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Abstract
Silver nanoparticles (AgNPs) are among the most produced nanomaterials in the world and are incorporated into several
products due to their biocide and physicochemical properties. Since freshwater bodies are AgNPs main final sink, several
consequences for biota are expected to occur. With the hypothesis that AgNPs can interact with environmental factors, we
analyzed their ecotoxicity in combination with humic acids and algae. In addition to the specific AgNPs behavior in the
media, we analyzed the mortality, growth, and phototactic behavior of Chydorus eurynotus (Cladocera) as response
variables. While algae promoted Ag+ release, humic acids reduced it by adsorption, and their combination resulted in an
intermediated Ag+ release. AgNPs affected C. eurynotus survival and growth, but algae and humic acids reduced AgNPs
lethality, especially when combined. The humic acids mitigated AgNP effects in C. eurynotus growth, and both factors
improved its phototactic behavior. It is essential to deepen the study of the isolated and combined influences of
environmental factors on the ecotoxicity of nanoparticles to achieve accurate predictions under realistic exposure scenarios.
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Introduction

Nanoparticle (NP) production has increased and diversified
exponentially in recent years due to the variety of

advantages that these novel materials possess, such as their
reduced size (<100 nm), and therefore, high area/volume
ratio, which enhances their reactivity and other physico-
chemical properties (Salem et al. 2022). Silver nanoparticles
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(AgNPs) are one of the most produced and applied nano-
materials due to their unique biocide and physicochemical
properties (Zahoor et al. 2021; Corsi et al. 2022). AgNP
production has diversified in a wide range of applications
such as medicine, including sanitizing products, medical
clothing, and masks used during the COVID-19 pandemic
(Al-Radadi and Abu-Dief 2022; Jamunkar et al. 2022;
Ahmed et al. 2022), catalysis, electrical and optical devices,
food industry, paints, textiles, cosmetics, water treatment,
and agriculture (Antezana et al. 2021; Islam et al. 2021;
Municoy et al. 2021). Global AgNP production is con-
tinuously growing and is expected to reach 800 tons per
year by 2025 (Pulit-Prociak and Banach 2016). The main
discharge sources of AgNPs are industrial, domestic, and
hospital effluents, while surface water bodies are their final
sink (Islam et al. 2021). In this context, concern about their
environmental fate and toxicity has increased in
recent years.

Given the absence of accessible methods to measure
AgNPs in natural matrices, the available information
regarding environmental concentrations is based on predic-
tions. Therefore, this information is highly variable, as pre-
dicted AgNP concentrations in surface water bodies range
between 9 × 10−5 and 1.51 μg L−1 (NanoFATE; Batley et al.
2013; Sun et al. 2014, 2016), with some studies reporting up
to 10 μg L−1 (Gottschalk et al. 2013). However, predicted
environmental concentrations should be interpreted carefully
as they are based on static models that do not consider the fast
development of AgNP production, or their complete life
cycle (Sun et al. 2016). Several reports showed that AgNPs
can exert toxic effects on aquatic organisms at levels below
the predicted environmental concentrations (Ale et al.
2018a, 2018b; Cazenave et al. 2019; Gutierrez et al. 2021;
Andrade et al. 2023). Zooplankton is ubiquitous in almost
every freshwater ecosystem, and contributes to nutrients and
energy cycling, acting as an intermediate link between pri-
mary producers and predators such as fishes, insect larvae,
crabs, and shrimps, among others (Mano and Tanaka 2016).
Organisms from this community, mainly cladocerans, have
been largely used in ecotoxicological studies since they have
high sensitivity to environmental changes and xenobiotics
(Resh 2008; Ferdous and Muktadir 2009). Previous studies
showed that AgNPs are considerably toxic for cladocerans,
reporting several effects such as mortality (0.18–1.5 μg L−1),
decreased reproduction and growth (0.07–1.25 μg L−1), and
gene expression changes (0.43–1.5 μg L−1) (Park and Choi
2010; Poynton et al. 2012; Ribeiro et al. 2014; Hartmann
et al. 2019; da Silva et al. 2021; Andrade et al. 2023).
Nevertheless, most of the toxicological information refers to
Daphnia magna (Gutierrez et al. 2021; Wang and Liu 2022).
Although this species is useful for comparative purposes (Liu
et al. 2022), it represents neither the variety of functional
traits of zooplankton nor holotropical region (Barnett et al.

2007; Gutierrez et al. 2021). Within Cladocera, Chydoridae is
the most diverse taxonomic group, including 40 genera and
269 currently known species (43% of cladoceran species)
(Sacherová and Hebert 2003; Forró et al. 2008). These
organisms differ from daphniids in morphology, physiology,
and habitat. They inhabit littoral-benthic zones of freshwater
systems which receive the highest load of anthropogenic
pollutants (Wang et al. 2017; Zhao et al. 2021; Mergia et al.
2022). Chydorus eurynotus (Sars, 1901) is a representative of
this family and has a wide distribution and ubiquity in
freshwater systems. This species, together with C. sphaer-
icus, was employed in several toxicological studies, demon-
strating its high potentiality as test organism (Monkiédjé et al.
2000; Wang et al. 2012, 2015; Le and Peijnenburg 2013;
Song et al. 2015; Yu et al. 2021).

When AgNPs reach aquatic ecosystems, their behavior
may vary depending on both the nanoparticles intrinsic
properties and environmental factors (Levard et al. 2012;
Furtado et al. 2016; Islam et al. 2021). It has been docu-
mented that dissolved organic matter (DOM), mainly humic
acids, can adsorb and stabilize AgNPs, and reduce their
Ag+ release (Ale et al. 2021; Liu et al. 2021; Wang and Liu
2022). DOM can promote AgNPs persistence in water and
reduce their bioavailability to freshwater organisms such as
Daphniidae (Gao et al. 2009; McLaughlin and Bonzongo
2012; Poda et al. 2013). Wang et al. (2015) reported the
mitigation by humic substances of the acute AgNP toxicity
on C. sphaericus. However, the effect of these organic
substances on the chronic toxicity of NPs on cladocerans
has not been reported yet.

Besides humic acids, AgNPs can interact with algae
populations in freshwater bodies, which promote Ag+ release
mainly due to the oxidation capacity of their exudates
(Navarro et al. 2015; Chen et al. 2019; Ponton et al. 2019).
Nevertheless, algae have also been reported to reduce AgNP
toxicity in Daphniidae, possibly due to both energy supply
and interactions with AgNPs (Ribeiro et al. 2014; Harmon
et al. 2017; Stevenson et al. 2022; Andrade et al. 2023).

As the effects of combined environmental factors on
AgNP behavior and toxicity have been poorly studied, the
aims of the present study were to (i) analyze the behavior of
AgNPs in presence of humic acids, algae, and their com-
bination; and (ii) analyze the effects of AgNPs on the
mortality, growth, and phototactic behavior of C. eurynotus
in the presence of humic acids, algae, and their combination.

Materials and methods

Materials and reagents

AgNPs were provided by Nanotek S.A. (nanArgen®, CAS
no. 7440-22-4), purity ≥ 99.0%. The capping agent was
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made of glucose oligomers (mainly nanocrystalline cellu-
lose) and the stabilizing agent was made of polyvinyl pyr-
rolidone (PVP). Regarding humic acids, a sodic humic salt
was purchased from Sigma-Aldrich (Argentina).

Test organisms

Chydorus eurynotus were collected from a shallow lake of
the Paraná River alluvial plain. In the laboratory, it was
isolated and gradually adapted to experimental conditions
for one month. The neonates for the experiments were
developed from one parthenogenetic female isolated from
the initial stock culture. Laboratory conditions consisted of
12/12 day/night photoperiod, 21 ± 1 °C, and dechlorinated
and aerated tap water (pH: 7.1, conductivity: 1020 µs cm−1,
total hardness: 180 mg L−1 CaCO3, alkalinity 120 mg L−1

CaCO3, 39 mg L−1 Ca++, 20 mg L−1 Mg++, 146 mg L−1

HCO3−). Media was completely changed twice a week and
organisms were fed with Tetradesmus obliquus algae three
times a week (APHA 2017).

T. obliquus was isolated from a shallow lake of the
Parana River basin. A monospecific culture was grown in
sterile conditions in modified Detmer medium for green
algae (Watanabe 1960) (KCl: 50, KH2PO4: 50, Ca (NO3)2-
4H2O: 360, MgSO4-7H2O: 360, Cl3Fe

+: 5, C4H6O6: 5,
H3BO3, 2.86, MnCl2-4H2O: 1.81, ZnSO4-7H2O: 0.23,
Cl2Cu: 0.05 mg L−1), at 25 °C, with warm-white LED light
(50 μmol m2 s−1), and constant aeration. Algae were crop-
ped in the exponential growth phase, resuspended in sterile
distilled water, and stocked in the dark at −4 °C. Cell
concentration was estimated using an optical microscope
(Nikon E100) with a Neubauer chamber.

NPs behavior

UV–Vis spectroscopy was performed using a Jasco V-730
Spectrophotometer (Jasco Analitica Spain, Madrid, Spain)
for AgNPs in ultrapure water, in culture water, and with the
addition of humic acids. Under the same media conditions,
AgNPs were characterized through transmission electron
microscopy (TEM) and Fourier transform infrared spectro-
scopy (FT-IR), obtained over the range of 4000–500 cm−1

using an FTIR-Raman Nicolet iS 50 (Thermo Scientific).
The Ag+ released from the particles was analyzed during

48 h in ultrapure water and each experimental condition:
culture water (W), algae added (WA), humic acids added
(WH), and algae and humic acids added (WAH). Briefly,
1 mL of the solution was placed in the upper chamber of
Vivaspin® 20 centrifugal concentrator (30 kDa molecular
weight cutoff ≈4 nm, Sartorius Stedim Biotech GmbH,
Göttingen, Germany) and centrifuged at 5000 rpm for 15 s
at 25 °C (Antezana et al. 2021; Municoy et al. 2021). In this
way, the nanoparticles remained in the upper chamber,

while the aqueous filtrate contained the released Ag+. The
concentration of Ag in the filtrate was measured con-
secutively in time during 48 h by atomic absorption spec-
troscopy. Cumulative doses were calculated using a
standard curve and expressed as a function of time. In all
cases, results were expressed as mean ± SD from triplicate
experiments.

Experimental design

To analyze the AgNP toxicity on C. eurynotus and the
effects of algae and humic acids, a set of four experimental
conditions was defined as follows: culture water (W), algae
addition (WA), humic acids addition (WH), and algae and
humic acids addition (WAH). The algae concentration of
10 × 104 cel mL−1 was selected as being the optimum for
cladoceran growth, based on previous works and biblio-
graphic information (Savaş and Erdoğan 2006; Rodgher and
Espíndola 2008; Andrade et al. 2023). The humic acids
concentration of 10 mg L−1 was chosen as it is an average
value within the range of environmental concentrations
(Wang et al. 2015; Zhang et al. 2019). Both factors were
then combined with the AgNP concentrations used in the
toxicological tests (Table 1).

Mortality bioassay

AgNP acute toxicity was tested following APHA (2017)
guidelines with modifications. The LC50 of AgNP was
estimated for each experimental condition mentioned above
(W, WA, WH, and WAH). Neonates of C. eurynotus
(<24 h) were exposed to a control and five AgNP

Table 1 Concentrations of silver nanoparticles (AgNPs, µg L−1) used
in the mortality, growth, and behavior bioassays for each experimental
condition: culture water (W), algae addition (WA), humic acids
addition (WH), and algae and humic acids addition (WAH)

AgNPs (µg L−1) W WA WH WAH

Mortality

0 x x x x

0.63 x

1.25 x x

2.5 x x x x

5 x x x x

10 x x x x

20 x x x

40 x x

Growth and behavior

0 x x x x

0.7 x x x x

1.5 x x x x

Environmental factors modify silver nanoparticles ecotoxicity in Chydorus eurynotus (Cladocera) 685



concentrations (dilution factor 2) (Table 1) for each
experimental condition with four replicates containing five
organisms each in 20 mL glass containers. Before each
bioassay fresh stock solutions (400 µg L−1) were prepared
in ultrapure water and stored in the dark to prevent any prior
transformation of the nanoparticles (e.g., agglomeration,
aggregation, or dissolution). The nominal detected Ag
concentration correlated with the product description (pur-
ity ≥ 99.0%). The assays were performed in darkness to
avoid algae growth and AgNP photodegradation (Li et al.
2013; Andrade et al. 2023). Physicochemical variables
(conductivity -µs cm−1, dissolved oxygen -DO, mg L−1, and
pH) were measured at the beginning and the end of the
bioassays.

Mortality was checked at 48 h under a stereoscopic
microscope (Nikon E100). The size of the surviving
organisms was registered by measuring from the upper end
of the cephalic carapace to the lower end of the valve car-
apace through a microscale attached to the microscope
eyepiece.

Growth bioassay

Neonates of C. eurynotus (<24 h) were individually exposed
to AgNPs in 20 mL glass containers with five replicates
under the experimental conditions described before (WA
and WAH), although treatments without algae were not
included as they would limit cladocerans development. A
control and two sublethal AgNP concentration (Table 1)
were set up based on the WA LC50 (25 and 50%) and
considering the predicted environmental concentrations
(8.8 × 10−5–10 μg L−1) (Nowack and Mueller 2008; Gott-
schalk et al. 2013; Maurer-Jones et al. 2013). The media
were completely changed every two days and the experi-
ment lasted 10 days accordingly to the life cycle of the test
species (Santos-Wisniewski et al. 2006). The molts were
counted and removed before every media change, and adult
size was registered at the end of the experiment.

Phototactic behavior bioassay

C. eurynotus has negative phototaxis at natural conditions
(Cabrera et al. 1997; Sacherová and Hebert 2003; dos
Santos Silva et al. 2018). The effect of AgNPs on this
behavior was analyzed in C. eurynotus adults at the same
four exposure conditions described for mortality (W, WA,
WH, and WAH), and at the same AgNP concentrations
selected for the growth bioassay (Table 1). The experi-
mental design to assess phototactic behavior was based on
previous studies with modifications (Rivetti et al. 2016; De
Felice et al. 2019). Specific devices were built consisting of
glass rectangular chambers (7.5 × 1 × 1 cm) divided into two
zones: light and dark. The light zone was provided with a

white LED light placed in one extreme (12 w, 10 cm dis-
tance), and the dark one was provided with a black cover-
age. The experiments consisted of placing adult C.
eurynotus individually on the light section of the chamber.
Entering into the dark zone was considered a positive
expected response. Any failure in this response was con-
sidered a behavior alteration. Also, the time spent by
organisms to evade the light was recorded and considered
for the analysis. Based on preliminary observations,
organisms that did not cross the line in a period of 3 min
were considered as non-evaders. For each experimental
condition and AgNP concentration (Table 1) 15 replicates
were performed with one organism each. The evasion
behavior was measured after 2 and 24 h of exposure in
50 mL beakers under the same conditions as described
before.

Data analysis

The mean Ag+ release from AgNPs was compared among
experimental conditions (W, WA, WH, and WAH) through
analysis of variance (ANOVA, Tukey post-test) with R
package “rstatix” (Kassambara 2020). The means of phy-
sicochemical variables (conductivity, DO, and pH) were
compared between treatments and through time by ANOVA
(Tukey post-test) or Kruskal–Wallis test (KW), as
appropriate.

To obtain the 48 h LC50 we performed the Probit ana-
lysis (Finney 1971) with the “drc” R package (Ritz et al.
2015). The mean size of surviving organisms of treatments
in mortality assays were compared to control through
ANOVA (Dunnett post-test).

The phototactic behavior was analyzed through gen-
eralized linear mixed effect models with a binomial error
distribution and logit link function. The fixed predictors
were AgNPs, algae, and humic acids; while time was con-
sidered as random effect. The best model was selected
based on the lowest corrected Akaike Information Criterion
(AICc) through the “dredge” function (“MuMIn” R pack-
age) (Barton and Barton 2015), followed by “sw” function
to obtain the parameter weights. Finally, the model
assumptions were checked.

All data analysis was performed with R Studio software
(version 2022.07.1).

Results

NPs behavior

TEM analysis displayed a different size distribution
between spherical and non-spherical AgNPs. The first ones
were 25 ± 10 nm, while the second ones were 75 ± 11 nm in
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both ultrapure and culture water (Fig. 1a, b). Moreover, the
humic acids tended to coat the NPs (shown as a thin layer
around the particle surface) (Fig. 1c).

The UV–visible absorption spectrum presented the typical
surface plasmon of AgNPs, with a maximum peak close to

410 nm (Fig. 2a). As previously described, the asymmetry in
the plasmon is due to the presence of nanoparticles with
triangular or elongated shape (Tak et al. 2015; Andrade et al.
2023). The characteristic peak is conserved in both culture
water and with the addition of humic acids (Fig. 2a).

0.05 µm

a.

0.05 µm

b.

0.05 µm

c.

Fig. 1 Transmission electron microscopy (TEM) of AgNPs in (a) ultrapure water, (b) culture water, and (c) with humic acids addition
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Fig. 2 a Surface plasmon resonance of AgNPs in ultrapure water,
culture water (W), and with humic acids addition (WH). b Fourier
transform infrared spectroscopy (FT-IR) in culture water of AgNPs
(W), humic acids, and their combination (WH). c Means and standard

deviation of Ag+ ions release (%) by AgNPs over time (h) in ultrapure
water and each experimental condition: culture water (W), algae
addition (WA), humic acids addition (WH), and algae and humic acids
addition (WAH)
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FT-IR spectra analyses in culture water for AgNPs and
humic acids alone and in combination are demonstrated in
Fig. 2b. Humic acids showed a wide band at 3246 cm−1 (H-
bonded OH), a strong peak at 1580 cm−1 (COO- of carbo-
nyl), and a peak at 1370 cm−1 (C=O of quinone) and at
1000 cm−1 (C-O stretch or OH deformation of COOH)
(Sharan et al. 2018). On the other hand, AgNPs also pre-
sented a wide band at 3246 cm−1 (H-bonded OH), a peak at
1288 cm−1 (N-OH complex), and a peak at 1060 cm−1 (C-N
of pyrrolidone) (Andrade et al. 2023). Finally, the FT-IR
spectra of the combination of AgNPs and humic acids
gather the main vibration bands of the two components,
leading to an overlap of peaks of 1370 cm−1 (C=O of
quinone from humic acids) and appearances of 1580 cm−1

peak (COO- of carbonyl from humic acids) which indicates
that the AgNPs and the humic acids may have interacted.

The Ag+ release at 48 h differed between the different
experimental conditions (ANOVA F= 9.728, p= 0.0018)
(Fig. 2c). In ultrapure water it was 22.87% (±1.13), in
culture water (W) it was 36.75% (±2.18), the algae presence
(WA) increased it: 47.74% (±6.45), the humic acids pre-
sence (WH) decreased it: 22.21% (±4.09), and an inter-
mediate situation was observed when both antagonistic
factors were present (WAH): 36% (±3.8).

Mortality bioassay

The physicochemical variables did not change either
between treatments or though time (48 h) (ANOVA test,
p > 0.05); conductivity: 1225–1535 µs cm−1, DO:
8.53–8.71 mg L−1, and pH: 6.5–7.2.

The LC50 of each experimental condition and their dose-
response curves are shown in Fig. 3a. The presence of algae
decreased the AgNP LC50 by 24% (WA), and the presence
of humic acids, by 151% (WH). When both factors were
present (WAH), the LC50 decreased 211%; which means
36% more than the additive sum of the observed individual
effects (i.e., 175%).

The algae promoted the short-term growth of organisms
in absence of AgNPs (ANOVA test F= 13.43, p < 0.001).
A significative reduction in surviving C. eurynotus size was
registered at concentrations ≥2.5 µg L−1 in the treatments
containing only algae (WA) (ANOVA test F= 7.96,
p < 0.001). No differences were observed in organism size
in treatments containing humic acids (ANOVA test
p < 0.05) (Fig. 3b).

Growth bioassay

C. eurynotus adults’ size was significantly lower at 1.5 µg L−1

AgNPs than control in absence of humic acids (WA)
(ANOVA test p= 0.001). The number of molts decreased
marginally significantly at 1.5 µg L−1 AgNPs than control in

absence of humic acids (WA) (ANOVA test p= 0.06).
With humic acids addition (WAH), no effects of AgNPs on
organisms’ size and molts were observed under the selected
concentrations (ANOVA test p > 0.05) (Fig. 4).

Phototactic behavior bioassay

The selected model for the analysis of the negative photo-
tactic behavior based on the AICc criterion (Table 2) is
shown in Table 3. Algae and humic acids were the main
predictors that influenced the light evasion response
(weights: 1 and 0.92 respectively, Table 2). Only these
factors improved significantly the negative phototactic
behavior of C. eurynotus by increasing the percentage of
organisms that evaded the light (Fig. 5, Table 3). AgNPs did
not significantly affect the behavioral response in the tested
concentrations (weight: 0.53, Table 2).

The same pattern was observed for the time spent to
avoid the light (Cox model, data not shown), as algae and
humic acids improved C. eurynotus performance, but
AgNPs did not affect it significantly.

Discussion

NPs behavior

The TEM analysis has shown that humic acids stabilized
AgNPs by adsorption forming a thin layer around the par-
ticles, which was also observed in other studies (Cáceres-
Vélez et al. 2019; Ale et al. 2021).

The increase of Ag+ release in culture water compared to
ultrapure water, might be due to the presence of CaCO3 in
the first, as described in the material and method section. In
this context it is probably that the Ag+ interact with the
CO3

2− to form Ag2CO3. This reaction between these ions
could produce an increase in the Ag+ release from the
nanoparticle since it is consumed by the CO3

2−. As a result,
when the Ag+ release is measure we could find an increase
in these values. Moreover, the culture water also has Mg2+

and Ca2+ which can interact with the union sites of the
nanoparticle for the Ag+, affecting the liberation of those
ions. In this sense, it has been previously shown by other
authors that the Ag+ release could be affected by the
composition of the culture medium (Liu et al. 2011; Vaz-
quez-Muñoz et al. 2020).

As expected, the presence of Tetradesmus obliquus
promoted Ag+ release from AgNPs. Previous studies
reported a similar effect with the same (Andrade et al. 2023)
and other algae species on AgNP dissolution (Navarro et al.
2015; Chen et al. 2019; Ponton et al. 2019). This result was
attributed to the oxidation capacity of some algae exudates
such as hydrogen peroxide (Sigg and Lindauer 2015). In the
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case of T. obliquus, AgNP dissolution could have taken
place mainly in the area surrounding the cell wall, as
Chlorococcales have a characteristic strong trilaminar cell
wall (Burczyk 1973; Allard and Templier 2001), and also,
algae wall pores would not allow the entry of AgNPs bigger
than 20 nm (Chen et al. 2019).

Conversely, the presence of humic acids reduced the
Ag+ released from AgNPs, which agrees with recent studies
(Xiao et al. 2020; Ale et al. 2021). Humic acids may have
stabilized AgNPs by adsorption as observed in the TEM
analysis. Other reports have suggested that humic acids are
able to reduce Ag+ ions and form new NPs, thus decreasing
Ag+ concentration in the media (Liu et al. 2021).

When both algae and humic acids were present, an
intermediate ion release percentage was observed. In this

case, a reduction in AgNP dissolution was observed when
compared with culture water, indicating that humic acids
may have exerted a greater effect on Ag+ release than algae.
It has been reported that the presence of humic substances
can modify the effects of pollutants in algae in different
ways. Humic acids can form a protective coating on algae,
decrease Ag+ released by AgNPs, and reduce Ag+ ions,
thereby decreasing the uptake of Ag+ ions by algae (Ale
et al. 2021; Liu et al. 2021; Popa et al. 2022). On the other
hand, the humic substances redox buffering activity may
have countered the oxidative effects of algae exudates on
AgNPs. In this sense, humic acids can counteract the ability
of algae to increase ions release as these substances can
reduce reactive oxygen species (ROS) such as hydrogen
peroxide present in algae exudates (Fabrega et al. 2009;
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eurynotus exposed to AgNPs at
four experimental conditions:
culture water (W), algae addition
(WA), humic acids addition
(WH), and algae and humic
acids addition (WAH). a Dose
response curves and the
estimated LC50 and 95%
confidence intervals (CI)
(µg L−1). b Mean size (µm) and
standard deviations of surviving
C. eurynotus. Letters indicate
significative differences between
controls, and * indicates
significative differences between
treatments and controls
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Sigg and Lindauer 2015; Popa et al. 2022). Nevertheless,
the behavior of AgNPs under the combined effect of these
environmental factors has not been studied before, there-
fore, the underlying mechanism needs to be further
addressed.

Mortality bioassay

Chydorus eurynotus was sensitive to AgNPs, as acute
effects (LC50= 2.37 µg L−1) were observed in concentra-
tions close to those predicted for surface water bodies
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a. b.Fig. 4 Mean and standard
deviations of (a) size (µm) and
(b) total molts of adult C.
eurynotus at the end of the
growth bioassay (10 d) of
AgNPs at two experimental
conditions: culture water with
algae addition (WA) and algae
and humic acids addition
(WAH). * indicates significative
differences between treatments
and controls

Table 2 Negative phototactic behavior model selection based on the comparison of their corrected Akaike Information Criterion (AICc) with the
“dredge” function (“MuMIn”), and parameter weights estimated with the “sw” function (“MuMIn”)

(Intercept) A H AgNPs H:AgNPs A:H A:AgNPs A:H:AgNPs df logLik AICc Delta Weight

0.02 + + 4 −220.12 448.36 0.00 0.31

0.37 + + + + 8 −216.66 449.72 1.36 0.16

0.11 + + + 6 −218.78 449.80 1.44 0.15

0.00 + + + 5 −220.10 450.36 2.00 0.11

0.35 + + + + + 9 −216.63 451.78 3.42 0.06

0.09 + + + + 7 −218.75 451.83 3.46 0.05

0.29 + 3 −222.99 452.05 3.68 0.05

0.41 + + + + + 10 −216.09 452.81 4.45 0.03

0.14 + + + + 8 −218.34 453.09 4.72 0.03

0.38 + + 5 −221.67 453.51 5.14 0.02

0.39 + + + + + + 11 −216.09 454.93 6.57 0.01

0.12 + + + + + 9 −218.31 455.14 6.78 0.01

0.41 + + + 7 −221.23 456.78 8.41 0.00

0.41 + + + + + + + 13 −216.08 459.22 10.85 0.00

0.43 + 3 −227.08 460.22 11.86 0.00

0.52 + + 5 −225.79 461.74 13.38 0.00

0.77 + + + 7 −223.74 461.79 13.43 0.00

0.68 2 −229.83 463.70 15.34 0.00

0.77 + 4 −228.56 465.24 16.88 0.00

A H AgNPs H:AgNPs A:H A:AgNPs A:H:AgNPs

Sum of weights 1 0.92 0.53 0.26 0.25 0.09 <0.01

N containing models 14 14 14 6 6 6 1

A: algae; H: humic acids; AgNPs: silver nanoparticles
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(9 × 10−5 and 1.51 μg L−1) (NanoFATE; Batley et al. 2013;
Sun et al. 2014, 2016). Although the toxicity of AgNPs
was not previously evaluated in this test species, Wang
et al. (2012) reported a higher LC50 for C. sphaericus
(34 µg L−1). The authors concluded that although silver
ions (AgNO3) may play a role in AgNP toxicity, this
influence was lower for cladocerans compared to other
organisms since they can ingest the nanoparticles. How-
ever, it is important to consider the high variability of the
acute toxicity of AgNPs, which can be related to test
conditions, test species, and the nanoparticles properties;
for example, reported LC50 for Daphnia spp. range from
0.26 to 30 µg L−1 (Silva et al. 2014; Carvalho-Pereira et al.
2015; Assis da Silva et al. 2022) and for Ceriodaphnia
dubia, from 0.15 to 67 µg L−1 (Angel et al. 2013; Kennedy
et al. 2015; Harmon et al. 2017).

The presence of algae decreased the lethality of AgNPs
on C. eurynotus by 24%. This agrees with observations in a
previous study where the same algae concentration
decreased Ceriodaphnia reticulata mortality by AgNPs by
64% (Andrade et al. 2023). In congruence, Stevenson et al.
(2017, 2022) reported that a scarce algae provision
increased the toxicity of AgNPs in D. pulicaria in terms of
survival and reproduction, with consequences at the popu-
lation level in the long term, the authors discussed that this
may be due to effects of nanoparticles on Daphnia sp.
feeding. Some authors have attributed this mitigation effect
mainly to better nutritional conditions of cladocerans under
the presence of food and the possible interactions between
algae and AgNPs (Allen et al. 2010; Ribeiro et al. 2014;

Harmon et al. 2017). On the one hand, the greater energy
available when food was present might allow a better per-
formance of cladocerans in terms of energy allocation for
detoxification, growth, and reproduction (Harmon et al.
2017). Furthermore, the interaction between algae and
AgNPs could have played an important role as Ag+ release
increased in presence of algae, triggering a faster AgNP
dissolution. In consequence, this could have reduced of the
well-known “Trojan horse” mechanism of toxicity, which
implies that silver ions are released once the particles are
ingested by the organisms inducing oxidative stress (de
Souza et al. 2019; Galhano et al. 2022).

The presence of humic acids had a greater effect on
AgNP toxicity, as it reduced their lethality (i.e., increased
LC50) by 151%. Humic acids also inhibited the observed
reduction in the size of the surviving organisms at the end of
the acute assay. This may be due to the decrease of dis-
solved silver ions in presence of humic acids, which can be
due to both adsorption on AgNPs and reduction of Ag+ into
new NPs as described before. Wang et al. (2015) reported
that humic substances alleviated AgNP lethality on C.
sphaericus in a concentration-dependent manner and
attributed this to the inhibition of AgNP dissolution by
humic acids. Moreover, the authors discussed that humic
substances can also act as antioxidants, as they are able to
react with ROS caused by AgNPs (Fabrega et al. 2009).

Table 3 Selected generalized linear mixed model for the negative
phototactic behavior of C. eurynotus

Generalized linear mixed model fit by maximum likelihood

Family: binomial
(logit)

Formula: Escape ~ Algae + Humic + (1 | Time)

AIC BIC logLik deviance df. resid

448.2 463.8 −220.1 440.2 356

Scaled residuals

Min 1Q Median 3Q Max

−2.0357 −1.0113 0.4912 0.7519 0.9889

Random effects

Groups name Variance Std. dev.

Time (Intercept) 3.58E-15 5.99E-08

Number of obs.: 360, groups: Time, 2

Fixed effects

Estimate std. Error z value p value

(Intercept) 0.02239 0.18801 0.119 0.90519

Algae 0.8513 0.23182 3.672 0.00024

Humic 0.54797 0.23042 2.378 0.0174
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Fig. 5 Negative phototactic behavior of C. eurynotus (% of cases)
exposed to AgNPs (0, 0.7, and 1.5 µg L−1, C0, C1, and C2 respec-
tively) after 2 and 24 h of exposure at four experimental conditions:
culture water (W), algae addition (WA), humic acids addition (WH),
and algae and humic acids addition (WAH)

Environmental factors modify silver nanoparticles ecotoxicity in Chydorus eurynotus (Cladocera) 691



Under the combination of both, algae and humic acids,
AgNP toxicity on C. eurynotus decreased in a greater per-
centage compared with the additive sum of the individual
mitigation effects (211%), indicating a possible interaction
between both factors. In this sense, Zheng et al. (2022)
reported that humic acids promoted the growth, chlorophyll
content, and polysaccharide concentration of Scenedesmus
capricornus, which belongs to the same family than T.
obliquus (Scenedesmaceae). The authors suggested that
humic acids may act as a carbon source for energy uptake
and growth of algae. In a recent review, Popa et al. (2022)
reported that humic substances act as microalgal biostimu-
lants since they can increase the ionic nutrient availability,
improve the protection against abiotic stressors (like AgNPs
and Ag+), and enhance the accumulation of several com-
pounds such as carotenoids, fatty acids, lipids, and carbo-
hydrates. In this scenario, humic acids could have indirectly
improved the nutritional conditions of C. eurynotus, and
therefore, increase the magnitude of the toxicity mitigation.
There are some reports in the literature on the combined
effects of environmental factors such as humic acids and
light irradiation regarding AgNP toxicity (Akhil and
Sudheer Khan 2017; Zhang et al. 2017), however the
underlying mechanism of these interactions needs to be
further explored. It should be noted that even under these
conditions of reduced toxicity, AgNPs could still represent a
risk to aquatic biota, as lethal effects (LC50 ≤ 7.38 µg L−1)
were observed at concentrations close to those predicted for
the environment. However, it should be considered that
these predictions are highly variable, so they must be
interpreted carefully.

Growth bioassay

C. eurynotus growth was affected by AgNPs in terms of
reduction in size and number of total molts. Although the
effects of AgNPs on growth of Chydoridae were not
reported before, reductions in growth by these nanoparticles
were reported in different Daphniidae cladocerans (Zhao
and Wang 2011; Andrade et al. 2023). These negative
impacts of AgNPs have been attributed to direct and
indirect effects. On the one hand, AgNPs can directly affect
cladocerans, as oxidative stress is one of their main reported
mechanisms of toxicity (de Souza et al. 2019; Galhano et al.
2022). Furthermore, AgNPs were shown to exert mechan-
ical effects on cladocerans by adhesion to carapace and
antennas, and obstruction of filter setae and gut, which
ultimately affect their locomotion and feeding (Zhao and
Wang 2010; Asghari et al. 2012; Yan and Wang 2021). On
the other hand, AgNPs may exert indirect effects on cla-
docerans by interacting with the food provided in chronic
exposures. Although no effects on T. obliquus flocculation
were previously observed under similar AgNP

concentrations (Andrade et al. 2023), it has been reported
that algae can adsorb NPs or uptake Ag+ ions, and there-
fore, constitute another Ag route of entry into cladocerans’
bodies (Wang et al. 2019; Dang et al. 2021). Moreover,
Lekamge et al. (2019) reported that algae previously
exposed to AgNPs induced a decrease in the feeding rates of
D. carinata, and demonstrated the trophic transference of
the particles.

Under the presence of humic acids, the effects of AgNPs
on C. eurynotus growth were inhibited. This inhibition by
organic matter on the effects of AgNPs to cladoceran
growth was not reported before. However, it has been
suggested that humic substances can decrease the effects of
silver nitrate and other metallic NPs such as zinc and copper
oxide on D. magna growth (Glover and Wood 2004; Dai
et al. 2020; Ahmed et al. 2021).

Phototactic behavior bioassay

No significant effects of AgNPs were observed on C. eur-
ynotus phototactism at the tested concentrations, despite
previous studies registering behavioral alterations in D.
magna exposed to these particles. Indeed, Park et al. (2022)
reported that AgNPs induced variable alterations in swim-
ming speed at concentrations between 0.1 and 10 µg L−1.
Galhano et al. (2020) found that AgNPs altered the clado-
ceran allocation time in the water column, and Kolkmeier
and Brooks (2013) concluded that their phototactic behavior
decreased when exposed to silver nitrate. As the behavioral
impairments of AgNPs on cladocerans are still incipient and
variable, more studies are needed to elucidate the possible
mechanisms.

The presence of algae and/or humic substances may
directly or indirectly provide cladoceran more energy to
react to the stress situation even in presence of AgNPs
(Harmon et al. 2017; Popa et al. 2022). These results
highlight the importance of considering environmental
factors when analyzing behavior endpoints, in order to
assess more realistic exposure scenarios, which may have a
great effect on such sensitive responses.

Conclusions

The behavior of AgNPs was strongly affected by environ-
mental factors such as algae and humic acids alone and in
combination. Algae promoted Ag+ release, and humic
substances reduced it, and an intermediate situation was
observed when both factors were combined.

Chydorus eurynotus was sensitive to AgNPs, as its sur-
vival and growth were affected. The presence of algae and
humic acids reduced these effects through different
mechanisms. Both environmental factors may have
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interacted as their combined effect on AgNP toxicity was
greater than the sum of the individual effects.

In view of the obtained results, it is essential to analyze
the isolated and combined effects of environmental factors
on NPs behavior and toxicity, in order to understand and
predict these processes under realistic exposure conditions.
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