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Cognitive Load Theory and Complex Learning:
Recent Developments and Future Directions

Jeroen J. G. van Merriënboer1,3 and John Sweller2

Traditionally, Cognitive Load Theory (CLT) has focused on instructional
methods to decrease extraneous cognitive load so that available cognitive re-
sources can be fully devoted to learning. This article strengthens the cognitive
base of CLT by linking cognitive processes to the processes used by biologi-
cal evolution. The article discusses recent developments in CLT related to the
current view in instructional design that real-life tasks should be the driving
force for complex learning. First, the complexity, or intrinsic cognitive load,
of such tasks is often high so that new methods are needed to manage cogni-
tive load. Second, complex learning is a lengthy process requiring learners’
motivational states and levels of expertise development to be taken into ac-
count. Third, this perspective requires more advanced methods to measure
expertise and cognitive load so that instruction can be flexibly adapted to in-
dividual learners’ needs. Experimental studies are reviewed to illustrate these
recent developments. Guidelines for future research are provided.

KEY WORDS: cognitive architecture; biological evolution; complex learning; cognitive load;
instructional design; expertise; adaptive instruction.

Cognitive Load Theory (CLT) uses interactions between information
structures and knowledge of human cognition to determine instructional
design. The theory’s initial development in the early 1980s provided instruc-
tion that differed from the prevailing orthodoxies of the time. An empha-
sis on instruction designed to reduce unnecessary or extraneous cognitive

1Open University of the Netherlands, Heerlen, The Netherlands.
2University of New South Wales, New South Wales, Australia.
3Correspondence should be addressed to Jeroen J. G. van Merriënboer, Open University
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load resulted in, for example, a recommendation to provide learners with
many worked examples rather than problems to solve. By considering re-
lations between working memory and long-term memory, it was possible
to structure both worked examples and related instruction to further re-
duce cognitive load. A strict insistence that all recommendations be directly
tested for effectiveness using controlled experimental designs also provided
a point of departure from the prevailing orthodoxies which tended to rec-
ommend instruction based on process models alone without testing com-
parative instructional effectiveness.

The theory has developed substantially since the 1980s. Having estab-
lished a variety of basic instructional designs, an increasing number of cog-
nitive load theorists from around the world considered how those instruc-
tional designs interacted, first, with the characteristics of the information
and tasks that learners were dealing with and, second, with the character-
istics of the learners themselves. Those interactions have generated an en-
tirely new set of instructional guidelines. In turn, the theory and its design
guidelines were, for the first time, able to throw light on basic cognitive pro-
cesses and their origins rather than merely using known cognitive processes
to generate instructional designs.

The purpose of this article is to discuss and place into context some of
the newer methods of instruction developed over the past few years. Specif-
ically, we consider how CLT has dealt with variations in informational com-
plexity and in learner knowledge levels.

BASIC COGNITIVE LOAD THEORY

In a 1998 article in Educational Psychology Review, Sweller, van
Merriënboer, and Paas described CLT at that time, discussed the main
effects predicted by the theory, and reviewed empirical studies providing
support for those effects. CLT assumes a limited working memory that
stores about seven elements but operates on just two to four elements.
It is able to deal with information for no more than a few seconds with
almost all information lost after about 20 s unless it is refreshed by re-
hearsal. The theory emphasizes that these working memory capacity and
duration limitations only apply to novel information obtained through sen-
sory memory. Working memory has no known limitations when dealing
with information retrieved from long-term memory (Ericsson and Kintsch,
1995; Sweller, 2003, 2004). In effect, long-term memory alters the charac-
teristics of working memory. Long-term memory holds cognitive schemata
that vary in their degree of complexity and automation. Human expertise
comes from knowledge stored in these schemata, not from an ability to
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engage in reasoning with many elements that have not been organized in
long-term memory. Human working memory simply is not able to process
many elements. Expertise develops as learners mindfully combine simple
ideas into more complex ones. A chess expert, for example, combines sim-
ple ideas about the best positioning of individual pieces to develop complex
schemata of how several chess pieces should be positioned concomitantly.
These schemata organize and store knowledge, but also heavily reduce
working memory load because even a highly complex schema can be dealt
with as one element in working memory.

In this sense, schemata can act as a central executive, organizing in-
formation or knowledge that needs to be processed in working memory. It
is under these circumstances that there are no limits to working memory.
For instance, an expert chess player recognizes a particular mid-game po-
sition at a single glance. In contrast, when dealing with novel information
for which no schema-based central executive is available, working memory
has limitations. Thus, for a novice chess player, a particular mid-game po-
sition may be little more then an unstructured set of single chess pieces. If
knowledge is completely unavailable to organize information, it must be or-
ganized randomly and the organization then tested for effectiveness. Work-
ing memory must inevitably be limited in capacity when dealing with novel,
unorganized information because as the number of elements that needs to
be organized increases linearly, the number of possible combinations in-
creases exponentially. Random testing of the effectiveness of possible com-
binations based on many elements becomes effectively impossible due to
a combinatorial explosion. This problem of exponential growth can only
be accommodated by severely limiting the number of information units
that can be processed simultaneously. That problem does not arise when
dealing with information from long-term memory that is already organized
(Sweller, 2003, 2004).

Constructed schemata may become automated if they are repeat-
edly applied. As is the case for schema construction, automation can
free working memory capacity for other activities because an automated
schema, acting as a central executive, directly steers behavior without the
need to be processed in working memory. Because automation requires
a great deal of practice, automated schemata only develop for those as-
pects of performance that are consistent across problem situations, such
as routines for dealing with standard game positions in chess, for operat-
ing machines, and for using software applications. From an instructional
design perspective, well-designed instruction should not only encourage
schema construction but also schema automation for those aspects of a
task that are consistent across problems (van Merriënboer et al., 2002a,
2003).
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Novel information must be processed in working memory in order
to construct schemata in long-term memory. The ease with which infor-
mation may be processed in working memory is a focus of CLT. Work-
ing memory load may be affected either by the intrinsic nature of the
learning tasks themselves (intrinsic cognitive load) or by the manner in
which the tasks are presented (extraneous cognitive load). According to
the 1998 version of CLT, intrinsic cognitive load cannot be altered by in-
structional interventions because it is determined by the interaction be-
tween the nature of the materials being learned and the expertise of the
learner. It depends on the number of elements that must be processed si-
multaneously in working memory, and the number of elements that must
be processed simultaneously, in turn, depends on the extent of element in-
teractivity of the materials or tasks that must be learned. Materials with
high element interactivity are difficult to understand—and the only way
to foster understanding is to develop cognitive schemata that incorpo-
rate the interacting elements. It follows that a large number of interact-
ing elements for one person might be a single element for another more
experienced person who has a schema that incorporates the elements.
Thus, element interactivity can be determined only by counting the num-
ber of interacting elements that people deal with at a particular level of
expertise.

Extraneous cognitive load, in contrast, is load that is not necessary
for learning (i.e., schema construction and automation) and that can be
altered by instructional interventions. Extraneous cognitive load may be
imposed, for example, by using weak problem solving methods such as
working backward from a goal using means-ends-analysis, integrating in-
formation sources that are distributed in place or time, or searching for
information that is needed to complete a learning task. Overloading one
of the processors that constitute working memory also may increase it. Vi-
sual and auditory working memory are partially independent. If multiple
sources of information that are required for understanding are all presented
in visual form (e.g., a written text and a diagram), they are more likely to
overload the visual processor than if the written material is presented in
spoken form, thus enabling some of the cognitive load to be shifted to the
auditory processor (Mousavi et al., 1995).

Extraneous cognitive load and intrinsic cognitive load are additive.
Whether extraneous cognitive load presents students with a problem
depends, in part, on the intrinsic load: If intrinsic load is high, extrane-
ous cognitive load must be lowered; if intrinsic load is low, a high extra-
neous cognitive load due to an inadequate instructional design may not be
harmful because the total cognitive load is within working memory limits.
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Thus, carefully considered instructional design is particularly important for
teaching difficult subject matter. In 1998, CLT had been used almost exclu-
sively to study instruction intended to decrease extraneous cognitive load.
Some of the major effects that yield better schema construction and higher
transfer performance and that may be attributed to a decrease in extrane-
ous cognitive load are briefly summarized in Table I.

Table I. Some Effects Studied by Cognitive Load Theory and Why They Reduce Extraneous
Cognitive Loada

Effect Description Extraneous load

Goal-free effect Replace conventional problems
with goal-free problems that
provide learners with an
a-specific goal

Reduces extraneous cognitive
load caused by relating a
current problem state to a
goal state and attempting to
reduce differences between
them; focus learner’s attention
on problem states and
available operators

Worked example
effect

Replace conventional problems
with worked examples that
must be carefully studied

Reduces extraneous cognitive
load caused by weak-method
problem solving; focus
learner’s attention on problem
states and useful solution
steps

Completion
problem effect

Replace conventional problems
with completion problems,
providing a partial solution
that must be completed by the
learners

Reduces extraneous cognitive
load because giving part of the
solution reduces the size of
the problem space; focus
attention on problem states
and useful solution steps

Split attention
effect

Replace multiple sources of
information (frequently
pictures and accompanying
text) with a single, integrated
source of information

Reduces extraneous cognitive
load because there is no need
to mentally integrate the
information sources

Modality effect Replace a written explanatory
text and another source of
visual information such as a
diagram (unimodal) with a
spoken explanatory text and a
visual source of information
(multimodal)

Reduces extraneous cognitive
load because the multimodal
presentation uses both the
visual and auditory processor
of working memory

Redundancy
effect

Replace multiple sources of
information that are
self-contained (i.e., they can
be understood on their own)
with one source of
information

Reduces extraneous cognitive
load caused by unnecessarily
processing redundant
information

aReported by Sweller et al., 1998.
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Over the last 5 years, CLT followed two distinct developmental routes.
First, the theory and instructional findings were used to develop our knowl-
edge of human cognitive architecture. As a result, we better understand
why our cognitive architecture followed its particular evolutionary route.
This work was intended to strengthen the cognitive foundations of CLT
rather than to directly address instructional issues.

The second route continued the traditional task of CLT: namely, the
generation of new instructional effects (see Kirschner, 2002; Paas et al.,
2003a, 2004). In contrast to most previous work within the CLT framework,
this work examined instructional methods that affect intrinsic and so-called
germane cognitive load rather than extraneous load.

Three major instructional developments are discussed in this article.
First, an increasing number of instructional theories view rich, real-life
learning tasks as a basis for complex learning (Merrill, 2002). The cogni-
tive load imposed by such tasks is often excessive for novice learners and
may seriously hamper learning. Conventional methods to decrease extra-
neous cognitive load (see Table I) might not lower the total load imposed
by rich learning tasks to an acceptable level and thus not leave enough cog-
nitive resources for schema construction and automation. Therefore, new
instructional methods are beginning to be studied that affect intrinsic cogni-
tive load and/or decrease extraneous cognitive load by providing problem-
solving support. Second, recent studies place less emphasis on short-term
laboratory experiments and focus more on lengthy training programs. Em-
phasizing lengthy training programs increases the importance of students’
motivation. Effective instructional methods encourage learners to invest
free processing resources to schema construction and automation, evoking
germane cognitive load. In addition, lengthier training programs reveal the
importance of the expertise reversal effect: instructional methods that work
well for novice learners may have neutral or even negative effects when
expertise increases. This effect necessitates the formulation of instructional
strategies that make the application of particular instructional methods de-
pendent on learners’ expertise. The third development is closely related to
the expertise reversal effect. It is difficult or even impossible for preplanned
instruction to take the expertise of individual learners fully into account.
The aim of this line of research is to develop new methods for the assess-
ment of expertise based both on performance and cognitive load and to use
assessment to develop adaptive eLearning applications. By continuously
adapting instruction to levels of expertise, the difficult task of predicting
subsequent levels of expertise prior to the commencement of an instruc-
tional sequence is obviated. Following a discussion of the origins of human
cognitive architecture, the remainder of this article addresses these three
instructional issues.
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ORIGINS OF HUMAN COGNITIVE ARCHITECTURE

Evolution by natural selection is an information processing system that
solves problems. The problem faced by a genetic information processing
system is how to survive in an inevitably variable environment. If the cur-
rently “known” information is sufficient for survival, the system does not
need to alter. If it is not sufficient for survival, it must alter satisfactorily
or reach a dead-end. The system has three critical characteristics. First, it
includes a massive store of information in the form of a genome that per-
mits some individuals and species to survive in their variable environments.
In other words, all problems faced by the genome to that point have been
solved because the genome includes information relevant to the direct solu-
tion of those problems. Second, all changes to a genome can be traced back
to random mutations characterized as a generate-and-test problem-solving
exercise. Any mutation is tested for effectiveness with effective mutations
retained and ineffective ones jettisoned. A successful mutation can solve
new problems without losing the ability to solve critical old problems. Third,
species’ genomes alter slowly because a rapid, large, random alteration is
unlikely to be adaptive. A large, rapid alteration in a genome is likely to
leave it unable to solve problems that previously could be solved readily.
A species’ genome is unlikely to alter if the species can handle readily the
variations in its environment.

In effect, a genetic system can be seen as a creative, information-
processing system designed to decide which genetic modifications are us-
able and which are not. This system has driven the evolution of human
cognitive architecture. In this section, it is argued that the information-
processing properties of human cognition have evolved to mimic the
information-processing properties of biological evolution (for a complete
discussion, see Sweller, 2003, 2004). There may be only one natural
information-processing system on earth and that system is found in both
the procedures of biological evolution and in some of the results of biologi-
cal evolution—sentient beings.

The analogy between biological evolution and human cognition is
readily established. Just as an evolutionary system requires an enormous
store of information to function, so does the human cognitive system. The
huge store of schematically organized information in human long-term
memory is central to all human cognitive activity. Virtually everything hu-
mans see, hear, or even think about is critically dependent on information
stored in long-term memory. We suggest that information plays the same
role in human cognition as genetic information plays in biological evolu-
tion. Both guide the actions of their respective systems and both act as
a central executive determining what and when actions should be taken.
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Furthermore, there is no other logically possible central executive. Any
“hard-wired” central executive inevitably leads to an infinite regression of
central executives (Sweller, 2003) known as the “Droste effect.”4

As an example, consider the schema for the complex set of squiggles
needed to read the word “cat.” We have a schema for these squiggles be-
cause they can take an infinite variety of forms (e.g., when hand-written)
that we process in exactly the same way. Furthermore, despite the com-
plexity of the squiggles, they can be treated as one single element in work-
ing memory. The schema is automated because we no longer have to use
working memory to process the geometric shapes to extract meaning from
them. When we were learning to read, each of the shapes were processed
individually and combined consciously to extract the appropriate meaning.
This resulted in a heavy working memory load. Because the schema was
eventually automated, that is no longer necessary, thereby reducing cogni-
tive load. Furthermore, the schema for the squiggles “cat” includes its own
executive functions that tell us what to do and how to do it. It tells us how
to interpret the squiggles (how to “read”’ them), how they connect to other
similar squiggles, and what they refer to. The schema for “cat” tells us how
to react to that particular animal. Until the schema for “cat” is automated,
all this activity occurs in working memory. In other words, the executive
functions associated with the word “cat” must be learned. No other execu-
tive functions are available or, indeed, needed.

Just as the information stored in a genome may not be sufficient to
guide all needed activity, the information stored in long-term memory also
proves insufficient under many circumstances. Mechanisms to alter the in-
formation store are needed. Again, the mechanisms used in evolution by
natural selection and in human cognition are analogous. Evolution uses a
variety of mechanisms to alter a genome but all genetic variation between
individuals of a species and between species can be traced back to random
mutation. Precisely the same mechanisms are used by the human cogni-
tive system. Humans alter the contents of long-term memory by learning.
There are two ways in which new information is acquired. We can obtain
information directly from another human by instruction or we can gener-
ate new information by a process of problem solving. At some point, if
knowledge is unavailable, all problem solving requires random generation
of problem-solving moves followed by tests of effectiveness (Sweller, 2003).
No other mechanism is available and this mechanism is identical to the one
used in evolution by natural selection. Furthermore, even when knowledge
is acquired by instruction from other humans, at some point that knowledge

4The Dutch chocolate maker Droste is famous for the visual effect on its boxes of cocoa. The
image on the box contains itself on a smaller scale, which contains itself on a smaller scale,
and so on.
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was generated by a random generation followed by an effectiveness-testing
mechanism. In other words, the initial generation of usable information
by humans is closely analogous to the initial generation of information by
biological evolution.

The last point of analogy concerns the speed with which large, natural
stores of information are altered. A large store of information cannot be
rapidly altered by random procedures without losing its functionality. Ac-
cordingly, successful genomes are stable and so, for example, humans share
almost all of their genes with apes despite last having a common ancestor
millions of years ago. Equivalently, human long-term memory does not al-
ter rapidly. Human cognition has a specific structure to ensure that rapid
alterations to long-term memory do not occur: A limited working mem-
ory. Working memory can be used to test the effectiveness of only a small
number of combinations of elements. For example, using the logic of per-
mutations, three elements can be combined in six different ways (3! = 6)
whereas 10 elements can be combined in over 3.5 million different ways
(10! = 3, 628, 800). A working memory that could deal with more than a
few elements of information would not be functional. A working mem-
ory that was used to effect large, random alterations to long-term memory
would be even less functional.

The treatment of human cognitive architecture as an example of a nat-
ural information-processing system is not intended to have direct instruc-
tional implications. It is intended to strengthen the cognitive architecture
assumed by CLT and that architecture, in turn, is intended to have direct in-
structional implications. If human cognitive architecture includes a massive
long-term memory holding uncountable schemas and if working memory
must be limited to ensure the important information in long-term memory
is not corrupted by random processes, then the aim of instruction should
be to accumulate rapidly systematized, coherent knowledge in long-term
memory. Aiding the accumulation of usable rather than random knowledge
in long-term memory means that information need not be freely discov-
ered by learners but rather be conveyed in a manner that reduces unneces-
sary working memory load. CLT is entirely concerned with these aims. The
remainder of this article considers newly developed instructional methods
that deal with changes from (1) simple to complex learning, (2) short ex-
periments to lengthy training programs, and (3) preplanned instruction to
adaptive eLearning.

FROM SIMPLE TO COMPLEX LEARNING

Complex learning aims at the integration of knowledge, skills, and atti-
tudes; the coordination of qualitatively different constituent skills; and the
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transfer of what is learned to daily life or work settings (van Merriënboer
et al., 2003). Current instructional theories are expanding to incorporate au-
thentic learning tasks that are based on real-life tasks as the driving force
for such complex learning (for a discussion of theories, see Merrill, 2002).
Whereas CLT has been able to generate effective instructional methods for
tasks in relatively well-structured procedural and conceptual domains, its
applications to the field of complex learning are just beginning. Because au-
thentic learning tasks are often characterized by high element interactivity,
there is a need to develop new instructional methods that allow the designer
to optimize cognitive load for such highly complex tasks.

Knowledge Progression and Intrinsic Cognitive Load

The most important characteristic of complex learning is that students
must learn to deal with materials incorporating an enormous number of
interacting elements. In conceptual domains, there are many interacting
knowledge structures that must be processed simultaneously in working
memory in order to be understood. In skill domains, there are many inter-
acting constituent skills that must be coordinated in working memory for a
coherent performance. Earlier studies showed that instruction designed to
decrease extraneous cognitive load has negligible effects on learning if ele-
ment interactivity is low; however, such instruction positively affects learn-
ing and transfer performance for complex materials with a high level of
element interactivity (Carlson et al., 2003; Marcus et al., 1996; Sweller and
Chandler, 1994; Tindall-Ford et al., 1997). The explanation is that for mate-
rials with low element interactivity, there is no need to decrease extraneous
cognitive load because there are sufficient cognitive resources available for
learning. For materials with high element interactivity, the decrease of ex-
traneous cognitive load is necessary to free up processing resources that can
be devoted subsequently to learning. The major question addressed in this
section is what can be done if even after the removal of all sources of ex-
traneous cognitive load, the element interactivity of the material is still too
high to allow learning?

Earlier research indicated that the organization of instructional texts
affects the allocation of cognitive capacity (e.g., Britton and Glynn, 1982).
Pollock et al. (2002) were the first to study the effects of sequencing in
the context of CLT and to test techniques for reducing intrinsic cognitive
load. They presented learners with a complex sequence of instruction in
two parts. In the first part, cognitive load was reduced by not presenting
all information at once. Instead, isolated elements that could be processed
serially were presented. In the second part, however, all information was
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presented at once, including the interactions among the elements. Thus,
the elements had to be processed simultaneously in working memory. As
hypothesized, although understanding was lower in the first phase of in-
struction when elements were presented in isolation, this deficiency was
compensated in the second phase when the full set of interacting elements
was presented. Thus, presenting the full set of interacting elements in both
phases resulted in less understanding than presenting isolated elements in
the first phase followed by the full set in the second phase. In general, the
progressive method is an appropriate technique to use for novice learners
who are confronted with highly complex materials but who lack the rudi-
mentary schemata for dealing with those materials.

This study (Pollock et al., 2002) shows that it is possible and sometimes
beneficial to alter intrinsic cognitive load by artificially reducing element in-
teractivity (see also Bannert, 2002). At first sight, reducing intrinsic cogni-
tive load seems to contradict the original suggestion that intrinsic cognitive
load cannot be altered by instruction (Sweller et al., 1998). This suggestion
is still valid in the sense that by artificially reducing intrinsic cognitive load,
understanding is also reduced. For learners to fully understand the material
they must ultimately be presented with the materials in their full complex-
ity, with all element interactivity that is typical of the domain. Understand-
ing complex information may not be necessary or even possible in the early
stages of learning. The isolated-followed-by-interacting-elements approach
suggests that when dealing with complex information, the intrinsic cogni-
tive load of the material should be reduced by eliminating the interactions
among the information elements. Those interactions impose a high intrinsic
load because they require that elements be processed simultaneously. If the
interactivity among the elements is reduced, then discrete information units
are created that can be processed serially—substantially reducing working-
memory load. Learners may need to be presented with the materials in their
full complexity only in a later learning phase.

Although there is clear evidence that sequencing instruction from iso-
lated elements to interacting elements is beneficial for learning, the level at
which interacting elements should be broken down into isolated elements
is still unclear. Information elements themselves are little more than sets of
interactions. Pollock et al. (2002) did not give specific guidelines indicating
the points at which interacting elements should be converted into isolated
elements, but a study of their instructional materials suggests that their iso-
lated information elements are really sets of interactions that are already
familiar to the learners. Reigeluth (1999) and van Merriënboer (1997) sug-
gested a slightly different sequencing technique that focuses, in the early
phases of learning, on those elements that are most fundamental and rep-
resentative for the whole complex task. Focusing on fundamental elements
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should allow the learners to obtain a quick impression of the whole task
that can be further elaborated in the course of the training program.

Consequently, CLT does not contradict the common finding that
whole-task sequencing is more suitable than part-task sequencing for tasks
with a high level of integration and coordination (for reviews, see Goettl
and Shute, 1996; Peck and Detweiler, 2000; van Merriënboer, 1997). Both
sequencing techniques work from less to more interacting elements, but
part-task sequencing practice does so by progressing from part-tasks to the
whole task, whereas whole-task sequencing does so by progressing from
simplified versions to more complex versions of the whole task. CLT merely
indicates that if even the simplest version of the whole task is too de-
manding for beginning training so that part-task sequencing is inevitable
to further decrease cognitive load to an acceptable level, then the part-
tasks should be chosen in such a way that they stimulate the construction of
schemata with a cognitive structure facilitating the learning of subsequent
schemata. In this respect, a fast automation of the part-tasks may be detri-
mental to learning the whole task because this blocks successful integration
later (Schwartz et al., in press). Instead, already acquired schemata should
act as a central executive and organize the new knowledge that needs to be
processed in working memory—a view that is consistent with the idea of a
long-term working memory (Ericsson and Kintsch, 1995). Future research
should compare various sequencing techniques and empirically determine
what effects they have on intrinsic cognitive load, the structure of acquired
schemata, and the transfer of learning.

Problem-Solving Support

Rich learning tasks often require problem-solving and reasoning skills.
The most common method used to help students with problem solving is
to provide them with some kind of process worksheet that provides a de-
scription of the phases one should go through when solving a problem and
that provides hints or rules-of-thumb that help students successfully com-
plete each phase. Students can consult the process worksheet while they are
working on the learning task(s), and they may use it to note down interme-
diate results of the problem solving process. It should be clear that both the
phases and the hints have a heuristic nature: They may help solve the prob-
lem but do not guarantee a correct solution (this distinguishes them from
a procedure, which is algorithmic in nature). Nadolski et al. (2001) used a
process worksheet for law students who were trained to plea in court. It con-
tained phases such as ordering the documents in the file, getting acquainted
with the file, and analyzing the situation for preparing and conducting the
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plea. For each phase, it also contained rules-of-thumb. For the first phase,
ordering the documents in the file, there were hints to order the files in legal
categories (documents, letters, notes), in chronological order, and in terms
of relevance for the case.

Although process worksheets are frequently used in educational prac-
tice, little is known about their effects on learning. Nadolski et al. (in press)
studied the effects of process worksheets with law students and found that
the availability of a process worksheet had positive effects on the coherence
and content of prepared pleas. However, the availability of a process work-
sheet had no effects on cognitive load and transfer task performance (i.e.,
a new plea that had to be prepared without any available support). Thus,
the availability of process worksheets does not decrease extraneous cogni-
tive load, and, although it helps in performing the learning task, there is no
indication it helps in constructing cognitive schemata that promote transfer
of learning.

Kester et al. (2001; see also Kester et al., 2004, 2005) explained why
process worksheets were not effective. Because the information provided
in a process worksheet typically has high element interactivity, simultane-
ously performing the learning tasks and consulting the worksheet may be
too demanding. Working memory demands may be increased further be-
cause learners must split their attention between the task and the process
worksheet. It may be better if learners thoroughly study the recommended
phases and hints before they start to work on the learning tasks as sug-
gested by the results of studies on the positive effects of advance organizers
(for an overview, see Williams and Butterfield, 1992). By initially study-
ing the recommended phases and hints of a worksheet, a cognitive schema
may be constructed in long-term memory that can subsequently be acti-
vated in working memory during task performance. Retrieving the already
constructed schema should be less cognitively demanding than activating
the externally presented complex information in working memory during
task performance.

A recent study on learning to troubleshoot electrical circuits provided
some empirical support for this explanation (Kester et al., in press). In this
study, a distinction was made between supportive information with high el-
ement interactivity, such as a description of phases and hints that help solve
a troubleshooting problem (cf., a process worksheet), and procedural in-
formation with low element interactivity, such as step-by-step instructions
for manipulating an electrical circuit (e.g., toggling a switch or replacing
a lamp). An interaction effect was found on cognitive load. Load was rel-
atively high when both supportive and procedural information were pre-
sented before practice on the troubleshooting problems; load was relatively
low when supportive information was presented before practice and when
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procedural information was presented during practice. Similarly, load was
relatively high when both supportive and procedural information were pre-
sented during practice; load was relatively low when procedural informa-
tion was presented before practice and when supportive information was
presented during practice. In other words, presenting supportive and proce-
dural information together increased cognitive load. The same interaction
pattern was found for transfer test performance. As expected, the high-
est transfer test performance occurred when supportive information was
presented before practice and when procedural information was presented
during practice.

In conclusion, it seems that high element interactivity information such
as a description of recommended problem-solving phases and hints is best
studied by students before they start to practice, rather than during prac-
tice. However, future research may yield alternative instructional methods
that are equally or more effective. For instance, students may first study
one or more process-oriented worked examples, that is, examples that show
how an expert solves a particular category of problems and articulate why
the problem is solved this way. Such examples may provide students with
the preknowledge that enables them to make more effective use of process
worksheets during practice (van Gog et al., 2004). As another example, per-
formance constraints or “training wheels” may prove more effective than
process worksheets. The basic idea is to make unavailable to learners the
cognitive processes and actions that are not relevant in a particular phase of
the problem-solving process. Those processes and actions only are made
available after the learners successfully complete the previous phase(s) and
begin to work on the phase for which the processes and actions are rele-
vant. For instance, law students who are learning to prepare a plea for court
would not be allowed to start reading documents (phase 2) before they have
ordered all documents in the file in an acceptable fashion (phase 1), and
they would not be allowed to perform a situational analysis (phase 4) before
they have thoroughly studied the entire file (phase 3). In contrast to process
worksheets, performance constraints reduce the student’s problem space
in a particular phase of the problem-solving process and perhaps decrease
the extraneous cognitive load caused by considering irrelevant actions
(Leutner, 2000; see also van Merriënboer, 2000).

FROM SHORT EXPERIMENTS TO LENGTHY
TRAINING PROGRAMS

Recent applications of CLT in the field of complex learning focus less
on short laboratory experiments and more on lengthy training programs.
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Students may be more inclined to employ their processing resources when
they participate in relatively short—and occasionally paid—laboratory ex-
periments, where they may try to please the experimenter (acquiescence
bias) or exhibit desirable behaviors (best light phenomenon), than when
they participate in regular training programs. Students’ reluctance to use
processing resources while learning may make it necessary to encourage
them to invest mental effort in schema construction and automation (pro-
cesses that increase germane cognitive load—see below). Furthermore, the
expertise reversal effect is of particular importance during longer training
programs because it indicates that instructional methods have to change as
learners acquire more expertise. Some examples of instructional strategies
that take the expertise reversal effect into account are discussed.

Germane Cognitive Load

In their 1998 article, Sweller, van Merriënboer, and Paas introduced
the concept of germane cognitive load. This new construct was necessary to
explain the effects of variability in materials presented to learners. Vari-
ability of problem situations encourages learners to construct cognitive
schemata because variability increases the probability that similar features
can be identified and that relevant features can be distinguished from ir-
relevant ones. Instructional designs that incorporate high variability ensure
that a task is practiced under conditions that require the performance of
different variants of the task across problem situations or across conditions
that increase variability along other task dimensions, such as the manner in
which the task is presented, the saliency of defining characteristics, the con-
text in which the task is performed, or the familiarity of the task. It is well
documented that variability of practice may result in beneficial effects on
schema construction and transfer of training (e.g., McKeough et al., 1995).
These findings were first related to CLT by Paas and van Merriënboer
(1994a) and by Quilici and Mayer (1996).

The results of studies on variability initially seemed to contradict CLT.
High variability increased cognitive load during practice but yielded better
schema construction and transfer of learning as indicated by a better ability
to solve problems that were not solved before. Paas and van Merriënboer
(1994a) hypothesized that the increase in cognitive load was due to pro-
cesses directly relevant to learning (schema construction and automation)
instead of processes that resulted in extraneous cognitive load. Exposure to
a highly varied sequence of problems and solutions to those problems helps
learners determine the range of applicability of constructed schemata. Al-
though determining the applicability of a schema is clearly useful, it requires
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the mindful engagement of the learners and increases cognitive load. This
new element in CLT indicates that it may be necessary to increase learn-
ers’ motivation and encourage them to invest germane cognitive load in
learning. Consequently, instructional manipulations to improve learning by
diminishing extraneous cognitive load and by freeing up cognitive resources
is only effective if students are motivated and actually invest mental effort
in learning processes that use the freed resources.

The germane load construct in CLT explains the results of studies on
contextual interference and self-explanation. Contextual interference is a
special kind of variability (van Merriënboer et al., 1997). If adjacent prob-
lems rely on exactly the same skills, then contextual interference is low. If,
on the other hand, adjacent problems rely on different skills, then interfer-
ence is high and will stimulate learners to construct schemata. For instance,
suppose that learners are trained in a troubleshooting task where four types
of malfunctions (m1, m2, m3, m4) occur in four different components of a
technical system (c1, c2, c3, c4). Low contextual interference would imply
a sequence of problems where the skills for troubleshooting one particular
type of malfunction are fully practiced before the skills for troubleshooting
other types of malfunctions are introduced, yielding a “blocked” practice
schedule like this:

m1c1, m1c2, m1c3, m1c4
m2c1, m2c2, m2c3, m2c4
m3c1, m3c2, m3c3, m3c4
m4c1, m4c2, m4c3, m4c4

In contrast, a high contextual interference condition would sequence
the 16 problems in such a way that each requires a different solution using a
“random” practice schedule. De Croock et al. (1998) and van Merriënboer
et al. (2002b) reported a number of studies on contextual interference. As
expected, high contextual interference (i.e., a random practice schedule) in-
creased cognitive load during training and improved transfer performance.
In one study, it was hypothesized that redirecting attention from extrane-
ous to germane processes improves training efficiency, that is, positively
affects the balance between cognitive load during training and transfer test
performance. Redirecting attention was realized by replacing conventional
problems (i.e., high extraneous load) sequenced in a blocked order (i.e.,
low germane load) with completion problems (i.e., low extraneous load)
sequenced in a randomized order (i.e., high germane load). As expected,
training efficiency was highest for the completion group practicing under
high contextual interference.

A second line of research on germane cognitive load has examined
the elaboration of worked examples and the self-explanation effect. Stark
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et al. (2002) conducted a study on learning from worked examples. Students
exhibited three different elaboration strategies: passive, cognitive, and
metacognitive. Students who used predominantly cognitive and metacog-
nitive elaboration strategies invested more mental effort than students who
used a passive strategy and also did best on the subsequent transfer tests,
indicating that effective example elaboration is associated with a higher
germane cognitive load.

A common instructional problem is that many students use a passive
elaboration strategy. Renkl (1997) reported that many learners do not ef-
fectively use their available processing resources and do not spontaneously
provide fruitful self-explanations when they study worked examples. To
solve this problem, Stark et al. (2002) included a short training session focus-
ing on aspects of cognitive and metacognitive elaboration. The researchers
found that such a training session enhanced the quality of example elabo-
rations and improved learning outcomes. Renkl and Atkinson (2001; see
also Hummel and Nadolski, 2002) prompted students to self-explain. In
their study, students worked on incomplete worked examples in the field
of statistics (probability). In the prompted group, students were explicitly
asked at each worked-out step which probability rule was applied. The re-
searchers found higher transfer test performance in the prompted group.

The Expertise Reversal Effect

A newly described effect that is particularly relevant when CLT is ap-
plied to the design of courses with a longer duration became known as the
expertise reversal effect (for an overview, see Kalyuga et al., 2003). This
effect is an interaction between several basic cognitive load effects (split-
attention, modality, and worked example effects) and level of expertise.
The effect is demonstrated when instructional methods that work well for
novice learners have no effects or even adverse effects when learners ac-
quire more expertise. For example, Kalyuga et al. (1998) demonstrated the
usual split-attention effect. Novice students presented diagrams and text in
a format that separated the two sources of information learned less than
novice students given materials that integrated the texts into the diagrams.
Physical integration reduced the need for mental integration and reduced
extraneous cognitive load. As levels of expertise increased, the difference
between the separate and integrated conditions first disappeared and even-
tually reversed with the separate condition superior to the integrated condi-
tion. Indeed, rather than integrating the diagrams and text, totally eliminat-
ing the text was superior. The text had become redundant for these more
expert learners.
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Initially, for complete novices, both the diagrams and text were essen-
tial for learning. Under such conditions, extraneous cognitive load could
be reduced by physically integrating the two sources of information in or-
der to reduce the need for learners to mentally integrate them. Reducing
the need for mental integration reduces extraneous cognitive load. As ex-
pertise increased, the textual explanations became less and less important.
Eventually they were unnecessary, but if presented to learners with more
experience in the area in an integrated format, they were hard to ignore.
Processing such redundant information imposed an extraneous cognitive
load reducing further learning. The redundancy effect had replaced the
split-attention effect as expertise increased, providing an example of the
expertise reversal effect.

Similar results were obtained by Yeung et al. (1998) using purely tex-
tual materials. McNamara et al. (1996), who were not working within a
CLT framework, found that low-knowledge learners benefited from ad-
ditional explanatory text intended to increase coherence whereas high-
knowledge learners benefited most from the more sparse text. Kalyuga
et al. (2000) found that among novices, dual mode, auditory/visual pre-
sentations were superior to visual only presentations, demonstrating the
modality effect. With more experience, the auditory component became
redundant and was best eliminated. In their experiment with novices,
Kalyuga et al. (2001) and Tuovinen and Sweller (1999) demonstrated the
worked example effect in which worked examples were superior to solv-
ing the equivalent problems. With increasing knowledge, the effect first
disappeared and then reversed. Worked examples become redundant for
more knowledgeable learners and imposed an extraneous cognitive load.
(See Kalyuga et al., 2003, for other examples of the expertise reversal
effect.)

All of these examples of the expertise reversal effect have strong impli-
cations for the design of instruction, but the elimination and reversal of the
worked examples effect with increased knowledge has particularly impor-
tant implications. It suggests that a training program best starts with worked
examples and smoothly works up to conventional problems. In the early
1990s, van Merriënboer (1990; van Merriënboer and de Croock, 1992) in-
troduced the so-called completion strategy to reach this goal. The key to this
strategy is the use of completion problems, in which a problem solution is
presented in partially completed form with the learner required to find the
remaining steps. The training starts with full worked examples that include
all of the solution steps, proceeds with a series of completion problems that
provide fewer and fewer of the required steps, and ends with conventional
problems that require all of the required steps. In two studies in the domain
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of computer programming, the completion strategy was effective in obtain-
ing transfer of learning.

Renkl and Atkinson (2003) reviewed recent studies that applied the
completion strategy, which they call a fading guidance procedure, in the
domains of physics (electricity) and statistics (probability). They explic-
itly related the strategy to the expertise reversal effect and to different
phases in skill acquisition. In the early phases of skill acquisition, germane
cognitive load is increased by self-explanations of illustrated principles
and by generalization over examples; in later phases, germane cognitive
load is increased by the anticipation of solution steps and imagining; and
in the final phases, it is increased by genuine problem solving. Four re-
viewed studies (described in Renkl and Atkinson, 2001; Renkl et al.,
2000; Renkl et al., 2002) indicated that the completion strategy is effec-
tive in managing cognitive load throughout the various phases of skill
acquisition. Compared to the use of traditional example-problem pairs,
the completion strategy yielded superior transfer performance in all four
studies.

Although germane cognitive load is a valuable construct, the studies
reviewed in this section also indicate that this concept alone cannot fully de-
scribe the observed phenomena because the level of expertise of the learner
directly influences what constitutes germane load. Future CLT research
should provide a more detailed description of how cognitive structures de-
velop with expertise, how they enable learners to adapt increasingly to task
demands (Ericsson et al., 2000), and how they relate to improvements in
self-regulated learning (Zimmerman, 2002).

FROM PREPLANNED INSTRUCTION
TO ADAPTIVE eLEARNING

CLT researchers have mainly studied the effects of preplanned instruc-
tion on cognitive load and transfer performance. However, the expertise re-
versal effect in combination with the application of CLT to courses with a
longer duration require a more dynamic approach, wherein instruction can
be adapted in real-time to the increasing levels of expertise of individual
learners. This approach requires two new developments. First, assessment
methods are needed to measure the levels of expertise of learners in such a
way that cognitive load is taken into account. Second, research is needed to
indicate how these measures can promote effective, efficient, and appeal-
ing forms of adaptive instruction, which today take the form of adaptive
eLearning.
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Assessment of Expertise

Traditionally, assessment in education primarily deals with perfor-
mance, defined in terms of a learner’s achievement as measured by the num-
ber of correct test answers, the number of errors, or the time on task. Per-
formance is one assessment dimension of cognitive load, because a higher
cognitive load often increases the number of errors and slows down per-
formance (see Paas and van Merriënboer, 1994b). However, CLT stresses
that other dimensions are at least equally important for the assessment of
expertise. They include mental load, which originates from the interaction
between task characteristics (e.g., task format, multimedia, task complex-
ity) and learner characteristics (e.g., age, prior knowledge, spatial ability),
and yields an a priori estimate of cognitive load and mental effort, which
refers to the cognitive capacity that is actually allocated to accommodate
the demands imposed by the task (Paas and van Merriënboer, 1993, 1994b).
The intensity of effort being expended by learners is considered essential to
obtaining a reliable estimate of cognitive load. As indicated in the previous
section, mental effort may yield important information that is not neces-
sarily reflected in mental load and performance measures. For instance, it
is feasible for two people to attain the same performance levels with one
person needing to work laboriously through an effortful process to arrive
at the correct answers, whereas the other person reaches the same answers
with minimum effort. Although both people demonstrate identical perfor-
mance, “expertise” might be higher for the person who performs the task
with minimum effort than for the person who exerts substantial effort.

An appropriate assessment of expertise should at least then include
measures of mental effort and performance. Paas et al. (2003b) discuss dif-
ferent measurement techniques for mental effort, including rating scales,
secondary task methods, and psychophysiological measures. Whereas more
recent techniques such as secondary task methods (e.g., Brünken et al.,
2003) and psychophysiological measures (e.g., van Gerven et al., 2004) are
used to measure cognitive load, to this point, most researchers have used
rating scales. On the basis of a comprehensive review of about 30 studies,
Paas et al. (2003b) conclude that “. . . the use of rating scales to measure
mental effort and cognitive load remains popular, because they are easy to
use; do not interfere with primary task performance; are inexpensive; can
detect small variations in workload (i.e., sensitivity); are reliable; and pro-
vide decent convergent, construct, and discriminate validity” (p. 68).

Although mental effort measurement using rating scales is a straight-
forward and widely used experimental method, the measurement of com-
plex performance is still a difficult and time-consuming process. In par-
ticular, CLT is interested in measures that reflect the quality of available
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cognitive schemata, and most performance measures are not particularly
designed with this end in mind. Kalyuga and Sweller (2004) proposed a
“rapid assessment test” to measure the quality of learners’ schemata that
guide their problem-solving process. The rapid assessment test asked stu-
dents to indicate their first step towards solution of a task. As a simple ex-
ample, when presented the algebraic problem (3x − 5)/2 = 5, students may
respond in one of the following ways when asked to report their first step:

– The first step reported is incorrect or the student indicates that (s)he
“doesn’t know the answer”—this student is categorized as a pre-
novice with no relevant schemata.

– 3x − 5 = 10 is indicated as the first step by a student who first multi-
plies both sides of the equation by 2—this student is categorized as
a novice.

– 3x = 15 is indicated as the first step by a student who mentally mul-
tiplies both sides of the equation by ten and adds 5 to both sides
of the equation—this student is categorized as having intermediate
ability.

– x = 15/3 is indicated as the first step by a student who mentally di-
vides both sides by 3 and immediately writes the final answer—this
student is categorized as an advanced student.

– x = 5 is indicated as the first step by a student who has automated
the whole procedure—this student is categorized as an expert.

The assumption that higher quality schemata allow for the skipping
of steps is central to this type of rapid assessment. The skipping of steps
is an important characteristic of higher levels of expertise because well
learned or automated solution procedures chunk cognitive rules together
that consistently follow each other in performing particular tasks (Blessing
and Anderson, 1996; Sweller et al., 1983). Kalyuga and Sweller (in press)
found high correlations (up to .92) between performance on “rapid assess-
ment tests” and traditional performance tests that required complete so-
lutions of corresponding tasks. This indicates that the first step is indeed
a good indicator of the quality of available problem-solving schemas. Fur-
thermore, Kalyuga and Sweller (2004) presented data indicating that task
selection based on the rapid assessment of expertise facilitates learning.

A final step in the assessment of expertise is the difficult task of com-
bining a student’s mental effort and performance measures, because a
meaningful interpretation of a certain level of cognitive load can only be
made in the context of its associated performance and vice versa. Paas and
van Merriënboer (1993; see also Paas et al., 2003b) developed a compu-
tational approach to combine measures of mental effort with measures of
associated performance in order to compare the efficiency of instructional
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conditions—under the assumption that learners’ behavior in a particular
condition is more efficient if their performance is higher than might be ex-
pected on the basis of their invested mental effort or, equivalently, if their
invested mental effort is lower than might be expected on the basis of their
performance. Using this approach, high task performance associated with
low effort is called high-instructional efficiency, whereas low task perfor-
mance with high effort is called low-instructional efficiency. Unfortunately,
this approach is based on standardized measures and can only be used after
gathering all data from a group of students working under different instruc-
tional conditions. Alternative methods are needed for the continuous as-
sessment of expertise of individual learners. Such alternatives are currently
under development in the context of adaptive eLearning.

Adaptive eLearning

Salden et al. (in press) described adaptive eLearning as a straightfor-
ward two-step cycle: (1) assessment of a learner’s expertise, and (2) the
dynamic selection of the next learning task. With regard to the ongoing
assessment of expertise, they differentiated between a learner who must
work laboriously to attain a certain performance level and a learner who
attains the same performance level with little mental effort. Only the sec-
ond learner who solved the problem with minimal mental effort should be
presented with a more complex learning task. With regard to task selection,
given the learner’s expertise, one might select tasks that are less, equally, or
more difficult than the previous task; one might vary the format of the task
(e.g., worked examples, completion problems, or conventional problems),
or one might vary the amount of problem-solving support that is given to
the learner.

In the domain of Air Traffic Control (ATC), Camp et al. (2001) and
Salden et al. (2004) compared the effectiveness of four approaches: (1) a
fixed sequence of learning tasks ordered from simple to complex, (2) dy-
namic task selection based on efficiency, (3) dynamic selection based on
performance, and (4) dynamic selection based on mental effort. It was hy-
pothesized that dynamic task selection results in higher test performance
than a fixed sequence of learning tasks and that dynamic task selection,
on the basis of efficiency, results in higher test performance than the other
two dynamic conditions (mental effort and performance). Mental effort and
performance were both measured on a 5-point scale. The data for the fixed
group were gathered first and used as a baseline for the other three dynamic
groups.
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In the dynamic conditions, learners received ATC tasks at 10 levels of
difficulty, starting at the lowest level. Depending on the assessment results,
the next task was selected. For instance, a student who attains a perfor-
mance score of 4 whereas his or her cognitive load is 3 is presented with
a learning task that is one complexity level higher than the previous task;
another student who attains a performance score of 4 whereas his or her
cognitive load is 1 is presented with a learning task that is two complex-
ity levels higher than the previous task. In both studies (Camp et al., 2002;
Salden et al., 2004), adaptive eLearning proved superior to the use of a
fixed sequence of tasks. But dynamic task selection on the basis of efficiency
was not more effective than the other dynamic conditions. However, in the
study of Salden et al. (2004), the mental efficiency condition appeared more
effective during training than the mental effort and performance conditions.
The participants in the mental efficiency condition needed fewer learning
tasks to reach the highest complexity level, reached a higher complexity
level, and made larger jumps to higher complexity levels than students in
the other dynamic conditions.

In order to obtain an optimal indicator of a learner’s expertise, Kalyuga
and Sweller (in press) took a different approach to combining performance
and mental effort measures than Camp et al. (2001) and Salden et al. (2004).
In the domain of algebra, they used the “rapid assessment test” as described
in the previous section to measure performance and used a 9-point rat-
ing scale to measure mental effort. Cognitive efficiency (E) was defined as
E = P/R, where R is the mental effort rating and P is the performance mea-
sure on the same task. On the one hand, this indicator is similar to the
efficiency indicator as defined by Paas and van Merriënboer (1993), be-
cause both indicators increase as similar levels of performance are reached
with less effort, or as higher levels of performance are reached with the
same effort. On the other hand, this new indicator makes it unnecessary
to use a baseline group such as for the efficiency indicator of Paas and
van Merriënboer (1993), because there is no need to standardize measures
across groups.

In the study of Kalyuga and Sweller (in press), the cognitive efficiency
indicator was used to monitor learners’ progress during instruction. Learn-
ers were presented tasks at different levels of difficulty. For each level, a
critical level of cognitive efficiency (Ecr) was arbitrarily defined as the max-
imum performance score (which was different per task level) divided by the
maximum mental effort score (which was always 9). Cognitive efficiency is
positive if E > Ecr and negative if E < Ecr. Thus, if someone invests max-
imum mental effort in a task but does not display the maximum level of
performance, then expertise should be regarded as suboptimal; if someone
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performs at the maximum level with less than a maximum mental effort,
then expertise should be regarded as optimal.

In the adaptive eLearning condition in the study of Kalyuga and
Sweller (in press), learners were presented algebra tasks at three different
levels. If their cognitive efficiency was negative for tasks at the lowest level,
then they continued with the study of worked examples; if their cognitive ef-
ficiency was positive for tasks at the lowest level but negative for tasks at the
second level, then they continued with simple completion problems; if their
cognitive efficiency was positive for tasks at the lowest and second level
but negative for tasks at the third level, then they continued with difficult
completion problems; and, finally, if their cognitive efficiency was positive
for tasks at all three levels, then they continued with conventional prob-
lems. Similar adaptive methods were applied when students were working
on the worked examples, completion problems, or conventional problems.
Each student in the adaptive eLearning condition was paired to a student in
the control condition, who served as a yoked control. Kalyuga and Sweller
(in press) report higher gains in algebraic skills from pretest to posttest
and higher gains in cognitive efficiency for the adaptive eLearning group
than for the control group. Thus, in agreement with Camp et al. (2001) and
Salden et al. (2004), adaptive eLearning was found to be superior to non-
adaptive learning.

DISCUSSION

In this article, we have described basic CLT and reviewed important
developments of this theory driven by both new theoretical questions and
changes in the field of instructional design. Four major developments in
current CLT research were discussed, namely: (1) a strengthening of the
cognitive underpinnings of the theory by more closely tying it to biologi-
cal evolution, (2) research on methods to decrease the high cognitive load
associated with the use of learning tasks that are based on real-life tasks,
(3) research to take learners’ motivation and their development of expertise
during lengthy courses or training programs into account, and (4) research
to assess learners’ expertise on the basis of performance and cognitive load
in order to flexibly adapt instruction to the needs of individuals. These new
developments provide direction for future research and should eventually
increase the practicability of CLT.

Without its particular view of human cognitive architecture, CLT
would not have generated its research programs or its instructional effects.
The theory about cognitive architecture is strengthened by closely tying it
to the information processes of biological evolution. By emphasizing that
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both biological evolution and human cognition constitute variants of a sin-
gle natural information processing system, it is possible to place both cog-
nitive architecture and instructional design in a wider, more sophisticated
context.

Because modern instructional theories often incorporate real-life
learning tasks as a driving force, cognitive load considerations are becom-
ing increasingly important. A first research line may develop instructional
methods to manage the cognitive load associated with those tasks, while
leaving the essence of the “whole” task intact. Methods to gradually in-
crease the element interactivity and the associated intrinsic cognitive load
in the course of a training program are growing in importance. A key ques-
tion is: with which elements, or sets of interactions, should the instruction
commence? Other methods support the problem-solving process. Prelimi-
nary results show that “external” support structures, such as process work-
sheets, are not ideal for reducing extraneous cognitive load when students
are working on rich learning tasks. Future research may investigate if al-
ternative methods, such as making ample use of process-oriented worked
examples or reducing students’ problem space by setting performance con-
straints, yield the desired effects on cognitive load and transfer.

In long duration training programs, students are not always inclined to
devote their processing resources, freed up by decreasing intrinsic and/or
extraneous cognitive load, to learning. A second research line may study
instructional methods that motivate students to invest effort in processes
that generate germane cognitive load, such as schema construction and au-
tomation. In addition to variability of practice, promising methods include
the use of (pre) training in elaboration strategies and the use of prompts for
self-explanations. Other instructional strategies are related to the expertise
reversal effect. At the very least, such strategies should take learners’ exper-
tise development into account and prescribe different instructional methods
for the various phases of a training program. Several studies have demon-
strated that the completion strategy, which starts with worked examples and
smoothly moves to conventional problems, is an effective approach. Alter-
native guidance-fading strategies can be devised and empirically tested for
their effectiveness.

Even more powerful approaches designed to take learners’ exper-
tise into account require an ongoing measurement of the level of exper-
tise for each student, so that instruction can be flexibly adapted to this
level. This third research line should first identify optimal methods to mea-
sure learner’s expertise so that cognitive load is taken into account. There
are several approaches to gather and combine real-time cognitive load
and performance measures while students are working on their learning
tasks (Kalyuga and Sweller, 2004; Salden et al., 2004). Future research
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should reveal the strengths and weaknesses of using cognitive load and
performance measures to determine expertise and should make critical,
data-based comparisons. Instructional methods should also permit a dy-
namic adjustment of instruction to a particular student’s level of exper-
tise. Preliminary results indicate that adaptive eLearning is superior to non-
adaptive eLearning. However, adaptive instruction can take many different
forms. For instance, adaptation may refer to the difficulty of the next learn-
ing task or to the nature and amount of support given for this task. The
wide range of adaptive instructional forms opens the door for a systematic
research program on CLT and adaptive eLearning.

The new research lines discussed in this article are derived from CLT
but also indicate where the theory requires expansion and modification
to remedy limitations. If CLT is to guide the design of instruction for in-
creasingly advanced learners with decreasing instructional support, then
the extensions require a theory of how complex schemata mediating the
performance of advanced learners are gradually acquired or constructed.
A future version of CLT should explain how acquired schemata allow
learners to better adapt to task demands (Ericsson et al., 2000) and per-
haps how expertise is related to self-regulated learning (Zimmerman, 2002).
The assessment of learners’ expertise should focus on accessible cognitive
structures and diagnose learners’ ability to monitor their own learning. In
effect, these suggested developments require a deeper knowledge of hu-
man cognition. As indicated above, CLT has expanded in this direction by
considering the evolutionary implications of human cognition. This work is
intended to provide a strengthened cognitive underpinning for instructional
design. But additional research is needed to revise and expand CLT to fully
account for complex learning.

The studies discussed in this article also signify the growing practica-
bility of CLT for an increasing number of design levels, media, and target
groups. With regard to design levels, CLT is slowly evolving from a theory
for instructional message design, with a strong focus on presentation for-
mats, to a full-fledged instructional design model. CLT is becoming useful
for designing larger courses and training programs that are characterized by
a high level of interactivity, as indicated by methods for sequencing and pro-
viding problem-solving support, for encouraging students to invest germane
load in learning and taking their levels of expertise into account, and for stu-
dent assessment and the development of adaptive forms of instruction. van
Merriënboer’s four-component instructional design model (4C/ID-model,
1997; van Merriënboer et al., 2002a) includes many instructional methods
that were developed in the context of CLT. Recent efforts to further inte-
grate CLT with the 4C/ID-model are described by van Merriënboer et al.
(2003; see also van Merriënboer and Paas, 2003).
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With regard to media, CLT is no longer limited to straightforward
instructional presentations or linear media but has found several appli-
cations in the design of multimedia systems (for an overview, see Mayer
and Moreno, 2002, 2003). These applications include highly interactive,
learner-controlled (hyper) media (e.g., Gerjets and Scheiter, 2003; Leahy
et al., 2003; Tabbers et al., 2004) as well as learning environments for Com-
puter Supported Collaborative Learning (CSCL; see van Bruggen et al.,
2002). CLT is one of the few theories beginning to generate a coherent and
research-based set of instructional guidelines for multimedia systems and
(adaptive) eLearning applications.

With regard to target groups, applications of CLT are extending from
students in primary and secondary education to adult learners, including
the elderly. van Gerven et al. (2000) reported that CLT is of particular rele-
vance for designing instruction for target groups characterized by impaired
working-memory functions. Research has demonstrated that cognitive ag-
ing is accompanied by a reduction of working-memory capacity, a general
slowing of mental processes, and a decline in the ability to repress irrelevant
information. Because instruction based on CLT deals with the need for an
efficient use of available resources due to cognitive limitations, CLT based
instruction is especially effective when elderly people are involved. Indeed,
the results of recent studies indicate that instruction based on CLT is rel-
atively more effective for older learners than for younger learners (Paas
et al., 2001; van Gerven et al., 2002, 2003).

As can be seen from this review, CLT has undergone major develop-
ments over the last 5 years. New instructional methods were derived from
the theory, and because there is a close association between these methods
and the cognitive architecture assumed by CLT, we believe that applica-
tions of CLT will yield instruction that is compatible with human cognitive
processing. Critical to the further development of CLT is a rigorous test-
ing program based on replicated and controlled experimental designs. Such
rigor in experimental methods is too often missing in educational research
but is needed to develop sound instructional theories capable of making a
real difference to educational practice. There is no substitute for evidence-
based instructional design.
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Kester, L., Kirschner, P. A., and van Merriënboer, J. J. G. (2004). Timing of information pre-
sentation in learning statistics. Instruct. Sci. 32: 233–252.
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van Merriënboer, J. J. G., de Croock, M. B. M., and Jelsma, O. (1997). The transfer paradox:
Effects of contextual interference on retention and transfer performance of a complex
cognitive skill. Percept. Motor Skills 84: 784–786.
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