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Abstract Efforts to identify and support credible causal claims have received intense
interest in the research community, particularly over the past few decades. In this paper, we
focus on the use of statistical procedures designed to support causal claims for a treatment
or intervention when the response variable of interest is dichotomous. We identify seven
key features of logistic regression studies that should play a critical role in estimating a
causal effect and discuss their implications for causal inference. These include elaboration
of research design, clarification of link function, model specification, challenges and
limitations of sample size, interpretation of treatment effect through odds ratios, statistical
tests and examination of model fit, and the potential for multilevel logistic models in pursuit
of causal claims. Our recommendations are intended to guide researchers in the critical
evaluation of logistic regression models for analyses culminating in causal claims and to
promote stronger design and modeling strategies for reliable causal inference.

Keywords Causality - Logistic regression

The quest to understand what works in educational and psychological research—indeed, in
all research that seeks to identify ways to improve the human condition—remains a
dominant theme in continuing debates on scientifically based research, causality, and
evidence-based practice (Riehl 2006; Schneider et al. 2007; Towne et al. 2004). The most
rigorous research designs are perceived as those involving random assignment or that
otherwise minimize the effect of selection bias and potential for rival plausible alternatives
when establishing a treatment effect. Support for valid estimates of treatment effects from
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well-designed observational studies has been documented in the literature for some time (e.g.,
Benson and Hartz 2000; Concato et al. 2000; Rosenbaum 1989; Rosenbaum and Rubin 1983;
Rubin 2001; Schneider et al. 2007). The past decade has also seen a burgeoning commitment
within the research community for transparency in design and responsible reporting of research
results for both experimental and non-experimental designs (e.g., Moher et al. 2001; Des Jarlais
et al. 2004; National Research Council (NRC) 2002; Towne et al. 2004; Schneider et al. 2007).
What these efforts have in common is the understanding that credible claims to causality of
effect are rooted in quality of design and are not the privilege of any particular statistical
techniques. However, each statistical technique used in the pursuit of causal inference has
unique limitations and challenges that can affect the reasonableness of causal claims.

In this paper, we focus on the use of logistic regression in studies designed to measure a
causal effect of a treatment or intervention when the response variable of interest is
dichotomous. As one of the initial steps in the process of “prudent inquiry” (Shadish 2005),
we emphasize the need for presentation of responsible research conclusions from studies
involving logistic regression, and we make recommendations for when prescriptive
statements regarding causal effects can be supported.

Before turning to the primary goal of our paper, we wish to review some terminology
about data, models, and inference. We refer to data as the observations obtained on a
sample of persons or units from a targeted population. The sample constitutes a subset of
the population, and the data are used to describe patterns and relationships among variables
in the sample. Generally, the variables are chosen to investigate specific research problems,
such as whether a prevention program decreases engagement in risky sexual behavior
among HIV-positive men, whether a community-level intervention for pregnant women
decreases the rate of low-birth-weight infants, or whether a school-based intervention
reduces the incidence of dropout among adolescents. The quality of the sample, including
how it was collected and the measurement properties of the sample variables, affects the
quality of evidence regarding the nature of observed data patterns and variable relationships
(Fowler 2009; Kish 1965/1995; O’Connell 2000).

A statistical model is a mathematical representation of a supposition, belief, or theory
regarding the patterns and relationships in the data and is often principally concerned with
characterizing and simplifying the complex relationships among a constellation of predictor
or explanatory variables and one or more outcomes, responses, or dependent variables. A
famous quote by Box captures the challenges in using statistical models to represent
complex processes: “All models are wrong, but some are useful” (Box 1979, p. 202). The
legitimacy of a given statistical model to accurately capture and simplify complex
relationships and the legitimacy of inferences made about those relationships are tightly
intertwined. Both rely heavily on the adequacy and quality of the sample, the research
problem, and the research design (Dannels 2011; Fox 2008; Shadish et al. 2002).

Statistical models may be useful, but they are not determinant. They are capable of
describing and elucidating the structure of complex educational and social phenomena (Fox
2008), yet the situations in which we can use statistical models to move towards causal
inference require an appreciation for research design in general as well as an understanding
of the strengths and limitations of a selected statistical modeling method. Regardless of its
elegance or appeal, there is no single statistical method capable of resolving problems in
theory or research design (McCoach et al. 2007). Our focus here is on logistic regression
for modeling occurrence of events and its applicability to causal inference. Our hope is that
this work will encourage readers to more critically evaluate the use of logistic regression
models for analyses culminating in causal claims and promote stronger design and
modeling strategies for reliable causal inference from logistic models.
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We begin by describing the statistical model for logistic regression of event occurrence.
We then discuss the estimation of causal effects when the response of interest is
dichotomous and review the validity of inferring causal effects from experimental and
non-experimental studies. We conclude with our recommendations for when prescriptive
statements are warranted for studies utilizing logistic regression, emphasizing conditions
necessary for defensible prescriptive claims. We offer suggestions for the improvement of
interpretation of results from logistic regression analyses, clarifying relevant terminology
for probability, odds, odds ratios, relative risk, and effect sizes.

Modeling Event Occurrence through Logistic Regression

Logistic regression (LR) is used to model event occurrence when the event under study is
dichotomous, such as whether an adolescent drops out of school. Given the limited range of
the response variable (i.e., 0=event does not occur; 1=event occurs), LR falls into the class
of generalized linear models (GLM; Fox 2008; Long 1997; McCullagh and Nelder 1989)
for which the familiar normal distribution is a special case.

GLMs are formally identified through three specific features: (1) a random component
that is based on the exponential family (e.g., normal, binomial, Poisson); (2) a linear
component that describes how a transformation of the expected value of the response
variable corresponds to a set of covariates or explanatory variables; and (3) a link function
that specifies the connection between the original and the transformed responses. In this
paper, we focus on outcomes that can be modeled through LR, for which extensions exist
for ordinal responses, counts, and time-to-event data.

LR models the probability for one of the outcomes, typically referred to as the “success”
event, while conditioning on a set of covariates. LR captures the relationship between the
probability of success and the linear predictor, which typically resembles an S-shaped curve.
The Bernoulli distribution (a binomial distribution where the number of trials equals one) forms
the random component of the LR model, and the distribution of the collection of outcomes is
expressed as Y;~B(1, m;), where Y;=1 for the ith person if the success outcome is observed
and 0 otherwise, B indicates the binomial distribution, 1 indicates the number of trials (each
individual forms a single trial), and 7; represents the probability of a successful outcome for
the ith case. Distributional assumptions give the mean and variance of Y; as 7; and 7;*(1-m),
respectively. Consequently, the probability of success is heteroscedastic across cases, in that
the variance for each case is different and depends on the expected value.

The linear component of the LR model describes how a transformation of the expected
values 7, is related to a linear combination of p predictors (covariates), one of which
represents treatment assignment, with 7;=1 for the treatment group and O for the control

group.

ni = Bo + BiTi + BrXno + .8, Xpp (1)

In logistic regression, the logit link function, or natural log of the odds of success, serves as
the link connecting the expected values and the collection of predictors. For any given collection
of predictors (including the treatment), x;, the odds is a quotient that compares the probability of
success, 7(X;), to the probability of failure, 1—m(x;). Thus, the LR model can be written as:

m(x:)

m:ﬁo +B1Ti + B Xip + .8, Xip (2)

;= logit(r(x;)) = In
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Although probability is constrained to be between 0 and 1, the logit maps the expected
values onto the real line from —oo to + . Each slope (holding all other effects constant)
represents the change in the logit that is expected to occur given a one-unit change in its
respective predictor.

The logistic regression model describes how the log of the odds of success varies by a
given set of predictors including the treatment variable but is ultimately used to estimate
probability of success conditioning on the predictors in the model. The antilog (inverse) of
an estimated logit provides a prediction in terms of the odds of success, given the set of
predictors:

7
1—a(

i)

This expression is then used to estimate the conditional probability of success:

exp(7;) = Odds(success|x;) = = exp(BO +B1Ti + Blep) (3)

7(x;) = exp(By + B Ti + --.B,X;p) B 1
T exp(By + BiT; + .8, Xp) 1 +exp(—=(By +BiT; + .5, Xp))

For any single predictor, an odds ratio (OR) can be formed by exponentiating its
respective regression coefficient (i.e., ¢”). The OR for a variable yields a measure of effect
size that describes the association, in terms of odds of success, between that variable and
the success outcome. In Eq. 1 above, 3; represents the expected change in the logit for a
one-unit change in 7, holding all else constant. Thus, for the treatment effect, we obtain an
odds ratio that compares the odds of success within the treatment group to the odds of
success within the control group:

(4)

~ odds(success|T; = 1, x')
OR (treatment) = exp(f;) = odds(success|T; = 0, x')

(5)

In Eq. 5, x' represents all remaining covariates in the model. The odds and ORs are
always non-negative and range from 0 to infinity. In general, an OR of 1.0 implies that the
predictor has no associative effect on the odds of success while smaller values of an OR
(0<OR<1) indicate that the odds of success tend to decrease as the predictor increases by
one unit. Conversely, ORs larger than 1 imply that the odds of success tend to increase as
the predictor increases by one unit. The relationship between the odds ratio and a causal
effect for treatment is described below.

Defining a Causal Effect for Binary Outcomes

The framework commonly referred to as Rubin’s Causal Model (Holland 1986; Little and
Rubin 2000) characterizes the problem of estimation of a causal effect as one of missing
data. All measures of effect are comparative, but, within most treatment studies, participants
only experience and provide a response under one of the possible treatments. This situation
forms what is known as the counterfactual: What would a person’s response be if they had
been assigned to the competing treatment? Essential to Rubin’s model is the assumption of
independence among participants (or units) in the study, known as the stable unit-treatment
value assumption, or SUTVA. This assumption implies that one participant’s response or
experience has no effect on another person’s response. More specifically, SUTVA is an
“exclusivity restriction,” which states that a participant’s potential outcomes under either
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treatment or control are stable and are not affected by another participant’s assignment to
treatment or control (Guo and Fraser 2010; Rubin 2004).

To estimate a causal effect according to Rubin’s framework, we need to approximate the
responses of all participants (i.e., same background characteristics, same context, etc.) that
would have occurred if they had received the other condition. The quality of this
approximation is largely, but not completely, resolved through randomization of
assignment, which eliminates the possibility of selection bias and ensures that effects of
unobserved variables are balanced between treatment groups (Shadish et al. 2002).

In general, the causal effect of a treatment on a single case or individual can be
conceptualized as the difference between the potential observed response and the
counterfactual, although only one response is actually observed. For observed responses,
R, in the treatment (7) and comparison (7) groups, this difference is estimated by the
average treatment effect, E(R(T1))—E(R(T,)), which, for a binary outcome, reduces to a
comparison of two probabilities: [P(R(T)) = 1)] — [P(R(To) = 1)] = Tireatment — Zcontrol
(Rosenbaum and Rubin 1983). These two probabilities are conditional probabilities for
success within the treatment and control groups, respectively, and are adjusted for the
presence of the other covariates in the model. They are precisely those probabilities
estimated through the logistic regression model as expressed in Eq. 4, and they each
contribute, respectively, to the determination of the odds shown in the numerator and
denominator of the odds ratio in Eq. 5 above. Thus, the odds ratio for the treatment
assignment variable serves as the most appropriate measure of the causal effect for binary
outcomes.

Randomization to treatment is an important component in the experimental design of
treatment or intervention studies, but, at times, researchers who are interested in the causes
of an event may be unable to assign participants to a condition. In such instances, quasi- or
non-experimental research designs can yield strong causal inferences when methods to
approximate the randomization process and adjust for selection bias are incorporated into
the design and alternative explanations for the results are shown to be implausible (Little
and Rubin 2000; Shadish et al. 2002). The goal of these approximation strategies is to
balance preexisting differences in the data between treatment and control groups so that the
estimated treatment effect is free of any potentially confounding effects of observed
covariates.

Case—control studies (Breslow 1996) can be useful designs from which to infer causality
when outcomes are dichotomous and randomization to treatment is not an option. In these
studies, cases of participants who have the event of interest (e.g., high school dropouts) are
matched on covariates to similar control participants who do not have the event of interest
(e.g., non-high school dropouts). Important (and often difficult) aspects of case—control
studies are the selection of control cases and the quality of matching.

Several matching methods exist (Rubin 1973, 1979, 1980), but it is not always possible
to find an adequate match on key variables for individual participants in both conditions.
Propensity scores can be used to overcome this problem and, when designed appropriately,
are an effective matching tool in case—control as well as within observational or quasi-
experimental studies (see Guo and Fraser 2010, for an extensive discussion on
development, adequacy, use, and limitations of propensity scores). Propensity scores are
typically estimated through a logistic regression analysis where the outcome is the
assignment to treatment or comparison group. When included in the analysis, they act to
mimic some of the desirable properties of randomization by balancing the effect of
observed covariates and thus reducing overt bias in the estimation of treatment effects. In
addition, other model-based adjustments including the use of instrumental variables
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(Angrist et al. 1996) or covariance adjustments (Rosenbaum 2002) are enhanced when
propensity score methods are used (Rubin 2001). Thus, when appropriately constructed,
interpretations and prescriptive statements inferred from results of studies utilizing
propensity score adjustments may be more confidently supported.

Common techniques that incorporate propensity scores include matching, stratification, and
weighting; the propensity score has been used in some studies as a covariate, but this is prone to
extrapolation issues (Little and Rubin 2000). Furthermore, when key variables are omitted
from the propensity model, it is impossible to adjust for potential confounds and
subsequently, to infer causality, regardless of how propensity scores are used in an analysis.
Sensitivity analyses can and should be used to investigate the impact of hidden bias due to
variables excluded from the propensity model or the analysis and to rule out the impact of
unmeasured variables that may be related to treatment group or response (Rosenbaum 1995).

Reliable propensity scores balance individuals across treatment and control conditions
though the use of selection predictors—thus adjusting for potential confounds and
estimation bias resulting from non-randomization. Since propensity scores are designed to
mimic the randomization process, they reduce reliance on covariates in non-randomized
designs. In constructing good propensity scores, it is important for researchers to include
predictors that are likely to influence group selection in the propensity score, even when
such variables are not significant predictors of the event of interest (Rubin and Thomas
2000). Residual bias may still exist even in the presence of well-constructed propensity
scores when covariates hold prognostic value. Rubin and Thomas recommend that these
special covariates be included in the construction of the propensity score as well as adjusted
for when predicting the event of interest. Such covariance adjustment reduces bias in the
estimation of the treatment effect (Hill 2008). The overall goal is to compare outcomes on
individuals after treatment that were similar before treatment. However, further research is
needed on approaches to controlling for covariates that may be differentially related to
assignment and to the outcome(s) (Guo and Fraser 2010).

The desire to randomize is compelling, but, even with randomization or a strong
approximation thereof, other aspects of the research design can impinge on the validity of
researcher recommendations regarding causal effects. These design elements include, as a
minimum, the use of a correctly specified statistical model, including any necessary interactions
among predictors; a sample that sufficiently models the desired population; the ability to truly
manipulate the purported cause through random assignment to treatment or intervention groups
or the quality of efforts to mimic this randomization; fidelity to implementation of the
treatments or interventions employed; measurements of the dependent variables and all
predictors that are valid for the population employed and that yield reliable scores for that
population; information on the presence of missing data, particularly the impact of attrition in
treatment intervention studies; and quality of model fit in terms of absence of extreme or
unusual cases or outliers in the data. Attention to these integral aspects of a research design
enhances the possibility that competing or rival hypotheses for the observed effect can be
refuted and motivates support for prescriptive statements regarding causal effects. It should be
noted, however, that basing study rigor on any single characteristic can itself be flawed; all
studies will have their flaws, the question is, “where and how much” (Amico 2008, p. 5).

When Are Prescriptive Statements Warranted?

A poorly designed research study will yield uninformative results, regardless of the
sophistication of the statistical methods employed by the researchers. Light et al. (1990)
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succinctly state, “you can’t fix by analysis what you bungled by design” (p. viii). In
Table 1, we present our recommendations for interpreting and reporting on logistic
regression results when support for a causal effect is the primary goal of the research. We
emphasize, however, that the use of responsible research design is necessary before
evaluating the reasonableness of prescriptive statements regarding effectiveness of a
treatment or intervention, regardless of the analysis technique employed to address the
primary research question. In fact, much of what we have discussed above cuts across all
inferential statistical techniques. Thus, our first recommendation argues for use and
presentation of solid research design principles to support causal claims. Our remaining
recommendations focus on the specific estimation issues, interpretation of effects, statistical
tests, and design criteria specifically relevant to logistic regression and that can impact the
quality of causal claims based on a particular evaluation or study.

Table 1 Recommendations on research design and logistic regression features for supporting causal claims

Recommendations

Design Research design should be presented in sufficient detail to
allow readers to understand its limitations and strengths
for the phenomena under study.

Specification of link function The validity of the selected link function and its appropriateness
given the distribution of the data and the nature of the response
variable (dichotomous, ordinal, nominal) should be examined
and justified by the researcher.

Inclusion of all Strong theoretical support for all model variables and interactions
relevant predictors scientifically relevant to the outcome must be framed around
existing literature and conceptually tied to previous research in
the area being investigated.

The use of propensity scores or an alternative strategy when
randomization to treatment is not feasible must be detailed
and justified. When propensity scores are employed, the researcher
must justify the inclusion method used (matching, subclassification,
weighting). The impact of potential hidden bias through sensitivity
analyses must also be reviewed and discussed.

Sample size Researchers must provide detailed information on the total sample
size and the distribution of variables within each response level;
the degree of sparseness within their data; and the impact that the
presence of this sparseness has on estimation quality, particularly
for the treatment effect variable, and ensure that the sample size is
sufficient for reliable estimation of the causal effect.

Correct interpretation of Researchers should use the treatment variable odds ratio as the
effects through odds ratios primary estimate of causal effect and justify its strength in terms of
the context of the research study and the phenomena being examined.

Model fit Statistical assessment of model fit must be supplemented by
substantive measures of model quality including measures
of predictive efficiency for classification and pseudo-R> measures
for model comparisons.

Multilevel models for Research designs examining the impact of interventions or treatments
variability of treatment effects across multiple settings should employ multilevel analyses in order
to assess variation in size of treatment effects across settings and,
where the number of settings allows, identify factors associated
with treatment size variability.
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Recommendations
Research design

To contribute to the progression of scientific inquiry, researchers must be prepared to
elaborate on the quality of their research design. It takes great skill and patience to reflect
on an executed design process and consider the many confounders that might weaken a
desired effect. Causal inferences must be coupled with the knowledge that research methods
and subsequent results are reported with integrity and in such a way as to invite responsible
professional scrutiny, which is seen as essential to continued scientific progress (Dannels
2011; NRC 2002). This principle is relevant not only for studies employing logistic
regression but for research in general.

Specification of link function

Logistic regression is not impervious to the effects of model misspecification (Begg and
Lagakos 1992). In particular, recent research has shown that even in unconfounded studies
examining treatment effects based on logistic regression, the logistic model is not robust
under misspecification of the link function (Cangul et al. 2009). Failure to examine the
validity of the link function for one’s data can lead to invalid conclusions regarding a
treatment effect. This is disconcerting, because the logit link is the most commonly applied
link function for binary data. However, it is not the only choice available to researchers. For
example, another popular choice is the probit link, which relates the probability of the
success outcome to the cumulative density function of the unit normal distribution. Another
alternative, often applied when response data are ordinal, is the complementary log—log
(clog—log) link, which relates the probability of response to the extreme value distribution
(Agresti 2007; O’Connell 2006). In comparison, probability under the logit link is related to
the odds of the success event, as shown in Eq. 4. Odds and log-odds are substantively easier
to understand and interpret than values obtained through the probit or clog—log links, which
is often seen as an advantage to use of logistic regression over other link options (Fox
2008). When the response data are dichotomous, probit and logit models perform similarly
for a probability that lies in the range between 0.1 and 0.9 (McCullagh and Nelder 1989),
but for extremely rare (or extremely common) events, researchers should compare results
using alternative link functions.

Inclusion of all relevant predictors

Claims for causal effect, even within a well-executed randomized design, are compromised
by missing covariates, exclusion of substantively meaningful and relevant interactions, and
weak theoretical support for the expected behavior of predictors on the response. These
omissions or misspecifications will affect the quality of the causal effect for the treatment
variable in the logistic regression model. Support for model theory—operationalized by
identification and inclusion of all relevant predictors, potential confounders, or suppressor
variables—must be rigorously established by the researcher in order to justify the
theoretical underpinning of the model relative to the phenomena under investigation and
to clarify how the constellation of variables included in the logistic regression model relate
to the outcome of interest (O’Connell and Amico 2010).

Careful fitting of a statistical model in terms of main effects and interactions helps
researchers to accurately represent the phenomenon under investigation (Harrell et al.
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1996). A model predicting school dropout among adolescents, for example, may include
academic performance factors such as grade point average (GPA) and psychological factors
such as perceived school belonging. Perhaps the odds of school dropout in this model tend
to increase with lower GPA. Like GPA, perhaps lower school belonging is associated with
increased odds of school dropout. An interaction between GPA and school belonging may
reveal that the odds of school dropout tend to increase with lower GPA only among
adolescents who do not feel that they are personally accepted, respected, and included in the
school environment (low school belonging). The interaction may also reveal that, among
adolescents high in perceived school belonging, the odds of school dropout generally tend
to decrease—regardless of GPA. The inclusion of the GPA-by-school belonging interaction
is important here because it more accurately reflects the effect of GPA and school belonging
on school dropout. An intervention to reduce school dropout among adolescents may be
differentially effective for those with high- versus low-levels of school belonging, or high-
versus low-levels of GPA. The processes through which an intervention is predicted to
succeed must be appropriately represented in the design and analysis in order to establish
and support a causal effect of the treatment.

The inclusion of all salient interaction effects is extremely important in analyses designed to
recognize and promote a causal effect. Interactions are used to qualify causation: They contain
information on how specific background conditions or characteristics—and the treatment or
program under study—might work together to modify the probability of occurrence of a
targeted event, such as dropping out of school, or having a low-birth-weight baby. Given the
complexity of educational and social contexts in which the cause for an event is often
embedded, the need for credible estimates of a treatment effect requires careful consideration
of all relevant interactions among covariates as well as between covariates and the treatment
variable. Interactions, however, add complexity to the model, and the capacity to reliably test
and interpret these interactions is affected by sample size, which we discuss next.

Sample size

In logistic regression, sample size is a tricky issue. Researchers generally think of sample
size as the number of elements or cases in the overall study or analysis, but, in logistic
regression, the sample size per outcome (i.e., the number of events and the number of non-
events) plays an important role in the validity of causal inferences, as does sample size per
covariate pattern. Additionally, odds ratios tend to vary based on sample size and data
stratification, and smaller sample sizes result in systematic bias in LR estimates such that
odds ratios are falsely inflated (Nemes et al. 2009).

Estimation in LR is through maximum likelihood, a large-sample methodology. Several
interrelated factors can impact on optimal sample size for reliable estimation of a causal
effect. These include the treatment variable effect size (odds ratio) deemed substantively
important for support of a causal claim; the base rate of success within the population of
interest, sometimes referred to as the rareness of the event; sample size differences between
the two response categories; the types of variables included in the model (i.e., continuous or
categorical); the sample size for each replicated covariate pattern, which is an indication of
sparseness within the data; and the expected number of successes per covariate pattern
(O’Connell and Amico 2010). A covariate pattern refers to specific combinations of levels
of the predictor variables. For example, if gender (two levels) and GPA (operationalized as
five levels) are included in a model as predictors of school dropout, there are at least ten
possible covariate patterns based on these two variables alone: males and then females
coupled with each of the five GPA levels. The individual cells defined by these
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combinations can differ dramatically in size and become sparser as additional predictors are
added. In particular, data become thin when continuous predictors are present because
similar or shared patterns of predictor variable values are not likely to exist, making reliable
tests of variable effects and model goodness-of-fit problematic to establish. Since
interactions represent an attempt to capture differential effects due to combinations of
levels of the variables they consist of (possibly including the treatment variable), this same
limitation in terms of sample size becomes even more important. Hosmer and Lemeshow
(2000) recommend that the sample size for the smallest response group be 10(p+1), at the
very least; others recommend at least ten events per variable (Steyerberg et al. 2001;
Peduzzi et al. 1996). These recommendations, however, should be adjusted for sparse
covariate patterns or interactions within the data.

Sparseness is a distinctive and problematic result that frequently occurs during logistic
regression modeling and negatively affects the estimation of standard error for a predictor.
Data sparseness can lead to non-convergence of the maximum likelihood estimation
process, and the problem is exacerbated with smaller sample sizes. In the absence of
sufficient preliminary descriptive analyses, sparseness is generally detected by the presence
of severely inflated odds ratios, stemming from severely underestimated standard errors for
a predictor.

Related to the presence of sparse data are the conditions of separation (sometimes called
quasi-separation) and complete-separation. Separation occurs when there are near or perfect
predictions for particular covariate patterns and tends to occur within smaller samples or
when the event of interest is rare. Interestingly, separation is a condition that does not
typically occur in the presence of continuous predictors, but the risk does increase as the
number of predictors becomes closer to the sample size. Perfect predictors are rarely
informative in a statistical model because they function simply as a duplicate of the
response variable on the predictor side, and their perfectly collinear association with the
outcome will mask the relationship between any of the other predictors and the response.
Thus, researchers must be guarded against variables that may contribute to quasi- or
complete-separation, especially within small samples.

Recommendations for minimum sample sizes for logistic regression exist in the
literature, and some are based on sample size needed in the smallest response group relative
to the number of predictors (e.g., Aldrich and Nelson 1984; Hosmer and Lemeshow 2000;
Peduzzi et al. 1996). However, we believe that decisions on sample size in a treatment
effectiveness study utilizing logistic regression should not rest on established “rules of
thumb.” In order to ensure that an estimated sample size is sufficient for detection of a
substantively meaningful effect size (odds ratio), researchers need to balance expectations
regarding the distribution of covariates across response groups, the degree of sparseness
anticipated within their data, and the impact the presence of this sparseness has on
estimation quality, particularly for the treatment effect variable. Power analysis programs
likely will not capture these nuances of logistic regression modeling; consequently, power
calculations for minimal sample size should be adjusted upwards. However, this remains an
area for continued research.

Correct interpretation of effects through odds ratios
When predictors are categorical or dichotomous, odds ratios and their respective confidence
intervals are the most widely used measures of effect in LR, and they can also be used for

interpretation of effects for continuous predictors. Some alternatives exist for continuous
predictors, such as full or partially standardized logit regression coefficients, but their use is
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controversial, and agreement is lacking among researchers as to their utility and validity
(Menard 2004a, b). Menard (2000) as well as Hosmer and Lemeshow (2000) emphasize
effect interpretation on clinical and theoretical importance of predictors rather than relative to
other model predictors.

As a rule of thumb, Haddock et al. (1998) state that odds ratios greater than 3.00 (or less
than 0.33) indicate strong relationships. However, effect sizes are most meaningful when
discussed in context; it is rarely appropriate to discuss effect sizes in terms of strict,
decontextualized cutoff criteria. Researchers should base their interpretation of the strength
of the odds ratios on the literature about the phenomenon of interest.

An unfortunate common practice in reports of substantive research using LR is to
interpret the odds ratio as a relative risk. Here, we present an example interpreting the
odds ratio for a causal effect to clarify the similarities and distinctions between odds
ratio and relative risk. We refer readers to Menard (2002) and O’Connell (2006) for
interpretation of ORs for continuous predictors. Assume we have data from a hypothesized
well-designed quasi-experimental study to ascertain the causal effect of an intervention
designed to prevent school dropout. Propensity scores were used to adjust for selection bias, and
strong design principles were used throughout the study to eliminate plausible alternatives for
the findings and strengthen support for causal inferences. Logistic regression was performed,
and after controlling for the effects of relevant covariates, the estimated probability of
dropping out for students in the treatment group was 7; = .17; for the control group, this was
7, = .21. Thus, the odds of dropping out for the treatment group is .17/(1 — .17) = .205;
the odds of dropping out for the control group is .21/(1 —.21) =.266. The OR is
odds(treatment) /odds(control) = .205/.266 = .77. The correct interpretation: The odds of
dropping out for a student in the treatment group is 0.77 times the odds for a similar
student in the control group. While this finding indeed states that dropping out is less
likely to occur within the treated group, it would be incorrect to interpret this OR as a
relative risk, i.e., claim that treated students are 0.77 times as likely to drop out relative to
students in the control group. The difference seems subtle, and the confusion stems from
a reliance on treating odds ratios as if they represent relative risk (Davies et al. 1998;
Hosmer and Lemeshow 2000).

For a given level of a predictor (e.g., the treatment group in an intervention study), the “risk”
is the proportion of cases for which the event occurred. Relative risk (RR) is a ratio of risks
between groups, such as treatment versus control. For our hypothetical example above,
RR = .17/.21 = .81. Both the OR and the RR are in agreement in that they are both less than
1.0, and thus, dropping out is less likely among the treated. Specifically, the RR shows that the
risk of dropping out for a student in the treatment group is 0.81 times the risk for a similar
student in the control group. Interpretations of the OR and the RR generally should support each
other, but they are not the same, and the OR tends to overestimate the RR, which we have seen
here (i.e., 0.77 is stronger (farther from 1.0) than 0.81). An OR below 1.0 is often challenging
to interpret, but, if our hypothetical study was modeling the probability of retention (rather
than dropping out), the same interpretations would obtain. For example, 7; = 1 — .17 = .83,
and for the control group, 7, = 1 — .21 = .79. Thus, the odds of staying in school for the
treatment group is 4.88, and the odds of staying in school for the control group is 3.76. The
OR is odds(treatment)/odds(control) = 4.88/3.76 = 1.30, which is also the inverse of
the original OR, 1/0.77. For a student in the intervention group, the odds of staying in school
is 1.30 times the odds for a similar student in the control group. Relative risk for modeling the
event of staying in school is 0.83/0.79=1.05. Again, the OR overestimates RR.

Only for rare events with a base rate in the population of 0.10 or less would the OR and
RR coincide. Zhang and Yu (1998) provide a correction method that compensates for this
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overestimation and that should be applied if the researcher chooses to use language
reflective of a relative risk interpretation of the OR.

Overall, researchers have a responsibility to correctly interpret their statistical results.
Statistical tests of the treatment effect in LR are based on the odds ratio, not relative risk.
Misleading interpretations should call to question the validity of reported findings, even in a
well-executed research study! We urge researchers to interpret the OR as a true odds ratio
rather than a comparison of risks, although determinations of substantive importance would
likely benefit from reporting of causal effects in terms of the OR, its confidence interval,
and the RR.

Statistical tests and model fit

Valid interpretation of a causal effect hinges on the establishment of a model for the data
that truly captures the scientifically relevant relationships between the predictors—
including the treatment variable—and the outcome. To build support for a given logistic
regression model, two kinds of statistical tests are relevant. The first, an improvement-in-fit
test, is a Chi-square likelihood ratio test that compares the likelihood of a “constrained”
model to the likelihood of a model without the constraints. A statistically significant result
suggests improvement in fit relative to the reduced model. The likelihood ratio test can be
used to assess the contribution of a single predictor or a block of predictors. Other types of
tests for examining contribution of a single predictor within a multivariable logistic
regression model include the Wald and score tests. However, the likelihood ratio test is
considered the most reliable test, particularly for small samples, samples with sparse data,
or models containing continuous covariates.

The second type of test is goodness-of-fit, which compares the fit of the specified model
to a saturated or perfect model that exactly reproduces the original data. With continuous
covariates present in a data set, or the presence of sparse cells, or when the number of
distinct patterns of covariate combinations is large, the likelihood ratio test to compare the
fitted to the saturated model will not follow a Chi-square distribution (Hosmer and
Lemeshow 2000). Approximations to the goodness-of-fit test are then used; the most
familiar one being the Hosmer—Lemshow test which is based on categorization of the
estimated probabilities into deciles of risk. As with all goodness-of-fit tests, a large p value
from this test is desired to support quality of fit between observed and predicted values.

Neither the improvement-in-fit nor the goodness-of-fit tests are confirmatory but must be
considered under the assumption that the model is correctly specified. A non-statistically
significant result for goodness-of-fit is not enough to claim that the fitted model is the
“best” model for the data; likewise, the addition of another predictor may be found to
“improve” model fit even more. Thus, additional strategies should be put in place to build
confidence for the final model that the researcher wishes to promote as causally sound. In
addition to a theoretically appropriate model (see “Research design”, “Specification of link
function”, and “Inclusion of all relevant predictors”), these include review of Akaike’s or
Schwarz’s information criteria and calculation of pseudo-R* or adjusted pseudo-R? statistics
(Hosmer et al. 1997; Liao and McGee 2003; Menard 2000; Tjur 2009). However,
consensus has not been reached among statisticians as to which of the many different forms
of these coefficients of determination are most reasonable for logistic regression models.

An additional assessment of model quality for logistic regression can be gauged through
accuracy of classification, or predictive efficiency, which is based on the probabilities
estimated from the model. Typically, if probability for a case is greater than or equal to
0.50, that case is classified into the “success” event. Cutoffs can be established within most
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statistical programs to adjust the classification criteria. As is widely known, reporting percent
correct is the least effective way to describe quality of classification and should be avoided in
favor of measures that adjust for chance or base rate. Stronger measures of classification
accuracy exist and have been reviewed elsewhere (Long 1997; Menard 2000, 2002; O’Connell
2006). It is also possible that predictive efficiency can be poor for a given model, while
showing adequate improvement-of-fit and goodness-of-fit. Thus, researchers building support
for causal claims should supplement statistical tests with additional criteria for model quality.

Multilevel models for variability of treatment effects

Replication of treatment effects and generalization of research findings are critical elements
in building and maintaining support for the existence of a causal effect (NRC 2002).
Replication of effect is the “gold-standard” for a causal claim; this is the essence of efforts
to identify what works in educational and psychological research, which interventions or
programs are worthy of state or federal support on a wide scale for dissemination and which
interventions can reliably move from established efficacy to effectiveness in the field.
Multilevel designs and analyses can contribute to the science of causal effects through their
ability to examine how differences in contexts or settings of an intervention relate to
variability in an intervention or treatments’ effectiveness (Bingenheimer and Raudenbush
2004; Murray 1998; Raudenbush and Bryk 2002).

The logic of causal inference is the focus of almost all methodological research (Oakes
2004), despite, or perhaps because of, the challenges that exist in supporting causal claims.
Multilevel modeling has many advantages, but none that outweigh the importance of
research design when building a case for legitimacy of a causal inference. We have
discussed the challenges and benefits of matching in terms of balancing covariates between
intervention and control groups in individual-level quasi- and non-experimental designs.
For multilevel designs, creating plausible matches for clusters such as classrooms, schools,
neighborhoods, or clinics becomes more difficult as the cluster itself becomes more
complex. Matching typically requires agreement or consensus as to which covariates are the
most relevant matching factors, and the collection of potential covariates may be huge
(Donner and Klar 2000). Propensity score matching methods can be applied, but the
adequacy of selection of variables for inclusion in multilevel propensity methods is further
complicated by relationships between variables at either level (Diez Roux 2004). Thus,
despite the advantages of multilevel modeling, researchers need to be very clear on the
limitations of their multilevel designs and wary of drawing causal inferences when possible
alternative explanations for the effects of interest still remain.

Multilevel logistic models for dichotomous and ordinal data are fairly straightforward
extensions of their individual-level counterparts (Gelman and Hill 2007; Raudenbush and
Bryk 2002; O’Connell et al. 2008; Snijders and Bosker 1999). However, estimation of
multilevel models for non-normal response data, such as dichotomies, ordinal progressions,
or counts, is an active and ongoing area of research, and in particular, the size of variance
components can be affected by the estimation procedure utilized. Similarly, residual and
model diagnostics for multilevel logistic models are not, as of yet, well conceptualized.
Thus, the application of these models to dichotomous event data for the purpose of causal
inference must be entered into cautiously. The problems that were noted for individual-level
designs regarding sparseness of the data, impact of interactions, and covariate pattern cell
size become more acute in the multilevel setting for logistic models.

When a treatment or intervention has been identified and determined as causally
responsible for an event (i.e., my school dropout program reduces the incidence of dropout
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among adolescents), the external validity of that claim can be bolstered through the
expectation that this result will replicate in different settings, schools, or other relevant
contexts. Multilevel designs can lend credibility to a causal claim when replication of the
intended effect is obtained across different settings. Yet, given the estimation problems for
multilevel logistic models noted above, researchers are cautioned against drawing causal
inferences based on presence or absence of context-level treatment effect variability (Diez Roux
2004). In fact, replication of an effect may occur when the model is well-specified for the
data, but the causal theory is not well represented by the statistical model. Thus, replication of
an intervention effect is supportive of causal inference but is not sufficient, and this limitation
is true regardless of the sophistication of the particular statistical model employed.

Long-term effects of treatments, policies, or programs have also been examined through
multilevel models (e.g., Hser et al. 2001), as well as in contexts where randomization was
precluded for ethical or practical reasons and where selection bias could be addressed
through design and application of propensity scores (Hong and Raudenbush 2005). Thus,
multilevel designs hold great promise, particularly for replication of effect, but clear
understanding of the limits of these models is warranted.

Summary

We have outlined here seven recommendations for responsible reporting of results when
causal effects are assessed through application of logistic regression. As with any
research, the quality of the research design used in investigations to assess the existence
and measure of causal effects is the single most important criteria in establishing
credibility of a research finding. Assuming a solid research design, the consequences of
failing to follow the recommendations presented here are variable, but the underlying
result of potentially overstating the existence of a causal effect remains the same.
Invalid claims about the presence and meaningfulness of a causal effect can set the
field back more than if the same study had honestly identified its limitations and
considered strategies for building on them.

In order to enhance the validity of research findings based on application of logistic
regression models, we urge researchers to pay particular attention to the specific analysis
issues we have outlined above and to do so in concert with those of design, thus building
stronger support for causal claims. In summary, we hope these recommendations will
encourage researchers to consider the consequences as well as the benefits of making
prescriptive statements when interpreting statistical results from logistic regression and to
continue to work towards a design of research that warrants responsible causal claims. To
enhance the plausibility of these claims, multiple design and analysis features must be in
place in order to move the field from what may be an important conditional association
between cause and event to a reliable and credible causal inference.
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