozart’s ability to remember a
musical piece. Mozart understood that Allegri’s piece was tonal music, following the
established rules of tonal music. Those rules are known to experienced musicians who
know the structure of such music and can reproduce it in a manner very similar to Mozart.
Mozart was a genius, but it does not require a genius to remember a music piece belonging to
a well-known category. In other words, the transcription of this piece of music is likely to be
a routine exercise for highly knowledgeable musicians. It was more than 75 years after Binet
and more than 300 years after Mozart for the field to realise, following the work of Ericsson
and his colleagues (Ericsson and Charness 1994; Ericsson and Lehmann 1996; Ericsson
1985; Ericsson and Chase 1982), that, when performing a cognitive task requiring domain-
specific knowledge, that the presence or absence of this knowledge is the best predictor of
performance.
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Years after Binet’s 1892 and 1894 publications, he was asked to design a standardized test
to evaluate if a pupil was likely or unlikely to succeed in secondary school. Subsequently,
this test, used to determine the probability of success in school, was given a new name:
“Intelligence”. Binet and those who followed him assumed that they were primarily
measuring a natural, basic trait rather than acquired knowledge

There are more recent findings indicating the importance of acquired knowledge in
intelligence. Some of the strongest evidence for the influence of knowledge on intelligence
comes from an experiment conducted by Cahan and Cohen (1989). They were concerned with
the differential effects on intelligence of increases in age versus increases in schooling. We
know that children’s intelligence increases with age because different tests are required to
measure the intelligence of children and adults, but to what extent is this increase a natural
increase simply due to increasing age and to what extent is it due to the increase in knowledge
acquired in school? Obviously, a true experiment on this issue could not be carried out in an
ethical fashion. Cahan and Cohen circumvented this problem by a quasi-experimental design
using the fact that, for any given school year, children’s ages can normally vary by up to 1 year.
Thus, in a given school year, children with the same amount of schooling can vary in age by up
to 1 year depending on whether their birthday fell just before or just after the cut-off for school
entrance. Correspondingly, children in adjacent school years can be very close in age but vary in
amount of schooling by one year. Cahan and Cohen found that the increase in intelligence due
to one additional year of schooling was twice the increase for one additional year of age. Similar
results were obtained by Cliffordson and Gustafsson (2008) and Stelzl et al. (1995). Other
methods, such as assessing the effect of school reform, provide the same evidence: Increasing
time spent in school increases intelligence (Brinch 2012). It should be noted that other studies
that reverse the direction of causality by suggesting that intelligence has a positive effect on
school performances (e.g. Herrnstein and Murray 1994) rather than that schooling can increase
intelligence, are not based on controlled experiments but on correlational analyses that cannot
determine causality.

While these results can be interpreted in a variety of ways, one conclusion is that knowledge
plays a critical role in intelligence. Based on these results, it may be inappropriate to assume that
intelligence is a basic, biologically determined measure that increases with age. The
accumulation of knowledge in long-term memory during schooling provides an obvious
candidate for the role of the major factor in the development of intelligence.

One hundred years after the publication of Binet’s book on prodigious calculators, “The
Bell Curve” was published (Herrnstein and Murray 1994), emphasising intelligence and its
links with performances and achievement in many different aspects of life. In response, the
Board of Scientific Affairs (BSA) of the American Psychological Association concluded that
there was an urgent need for an authoritative report on these issues—one that all sides could
use as a basis for discussion. Acting by unanimous vote, the BSA established a Task Force
charged with preparing such a report. Neisser was appointed Chair. Here are some
quotations from this report (Neisser et al. 1996):

“… schooling itself changes mental abilities, including those abilities measured on
psychometric tests. This is obvious for tests like the SAT that are explicitly designed to
assess school learning, but it is almost equally true of intelligence tests themselves.”
(Neisser et al. 1996, p. 87).
“There is no doubt that schools promote and permit the development of significant
intellectual skills, which develop to different extents in different children. It is because
tests of intelligence draw on many of those same skills that they predict school
achievement as well as they do”. (Neisser et al. 1996, p. 87).
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Some of the conclusions of this work also are very important. Neisser et al. claimed that
we do not know the links between (psychometric) intelligence and genetic endowment.
There is an important quote on the Flynn Effect discovered by Flynn (2007) who found that,
over a half century, intelligence scores had been rising substantially:

“Mean scores on intelligence tests are rising steadily. They have gone up a full standard
deviation in the last 50 years or so, and the rate of gain may be increasing. No one is sure
why these gains are happening or what they mean.” (Neisser et al. 1996, p. 97.)

Based on these conclusions, after 100 years, we apparently still know very little about
intelligence. Of course, as these quotes suggest, many of the paradoxes associated with
intelligence could be resolved had the history of intelligence testing included a heavier
reliance on the acquisition of biologically secondary, domain-specific knowledge held in
long-term memory. Many of the puzzling findings associated with intelligence testing
including the Flynn Effect, become understandable if we assume that at the very least, the
possession of a large store of domain-specific knowledge is an indispensable component of
intelligent behaviour (see e.g. Ackerman 2000; Brinch 2012).

While we have attributed increasing intelligence scores to the acquisition of biologically
secondary, domain-specific knowledge, these increases could just as easily be caused by
changes in biologically primary, domain-general knowledge such as general problem solving
skills. Our failure to identify teachable/learnable general problem solving skills argues in favour
of domain-specific skills. The centrality of domain-specific skills in problem solving expertise
is discussed below in the section entitled “Recognising Domain-Specific Knowledge and
Expertise”. In the next two sections, we continue to indicate the historical significance of a
failure to recognise the importance of domain-specific knowledge and the equally important
failure to find teachable, domain-general knowledge.

The Problem of Expertise and Disappearing Short-Term Memory Limits

Miller’s (1956) paper can be considered as one of the main events in the birth of cognitive
psychology, but also, the paper that defined the concept of capacity of processing
information or short-term memory capacity. Even as the short-term memory concept was
progressively replaced by working memory (Atkinson and Shiffrin 1968; Baddeley and
Hitch 1974; Miller et al. 1960), the linked concept of capacity did not disappear (Cowan
2005; Conway et al. 2007). The powerful idea of Miller was that this capacity is universal,
applying to everyone in every domain. But, again, a short quotation from his 1956 article is
relevant. In this passage, Miller reported results concerning absolute judgment of tones.
After presenting some results that accorded with his argument, he wrote:

“Most people are surprised that the number is as small as six. Of course, there is
evidence that a musically sophisticated person with absolute pitch can identify
accurately any one of 50 or 60 different pitches. Fortunately, I do not have time to
discuss these remarkable exceptions. I say it is fortunate because I do not know how to
explain their superior performance. So I shall stick to the more pedestrian fact that
most of us can identify about one out of only five or six pitches before we begin to get
confused.” (Miller 1956, p. 84.) Of course, as is the case for intelligence, expertise in
the form of domain-specific knowledge can explain these differing results between
experts and novices.
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The problem with the limited capacity of working/short-term memory that seems to
disappear as a limit for some people should be linked to the way Miller thought about the
issue. He considered working/short-term memory capacity as a general capacity, not
depending on the domain being tested. In fact, it is virtually impossible to measure
working/short-term memory capacity in a “pure” fashion uninfluenced by knowledge held
in long-term memory for whatever material is being used such as digits, words, letters, tones,
pictures, etc. There are huge differences between individuals’ knowledge held in long-term
memory and that is precisely what the pioneers of expertise psychology discovered in the
late 1960s (see below).

Domain-Specific Knowledge and Cognitive Development

Historically, the lack of an appropriate emphasis on biologically secondary, domain-specific
knowledge has also bedevilled the field of cognitive development, in particular, Piaget’s
stage theory of cognitive development. His stage theory (Piaget 1972) documents a series of
cognitive stages through which children develop, beginning with the sensorimotor stage and
progressing through the pre-operational and concrete operational stages culminating in the
formal operational stage. These stages indicate changes in the general ability of children to
engage in logical thought. Each stage was initially assumed to be domain-independent
(Piaget 1972). The thought processes were assumed to progress in a fixed, necessary
sequence. Progress through the stages could vary in speed but not in sequence.

While the stage theory worked reasonably well, some apparent inconsistencies began to
appear. Piaget demonstrated that preoperational children have difficulty conserving number,
mass, and volume. Objects that are spread out frequently are usually assumed by pre-
operational children to have increased in number, liquids poured into a differently shaped
container may be assumed to have altered in volume while solid objects whose shape
changes may be assumed to alter in mass. These errors, according to Piagetian theory, are
due to the predominance of perceptual over logical reasoning in preoperational children. In
the next stage, the concrete operational stage, logical reasoning becomes dominant and the
errors are no longer made.

The difficulty with this explanation is that the point at which the errors disappear varies.
Children may, for example, conserve number earlier than they conserve mass. If we assume
that learning to conserve number, volume, and mass are simply domain-specific concepts
that must be acquired, the fact that a child acquires them at different times is easily
explained. If we assume that the acquisition of these concepts is dependent on the
development of a biologically primary, domain-general ability to handle logic, their
appearance at different times in the same child becomes problematic.

The issue became overwhelming in the case of the ultimate developmental stage, formal
operational thought. Formal operational thought was assumed to develop at about 12–
13 years of age. It allows us to consider issues that may or may not exist except in our
minds. We can propose hypotheses in a scientifically appropriate fashion. Piaget initially
tested for formal operational thought using children from some of the better schools in
Geneva. The tasks included asking children to set up valid experiments testing simple
scientific hypotheses such as establishing the factor or factors that determine the frequency
of oscillation of a pendulum. Formal operational children could accomplish this task
successfully by altering one variable at a time and observing its effect. Concrete operational
children were more likely to vary multiple variables simultaneously indicating their failure to
understand the logic of hypothesis testing.
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Towards the end of his career, Piaget (1972) realised that there were serious problems
associated with formal operations. Using his scientific tasks as a test, many apparently
capable people seemed never to attain the formal operational stage. The solution, he
suggested, was not to abolish the notion of formal operations but rather to only test for
formal operations in an area that a person had ability, interest, and knowledge. In other
words, we cannot ignore domain-specific knowledge.

We would like to go a step further. Our acquired ability to reason logically is due
to biologically secondary, domain-specific knowledge. A person who is able to
reason logically in science may show no such ability in his or her personal life or
in any areas outside of his or her areas of science. Knowing that we should only
test one variable at a time when conducting a scientific experiment is critical.
Outside of hypothesis testing, it may be irrelevant, with other knowledge being
pre-eminent.

The extent to which biologically secondary, domain-specific knowledge held in long-
term memory can explain skill that appears to be due to highly general abilities or teachable
general skills can be surprising. In the next section, we discuss research into expertise and
what that research tells us of the relation between biologically secondary, domain-specific
skill and biologically primary, domain-general skills.

Recognising Domain-Specific Knowledge and Expertise

Air traffic control and chess are probably the two most common areas where the effect of
domain-specific knowledge has been demonstrated. We will begin by discussing research on
air traffic control.

The Nature of Air Traffic Controller Expertise

Air traffic controller memory has been widely studied during the past 50 years (see
Bainbridge 1975; Stein et al. 2010 for reviews). The first reported results that we can find
are those of Yntema (Yntema and Mueser 1960, 1962; Yntema 1963). Yntema’s goal was to
understand why “card players, air-traffic controllers, and people going about their ordinary
business demonstrate an ability to keep track of a number of things at once” (Yntema and
Mueser 1960, p. 18). His hypothesis, in conformity with the times, was contrary to a
domain-specific knowledge hypothesis. Following Miller (1956), Yntema tested whether
air traffic controllers had an enhanced general ability to chunk information. Accordingly, he
tested air traffic controllers on laboratory tasks such as letters associated with shapes,
colours, signs, etc. The results indicated that air traffic controllers were no better at chunking
information than the general population.

Ten years later, Bisseret (1970) used the same kinds of tasks but approached them from a
different perspective: understanding performance at work using meaningful materials rather
than laboratory tasks unrelated to an enhanced knowledge base. His experiment included a
description of several aircraft with each description using seven variables. Two factors were
manipulated: The number of aircraft and the experience of the air traffic controller. He found
an increase in memory scores with an increase in experience. The average number of
variable values recalled was 22.8 for advanced air traffic control students and 30 for more
expert professionals, with both of these scores far in excess of Miller’s 7+/−2. Knowledge
had a dramatic effect on working memory.
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These effects on performance depending on levels of expertise provided an early
suggestion that working memory capacity depends on domain-specific knowledge. In a
personal communication, Bisseret provided an interpretation of his results 40 years later. He
indicated that he would have been better positioned to interpret his results had Ericsson and
Kintsch’s (1995) concept of long-term working memory (see below) been available to him at
the time of publication.

Why Chess Masters Win

Historically, the above work concerning the consequences of domain-specific knowledge on
cognition using aircraft controllers had minimal impact. The work on chess had a much
greater impact, although the full implications of that work are still to be realised, we believe.
That work was initiated by De Groot (1965).

De Groot’s work was first published in 1946 in Dutch and had a limited impact on the
field. It was re-published in 1965 in English. It had a substantial impact on the field of
cognition, especially after Chase and Simon’s (1973) work (see below), but only a limited
impact on issues associated with instructional design.

De Groot was concerned with the factors that allow chess masters to consistently defeat
lower ranked players. Chess is validly seen as a game of problem solving, but the problem
solving factors that allow masters to defeat lower-ranked players were obscure. One
possibility is that masters engage in a greater search in depth by considering more possible
moves ahead or a greater search in breadth by considering more alternative moves at each
choice point. We might expect that increased search would increase the possibility of finding
a good move, but De Groot found no evidence of increased search by chess masters
compared with lower-ranked players. Differential problem solving search did not distinguish
masters from other players.

The only distinction De Groot could find between masters and lower-ranked players was
in memory for board configurations taken from real games. Players were shown a board
configuration for 5 s before the board was removed, and the players were asked to replicate
the configuration they had just seen. Masters were good at this task with a 70–80 % accuracy
rate. Lower-ranked players had an accuracy rate of 30–40 %. Chase and Simon (1973)
replicated these results but in addition demonstrated that, if random board configurations
were used, the difference between masters and lower-ranked players disappeared with all
having a low success rate.

These results altered our view of human problem solving and, indeed, of human
cognition. Masters were superior to lower-ranked players not because they had acquired
complex, sophisticated general problem solving strategies, nor general memory capacity, but
rather, because they had acquired an enormous domain-specific knowledge base consisting
of tens of thousands of problem configurations along with the best move for each
configuration (Simon and Gilmarti 1973). No evidence, either before or after De Groot’s
work has revealed differential, general problem solving strategies, or indeed, any learned,
domain-general knowledge, that can be used to distinguish chess masters from lower ranked
players. The only difference between players that we have is in terms of domain-specific
knowledge held in long-term memory. Furthermore, no other difference is required to fully
explain chess problem solving skill.

In our view, these results provide some of the strongest evidence for the suggestion that
learned skill, especially problem-solving skill, derives primarily from the accumulation of a
large store of biologically secondary, domain-specific knowledge stored in long-term
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memory. As far as we are aware, there is no evidence that learned problem solving skill in
chess derives from domain-general knowledge. Domain-general strategies such as means-
ends analysis (Newell and Simon 1972) clearly exist and are presumably used by chess
masters, but there is no body of evidence indicating that they are teachable. We suggest that
for evolutionary reasons, we have been selected for our ability to acquire domain-general
knowledge. Such knowledge is too important for us to not acquire it. As a consequence, we
may acquire domain-general knowledge automatically as biologically primary knowledge. If
so, we cannot be taught domain-general knowledge in educational institutions because it
already has been acquired.

Generalisation of the Work on Chess to Other Areas

Unsurprisingly, similar results have been obtained in a variety of other areas including areas
of greater interest than chess to the education research community. Findings indicating that
experts have a better memory for problem solving states than novices have been obtained in
areas such as understanding and remembering text (Chiesi et al. 1979), electronic
engineering (Egan and Schwartz 1979), programming (Jeffries et al. 1981), and algebra
(Sweller and Cooper 1985). Based on these results, competence in any area requires
knowledge of the problem states that can be found in the area along with the best moves
associated with those states. For complex, extensive areas that knowledge may consist of
tens of thousands of problem states (Simon and Gilmarti 1973). Those innumerable problem
states and the best moves associated with those states are stored in long-term memory. It is
that knowledge that constitutes expertise. We should at least consider the possibility that
such knowledge is all the teachable skill that is required for expertise and competence.

Expertise Theory

Ericsson and his collaborators provided data and theory for the phenomena associated with
expertise and its reliance on domain-specific knowledge held in long-term memory. Initially,
the emphasis was on the outstanding performance of particular individuals on memory test
tasks such as memorising a list of dozens of randomly presented digits after one presentation
(Chase and Ericsson 1982). Contrary to popular opinion, studies indicated that the
techniques used by exceptional performers to memorise lists of random digits or random
letters are readily learnable. People who perform at a high level in memory tests are simply
experts in memory test tasks because they have domain-specific knowledge concerning
these tasks. Investigation of the strategies used indicated that they were domain-specific
rather than general (Ericsson and Charness 1994). Learning to remember long strings of
digits does not transfer to learning to remember long strings of letters.

Subsequently, in work on deliberate practice, Ericsson and his collaborators demonstrated
that expertise in any substantial domain requires years of practice with the intention of
improving performance (Ericsson and Charness 1994; Ericsson et al. 1993). It is likely to
take a minimum of 10 years of practice to reach the highest levels of performance such as
attaining grand master status in chess. Interestingly, the three cashiers who participated in
Binet’s (1894) experiment indicated that a period of about 10 years was required to reach
their high levels of mental calculation. Due to the work of Ericsson and his colleagues, it is
reasonable to assume that, during those 10 years, experts are acquiring domain-specific
knowledge held in long-term memory.
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In effect, the work carried out by Ericsson and his colleagues indicated that the well-
known capacity and duration limits of working memory disappear when working memory
deals with familiar information from long-term memory. Working memory’s capacity and
duration limits apply only to novel, not familiar, information. From a theoretical perspective,
there are two ways of handling this fact. We can assume that working memory deals
differently with organised information stored in long-term memory compared with
information obtained from the environment that is yet to be organised. Alternatively, we
can specify a structure to deal with information from long-term memory that differs from
short-term working memory. Ericsson and Kintsch (1995) chose to specify a new structure,
long-term working memory to explain how working memory handles information from
long-term memory. Long-term working memory does not have the same capacity and
duration limits as short-term working memory. It may have no measurable limits.

Whether we subscribe to a working memory with differing characteristics depending on
the source of its information or separate structures to deal with environmental information
and information from long-term memory, the outcome is identical. In both cases, knowledge
held in long-term memory dramatically changes performance.

In sum, the psychology of expertise has shown that the major factor determining the
performance of experts is acquired, domain-specific knowledge. The more complex is the
domain, the more important is domain-specific knowledge. As indicated above, data on expertise
in areas such as chess can be fully explained by the assumption that the only factor that alters as
expertise develops is the accumulation of domain-specific knowledge held in long-termmemory.
As far as we are aware, there is no evidence that chess experts have acquired some form of
domain-general knowledge that permits them to play at such a high level. There is every reason
to suppose that the same cognitive factors apply to educationally relevant curriculum areas.

According to Ericsson and Charness (1994), it probably took such a long time to discover
the importance of knowledge because we are fascinated by exceptional performance and
genius. This fascination may have led us to seek extraordinary explanations. Nevertheless,
Ericsson and Charness’ emphasis on the role of our fascination with genius may only be
partially correct because when considering non-exceptional people, the contribution of
domain-specific knowledge has also tended to be overshadowed by an assumption that
learners are also acquiring domain-general knowledge. In fact, we suggest that expertise in
complex areas can be fully explained by the acquisition of domain-specific knowledge.

From Expertise Research to Educational Psychology

The influence of expertise research with its emphasis on domain-specific knowledge has
affected educational psychology and the process is ongoing. In this section, we look at the
changing role of biologically secondary, domain-specific knowledge.

Categorisation and the Representation of Physics Problems by Experts and Novices

Some of the earliest work concerning the effect of domain specific knowledge in education
was provided by Chi and her colleagues (Chi et al. 1981). The 1981 study described four
experiments devoted to problem solving in physics. Chi and her colleagues examined the
differences between experts and novices in problem representation, i.e. “the cognitive
structure corresponding to a problem, constructed by a solver on the basis of his domain-
related knowledge and its organization” (p. 122). Prior to the Chi et al. (1981) paper, Simon
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and Simon (1978) and Larkin et al. (1980) had found that novices work backwards from the
goal on physics problems using a means-ends strategy (Newell and Simon 1972) in which
problem solvers locate differences between a current problem state and the goal state and
search for problem solving operators to reduce those differences while experts work forward
from the givens. These results were interpreted as indicating differences in problem solving
strategies between experts and novices.

Chi was convinced that these differences between experts and novices in physics problem
solving could be interpreted in terms of representation (see Chi 1993, for the genesis of the Chi
et al. 1981, article). She presented novices and experts with a task in which they were presented
with a variety of physics problems that they had to sort into categories. The experts were
advanced PhD students in physics, and the novices were physics undergraduates. The results
showed that experts sorted the problems based on structural cues relevant to problem solution
while novices used superficial, physical cues. For example, novices might group problems
together because they included an inclined plane while experts were more likely to group
problems together because, for example, they all relied on conservation of energy for their
solution. “The basic expert-novice result, that experts’ knowledge is represented at a "deep"
level (however one characterizes "deep"), while novices’ knowledge is represented at a more
concrete level, has been replicated in many domains, ranging from knowledge possessed by
scientists to taxi drivers” (Chi 1993, p. 12).

The Chi et al. article emphasised the differences between experts and novices in
educationally relevant problems. In the field of problem solving, moving from puzzle
problems treated as a prototype for all problems, to educationally relevant problems was a
major step in recognizing the importance of domain-specific knowledge in education. We
can see the change by considering the Anzai and Simon (1979) paper concerned with
problem solving using the Tower of Hanoï puzzle. There is no mention in this important
paper concerning the effects of knowledge on problem solving or on knowledge acquisition
as a factor in problem solving performance. The Chi et al. paper was one of the first to apply
to educationally relevant problems the information described above concerning the
importance of domain-specific knowledge on problem solving performance.

Schneider et al. (1989) replicated the domain specific knowledge effect in a very different
way. They presented memory tasks and text comprehension to two groups that differed in
domain-specific knowledge and in verbal aptitude (vocabulary, sentence completion, and word
classifications) measured by a cognitive ability test. The participants were soccer experts and
novices. The results indicated that low aptitude experts outperformed high-aptitude novices on
all memory and comprehensionmeasures. These results were analogous to those obtained byChi
(1978) who found that younger, chess-playing children had a better memory for chess board
configurations taken from real games than older children with less knowledge of the game.

Chi’s work contributed to the body of evidence concerning the domain-specificity of expert
knowledge. It was particularly important because the subject matter, physics, was
unambiguously educationally relevant, and the novices and experts were all students with
differing levels of expertise rather than established experts. FollowingChi’s work, several studies
took domain-specific knowledge into account by controlling it, but only a few focused on
analysing the effects of domain-specific knowledge on learning (see Fayol 1994 for a review;
and more recently Amadieu et al. 2009; Duncan 2007; Gijlers and de Jong 2005). Avery limited
number of studies have demonstrated the effect of domain-specific knowledge when it is
presented a few minutes before a main learning task (Mayer et al. 2002; Pollock et al. 2002).
Thus, if domain-specific knowledge is central to the intellectual performance of students,
techniques designed to assist students in acquiring domain-specific knowledge seemed to be a
logical next step.
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Cognitive Load Theory

If domain-specific knowledge held in long-term memory is central to learnable aspects of
intellectual performance, we might expect instructional design research and theories to place
their emphasis on the acquisition of biologically secondary, domain-specific knowledge.
One theory that places a heavy emphasis on the acquisition of domain-specific knowledge is
cognitive load theory (Chanquoy et al. 2007; Sweller 2011, 2012; Sweller et al. 2011).

Cognitive load theory was designed and has been continuously developed to account for
cognitive processes that facilitate the acquisition of domain-specific knowledge via new
instructional procedures. The current version of that cognitive architecture places a heavy
emphasis on biological evolution in two respects. First, it uses Geary’s evolutionary
educational psychology (Geary 2008, 2012) to distinguish between biologically primary
and secondary knowledge. It is the cognitive architecture associated with biologically
secondary knowledge that is used by cognitive load theory. The information processes used
by that architecture are closely analogous to the information processes used by evolution by
natural selection and that analogy provides the second way in which cognitive load theory
relies on evolutionary theory.

As applied to human cognition, the relevant information processes require: a store of
information in the form of a long-term memory holding very large amounts of domain-
specific information; machinery to obtain that information from other people; the ability to
create novel information through a random generate and test process during problem solving; a
structure, working memory, to limit the amount of novel information that is acquired during
random generate and test to ensure that useful information held in long-term memory is not
destroyed, and lastly; either a structure such as long-term working memory or processes to
allow information held in long-term memory to be brought into working memory to govern
knowledge-based activity. Together, these cognitive structures and processes constitute a
cognitive architecture that can be used to generate instructional procedures. (See Sweller and
Sweller 2006, for details of the analogy between this cognitive architecture and evolution by
natural selection.) These instructional procedures are concerned entirely with facilitating the
acquisition of biologically secondary, domain-specific knowledge. Recent summaries of the
various cognitive load effects and their instructional implications can be found in Sweller (2011,
2012). Detailed, comprehensive summaries may be found in Sweller et al. (2011) and will not
be repeated here. While all of the effects are intended to facilitate the acquisition of domain-
specific knowledge, two of the effects, the worked example effect and the expertise reversal
effect, provide particularly good examples of the importance of biologically secondary, domain-
specific knowledge to instructional design issues. These two effects will be discussed within a
context of acquiring domain-specific knowledge.

The worked example effect This effect is demonstrated when learners, provided problems to
solve, learn less than learners provided the same problems using a worked example format.
In a worked example, each problem is associated with a detailed solution. Despite solving
fewer problems, on subsequent problem solving tests, the worked example condition
characteristically performs at a higher level. Why is this result obtained?

According to cognitive load theory, studying a worked example reduces extraneous (or
unnecessary) working memory load compared with having to search for a problem solution and
that reduction allowsworkingmemory resources to be devoted to learning to recognise problem
states associated with their appropriate moves. In other words, studying a worked example is
congruent with the biologically secondary, domain-specific knowledge hypothesis that suggests
that good problem solvers have learned to recognise a large number of problem states and the
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best moves associated with each state. Work examples place their emphasis on precisely those
problem states and their moves, leading to the worked example effect.

Expertise reversal effect The worked example effect occurs using novices in a domain. As
levels of expertise increase, the effect first disappears and then reverses with problem
solving proving superior to studying worked examples (Kalyuga et al. 2001). While novices
require worked examples to help them acquire the domain-specific knowledge that is central
to problem-solving skill, why are worked examples deleterious to the acquisition of skill
once levels of expertise increase?

More expert problem solvers have already acquired the knowledge necessary to solve a
given class of problems. They do not need to be shown how to solve such problems because
they do not need to engage in an extensive problem-solving search process to find a suitable
solution. Reading a worked example is a redundant activity (see Sweller, et al. 2011, for a
discussion of the redundancy effect) that increases extraneous cognitive load. Instead,
learners may need practice at solving the problems so that they can automatically recognise
the relevant problem states and their associated moves. For these reasons, worked examples
are needed by novices while problem solving is more important for more expert problem
solvers in a domain leading to the expertise reversal effect. Again, the effect was generated
by cognitive load theory and relies on the central importance of biologically
secondary, domain-specific knowledge to skilled problem solving. (It should be noted
that the expertise reversal effect modifies a range of cognitive load effects, not just
the worked example effect.)

Both the worked example effect and other associated effects such as the expertise reversal
effect are predicated on the assumption that the purpose of instruction is to allow learners to
acquire vast amounts of biologically secondary information stored in long-term memory. It
is assumed that that information transforms our cognitive processes and indeed, transforms
us. This assumption can be contrasted with alternative views of human cognition that place a
greater emphasis on the acquisition of domain-general knowledge (see Kirschner et al.
2006). We suggest it can be argued that domain-general information is unteachable because
it consists of biologically primary knowledge that is acquired easily and automatically
without instruction. We have evolved to acquire such knowledge.

Discussion

We have argued that expertise based on biologically secondary, domain-specific knowledge
held in long-term memory is by far the best explanation of performance in any cognitive
area. Furthermore, in contrast to domain-general cognitive knowledge, there is no dispute
that domain-specific knowledge and expertise can be readily taught and learned. Indeed,
providing novice learners with knowledge is the main role of schools. We might guess that
most school teachers in most schools continue to emphasise the domain-specific knowledge
that always has been central, making little attempt to teach domain-general knowledge.
Based on our argument, they should continue to do so. At school, children acquire
knowledge that overcomes the need to engage in inefficient problem solving search and
other cognitive processes. That knowledge allows people to function in a wide variety of
tasks outside of school. Given the overwhelming importance of domain-specific knowledge,
indeed, its sole importance if the argument presented in this paper is valid, it is puzzling that
our field has tended to place considerable emphases elsewhere for most of its existence as an
area of research. There are several possible reasons.
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At any given time, we are unaware of the huge amount of domain specific knowledge
held in long-term memory. The only knowledge that we have direct access to and are
conscious of must be held in working memory. Knowledge held in working memory tends
to be an insignificant fraction of our total knowledge base. With access to so little of our
knowledge base at any given time, it is easy to assume that domain-specific knowledge is
relatively unimportant to performance. It may be difficult to comprehend the unimaginable
amounts of organised information that can be held in long-term memory precisely because
such a large amount of information is unimaginable. If we are unaware of the large amounts
of information held in long-term memory, we are likely to search for alternative explanations
of knowledge-based performance. Those alternatives tend to consist of domain-general
strategies. We have suggested that such strategies are likely to be unteachable because they
are too important for humans not to acquire. As a consequence, we have evolved to acquire
very general strategies easily and quickly as biologically primary knowledge.

Not only is the amount of domain-specific knowledge held in long-term memory hidden
from us, the nature of that knowledge tends to be hidden from us as well. We may know that
we have learned Pythagoras’ theorem because it is explicitly learned. We may not know that
we must also learn to recognise the various problem states to which the theorem applies and
that knowledge may be considerably more extensive and difficult to learn than simply
learning the theorem itself because the problem states to which the theorem applies are
effectively infinite. Based on the current, predominant literature, it is still easy to assume, for
example, that learning mathematics involves no more than learning the rules of mathematics
or learning to play chess is no more than just learning the rules of chess. Mathematicians and
chess players are fully aware that they need to learn the appropriate rules in order to function
in their area. They may be quite unaware of what else needs to be learned in order to function
at a high level. It may not be surprising that, in the absence of information concerning the
extensive knowledge of problem states and their moves, hypotheses associated with
frequently unnamed and undescribed general cognitive strategies arose instead. It took us
a very long time to discover exactly what is learned when dealing with a substantial domain.

Once we have learned a substantial domain, we tend to forget how difficult and how long
it took us to learn it. As many secondary teacher trainers can testify, it can be difficult to
convince trainees that they should not enter their first classroom and attempt to tell students
everything they have learned about a particular topic in 45 min. Once we have learned
something, we tend to assume it is simple and obvious (because it is simple and obvious for
us) and forget how complex and difficult it was to learn.

For these reasons, the extent, complexity, difficulty, and sheer time needed to acquire
domain-specific knowledge can be hidden from us. Suggestions that domain-specific
knowledge held in long-term memory may be all that is needed to explain very high and
very sophisticated levels of performance may appear to be counter-intuitive. Instead,
complex but frequently unspecified cognitive strategies may appear to be the main drivers
of our cognitive processes. While sophisticated, general strategies are likely to exist, we
should expect them to be biologically primary.

The search for powerful, general strategies that transform and enhance our performance can
provide an irresistible siren-call but such strategies, because of their importance and power, are
likely to be biologically primary and so automatically acquired without assistance from
instructors. Humans are likely to have evolved to acquire important cognitive strategies and
do so easily and automatically. In contrast, biologically secondary information is rarely obtained
easily or automatically. We should at least consider the possibility that all learning of the
biologically secondary information that is central to modern education is based on the
acquisition of domain-specific rather than domain-general knowledge. If so, an appropriate

280 Educ Psychol Rev (2014) 26:265–283



role for cognitive processes and instructional design researchers is to devise techniques to assist
students to acquire this domain-specific knowledge rather than already learned generic skills.
As indicated in the previous section, such a strategy can lead to novel instructional procedures.
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