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Abstract
Aquatic ecosystems have been suffering deleterious effects due to the development of different economic activities.
Metal(loid)s are one of the most persistent chemicals in environmental reservoirs, and may produce adverse effects on
different organisms. Since fishes have been largely used in studies of metal(loid)s exposure, tilapia and largemouth bass were
collected in three ecosystems from the Yaqui River Basin to measure the concentrations of metal(loid)s (chromium (Cr),
copper (Cu), iron (Fe), manganese (Mn), nickel (Ni), zinc (Zn) arsenic (As), mercury (Hg), and selenium (Se)) and some
biomarkers (somatic indices, metallothionein expression and histopathological analysis) in tissues of both species.
Metal(loid) concentrations varied seasonally among ecosystems in tissues of both species. The elements varied seasonally
and spatially in tissues of both species, with a general distribution of liver > gills > gonads. Also, biomarkers showed
variations indicative that the fish species were exposed to different environmental stressor conditions. The highest values of
some biomarkers were in largemouth bass, possibly due to differences in their biological characteristics, mainly feeding
habits. The multivariate analysis showed positive associations between metal(loid)s and biomarkers, which are usually
associated to the use of these elements in metabolic and/or regulatory physiological processes. Both fish species presented
histological damage at different levels, from SI types (changes that are reversible for organ structure) to SII types (changes
that are more severe but may be repairable). Taken together, the results from this study suggest that the Yaqui River Basin is
moderately impacted by metals and metalloids.
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Introduction

Aquatic ecosystems have been targeted by distinct anthro-
pogenic activities that have resulted in deleterious con-
sequences for their overall health and the organisms that
reside within them (Huang et al. 2022). Anthropogenically
derived effluents that are released by activities, such as
mining and agriculture, contaminate aquatic ecosystems,
with metal(loid)s being some of the most persistent che-
micals (Rainbow and Luoma 2011; Wood 2011). Metal(-
loid)s accumulate in water, sediments, soils, and biota, and
may suffer chemical speciation and biological transforma-
tions through the food web, depending on biotic and abiotic
conditions (Rainbow and Luoma 2011; Mackay et al.
2018). Organisms may develop several adverse effects to
metal(loid)s when the threshold concentration is exceeded,
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from physiological responses to chronic disease (Mackay
et al. 2018). Metal(loid) contamination of aquatic ecosys-
tems is a serious threat to wildlife, including fishes that
occupy different levels in food webs (Wood 2011; Ali and
Khan 2018; Chua et al. 2018).

Since fishes have different feeding habits, they have been
used efficiently as sentinel species for assessing con-
tamination of aquatic ecosystems around the world (Wep-
ener et al. 2011; Yi et al. 2017; Hatice and Turgay, 2020;
El-Agri et al. 2022). Their biological characteristics as wide
distribution, abundance, ease of capture and management,
and longevity, make them suitable to study xenobiotic
exposure (Chatterjee, et al. 2018; Marie, 2020; Thoré et al.
2021).

Biomarkers have been used in several studies since their
approval by the United States National Research Council in
1987 (El-Agri et al. 2022), and act at different levels of
biological organization to assess the health status of a
population or an ecosystem (Mussali-Galante et al. 2013;
Fahd et al. 2020; Delfino-Vieira et al. 2022). Thus, the
effects of xenobiotics, such as metal(loid)s, could be
determined at a specific level using biomarkers and appro-
priate sentinel species (Stentiford et al. 2003; Sanchez and
Porcher 2009; El Agri et al. 2022).

The tilapia (Oreochromis niloticus) and largemouth bass
(Micropterus salmoides) are widely distributed in many
freshwater ecosystems around the world (Hinck et al. 2008;
Dwivedi et al. 2015; Prabu et al. 2019; Hussein et al. 2020).
These species are used in aquaculture with high commercial
values, acceptable meat quality, and high protein content.
Both species play major ecological roles within their
respective ecosystems as benthic and pelagic species, and
are able to survive in a wide range of environmental con-
ditions (Sepúlveda et al. 2003; Mehinto et al. 2014; Dwi-
vedi et al. 2015; Abdel-Khalek et al. 2016).

The Yaqui River Basin is one of the most important
ecoregions in northwest Mexico that provide ecological,
social, and economic services. The ecosystems embrace
numerous endemic, migratory, and introduced species,
such as tilapia and largemouth bass (Martínez-Durazo
et al. 2020). It also provides water for human consumption
and multiple economic activities (Gortáres-Moroyoqui
et al. 2011; McCullough and Matson 2016). Previous
studies have documented metal(loid) contamination in the
basin in soils, sediments, and fishes (Meza-Figueroa et al.
2009; De la O-Villanueva et al., 2013; Meza-Montenegro
et al. 2012; Martínez-Durazo et al. 2020). Considering
that elevated levels of metals were reported in tilapia and
largemouth bass from Yaqui River Basin, the aim of this
study was to investigate if the concentrations of metal(-
loid)s were associated with biomarkers in gills, gonads
and liver of both species, from three ecosystems of
this basin.

Material and methods

Study area

The Yaqui River basin is located in northeastern Mexico
(26°10′–30°40′ N and 106°80′–111°40′ W) spanning an
area of 71,452 km2 (Fig. 1). The predominant climate is
semi-arid with a range of annual average precipitation of
366.1–600.8 mm. There are some reservoirs in the basin
that provide water for human consumption and productive
activities. Three dams were chosen based on their pre-
dominant anthropogenic activities. First, La Angostura
(ANG; 1040 m meters above mean sea level (MAMSL))
dam is situated in the Nacozari copper mining district,
which is the second most extensive mining area in the
region. Second, El Cajon de Onapa (ECO; 556 m MAMSL)
dam is situated on the Sahuaripa River, a small tributary of
the Yaqui River, where agriculture, fish aquaculture and
cattle raising at small scale are the principal economic
activities. Third, El Oviachic (OVI; 58 m MAMSL) dam is
situated at the end of basin and near to Yaqui Valley, one of
the most extensive agricultural areas in the northwest of
Mexico (CONAGUA 2020).

Field survey and fish collection

Fishes were sampled during the dry and rainy seasons of
2018 at the three dams of the Yaqui River Basin.
Approximately 30 individuals of each species (tilapia O.
niloticus, and largemouth bass M. salmoides) were collected
at ANG, ECO, and OVI dams during the two seasons,
which is enough to achieve biomarker responses according
to Gagnon and Hodson (2012). Fish sampling was per-
formed using commercial 4-cm gill nets with the help of
local fishers. Total fish length and weight, as well as liver
and gonad weights, were recorded using an icthyometer
(Aquatic Biotechnology, model IK2R) and a digital balance
(Ohaus, Scout Pro 6000, 6000 ± 0.001 g) in order to cal-
culate Condition Factor (CF), Hepatosomatic Index (HSI),
Gonadosomatic Index (GSI), and Histopathological
Alterations Index (HAI) (Azevedo et al. 2009; García-Gasca
et al. 2016; Banday et al. 2020).

Specimens were identified and sacrificed by brain spik-
ing according to the guidelines for the use of fishes in
research (American Fisheries Society 2014). Immediately
after dissection, small sections of liver tissues were trans-
ferred into RNA-later solution (Thermo Fisher Scientific,
Waltham, USA) to preserve RNA integrity for further gene
expression analysis (Vehniäinen et al. 2019). Similarly, a
fraction of each liver, gonad, gills, and muscle, were col-
lected, washed with distilled water, and preserved in 4%
buffered formalin (Mustafa 2020). Also, liver, gonads,
stomach, gills, and muscle were dissected in the field,
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Fig. 1 Sampling sites in the three ecosystems from three ecosystems (La Angostura, ANG; El Cajon de Onapa, ECO; and El Oviachic, OVI) of the
Yaqui River Basin in northwestern of Mexico
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placed in labeled sterile polyethylene bags, iced, and
transported to the laboratory, and frozen at −20 °C for
processing for metal analysis. The fish carcass of each
specimen was placed in labeled sterile polyethylene bags,
transported on ice, to the laboratory, and frozen at −20 °C
for morphometric and meristic measurements (García-
Gasca et al. 2016).

Determination of somatic indices

The somatic indices were calculated using the total length
and weight of each fish, in order to evaluate the overall fish
health (Banday et al. 2020). The CF, HSI and GSI were
determined according to Nash et al. (2006), Azevedo et al.
(2009) and García-Gasca et al. (2016):

CF ¼ bodyweight gð Þ
lenght3 cmð Þ ð1Þ

HSI ¼ liver weight gð Þ
total bodyweight gð Þ � 100 ð2Þ

GSI ¼ gonadweight gð Þ
total bodyweight gð Þ � 100 ð3Þ

Metallothionein gene expression

Total RNA was isolated from liver tissue using Tripure
(Roche Applied Science, Penzberg, Alemania) reagent
according to manufacturer’s instructions, and RNA purity
and concentration were measured using NanoDrop™
(NanoDrop-ONE, Thermo Scientific). Turbo DNA-free kit™
(Invitrogen, Thermo Fischer Scientific) was used to eliminate
genomic DNA from the RNA. DNA-free RNA was reverse
transcribed into complementary DNA (cDNA) using
M-MLV Reverse Transcriptase (Promega, Mexico), and
random hexamers (Invitrogen, Thermo Fischer Scientific) in
a 20 μL reaction containing 1046.56 ± 923.14 ng µL−1 for

tilapia and 1562.82 ± 1073.35 ng µL−1 for largemouth bass,
for total RNA.

Metallothionein (mt) gene expression in tilapia and lar-
gemouth bass was used as biomarker of metal(loid)s con-
tamination, using the Eukaryotic Translation Elongation
Factor 1 Alpha 1 (eEf1a) as the reference gene (Girgis et al.
2019; Ma et al. 2019; Wang et al. 2014). The amplification
of mt and eEf1a for tilapia and largemouth bass were per-
formed using the primers shown in the Table 1. Primers for
mt were designed using the Primer-BLAST software (Ye
et al. 2012). For eEf1a, primers were synthesized according
to sequences reported by Ma et al. (2019) and Wang et al.
(2015). PCR conditions were set as follows: 1 cycle at
94 °C for 5 min; 35 cycles at 94 °C for 30 s, 60 °C for 30 s,
72 °C for 30 s, and a final elongation cycle was added at
72 °C for 5 min, rendering products for mt of 141 pb for
tilapia and 158 pb for largemouth bass. The eEf1a rendered
a product of 250 and 156 bp for tilapia and largemouth bass,
respectively (Ma et al. 2019; Wang et al. 2015). Melting
curve analysis was performed at 87 °C to assess target
amplification specificity. Values of threshold cycle (Ct)
were obtained using Quant Studio Real-Time PCR Software
V1.2 system software. Ct values from target genes of tilapia
and largemouth bass were normalized with the eEf1a gene,
and the relative level of expression of mt was determined
according to Pfaffl (2004).

Histological analysis

For histopathological analysis, gills and liver tissues were
washed with distilled water and transferred to 70% ethanol
(Joshi and Sreekumar 2015). Tissues were dehydrated in
ascending concentrations of ethanol and embedded in par-
affin (Stentiford et al. 2003). Paraffin blocks were cut into
5-μm thick sections with a rotatory microtome (Slee Cut
5062, Carl Zeiss, Germany) and stained with Hematoxylin
and Eosin (Javed et al., 2017). The slides were analyzed
using light microscopy (Leica DM 1000, Leica Micro-
systems, Switzerland) with a camera (Leica CH-9435, Leica

Table 1 Primer sequences used
for standardized metallothionein
(mt) gene expression

Primer name Sequence (5’–3’) Amplicon
size (bp)

Primer
efficiency (%)

Tm
(°C)

OnTila-EF1A F: GCACGCTCTGCTGGCCTTT 250 126 60

R: GCGCTCAATCTTCCATCCC

MsLob-EF1A F: GTTGCTGCTGGTGTTGGTGAG 156 107 60

R: GAAACGCTTCTGGCTGTAAGG

OnTila-MT F: CAAGACTGGAACCTGCAAC 141 144 60

R: CATGTCTTTCCTTTGCACAC

MsLob-MT F: CTGCTCATGCTGCCCATC 158 120 60

R: TGCAGTTAGTCATTAGTTGTTCACAC

Assessing metal(loid)s concentrations and biomarkers in tilapia (Oreochromis niloticus) and. . . 169



Microsystems, Switzerland), and an image-capture system
(Motic Image Plus 2.0, China).

The Histopathological Alterations Index (HAI) for the
gills was calculated according to Cerqueira and Fernandes
(2002), and for the liver according to Camargo and Marti-
nez (2007); both indices are based on the type, location and
severity of the lesion. Gill lesions were classified into six
groups: epithelium lifting, hypertrophy of mucous mem-
brane cells, deformation of secondary lamellar structure,
aneurysm of lamella, lamella fusion, and loss of gill cell
structure. Liver lesions were classified in four groups:
pycnosis, vacuolization, inflammation and necrosis. The
lesions were classified into three progressive stages (S)
based on the possibility that the normal structure of the
organ would be restored after environmental improvement,
according to Bernet et al. (1999), Ali and Khan (2018) and

Chua et al. (2018): SI, changes that are reversible in which
the normal organ structure can be recovered; SII, changes
that are more severe and affect the organ function but may
be repairable after environmental improvement; and SIII,
changes in which the restoration of organ structure is not
possible even after environmental improvement. The HAI
was calculated from the sum of the lesion types within each
of the three stages multiplied by the stage index according
to Ali and Khan (2018) and Chua et al. (2018).

Metal analysis

Gill, gonad, and liver tissues from tilapia and largemouth
bass were freeze-dried (LABCONCO Model 77530;
−48 °C and 32 × 10−3 mbar for 48 h) and manually
grounded (Teflon mortar for 10 min). The powdered tissues

Table 2 Concentrations of metal(loid)s (μg g−1) in tilapia (O. niloticus) tissues collected in three ecosystems (La Angostura, ANG; El Cajon de
Onapa, ECO; and El Oviachic, OVI) of the Yaqui River Basin

Dry season Rainy season

Tissue Metal(loid) ANG ECO OVI ANG ECO OVI

Gill As 3.01 ± 1.48a 3.77 ± 1.02ab 3.17 ± 0.74a 4.70 ± 1.05b 4.40 ± 0.65ab 5.22 ± 0.87b

Cu 44.52 ± 4.77b 16.06 ± 2.19a 17.40 ± 3.00a 16.24 ± 0.71a 15.99 ± 3.23a 15.04 ± 2.62a

Cr 25.07 ± 4.97c 17.47 ± 6.29b 11.43 ± 5.20a 19.41 ± 1.89b 10.75 ± 0.91a 28.49 ± 10.81c

Fe 568.8 ± 205.8d 566.9 ± 240.7d 297.1 ± 110.6ab 355.5 ± 100.6bc 401.8 ± 129.4c 253.6 ± 81.20a

Mn 31.78 ± 13.46c 81.65 ± 33.42d 19.26 ± 8.16b 10.61 ± 3.35a 121.0 ± 46.87e 20.71 ± 7.95b

Hg 0.37 ± 0.33a 0.38 ± 0.20a 0.24 ± 0.06a 0.25 ± 0.03a 0.35 ± 0.15a 0.78 ± 0.66b

Ni 23.45 ± 3.74e 12.44 ± 4.62c 17.42 ± 7.23d 12.07 ± 4.25c 6.83 ± 2.42b 4.66 ± 1.72a

Se 4.02 ± 0.53b 3.37 ± 1.37ab 3.91 ± 1.22b 2.70 ± 1.02a 3.20 ± 0.72ab 3.38 ± 0.40ab

Zn 49.43 ± 3.28c 56.86 ± 30.78c 76.54 ± 22.12d 20.96 ± 6.35a 26.09 ± 7.66b 62.19 ± 18.92c

Gonad As 2.90 ± 1.47a 3.55 ± 1.20a 3.03 ± 0.24a 5.34 ± 1.18b 5.03 ± 0.64b 5.21 ± 0.51b

Cu 56.29 ± 20.09e 16.41 ± 3.64a 22.14 ± 11.61ab 39.11 ± 20.59cd 46.75 ± 16.50de 26.87 ± 5.68bc

Cr 35.18 ± 15.22c 18.19 ± 3.59a 23.04 ± 7.85ab 50.83 ± 18.19d 29.90 ± 8.76bc 74.34 ± 27.88e

Fe 150.6 ± 101.9a 254.4 ± 170.1b 166.4 ± 61.7ab 156.2 ± 50.06a 417.3 ± 138.5c 568.4 ± 180.2c

Mn 11.14 ± 3.75a 17.20 ± 11.18a 31.92 ± 13.81b 38.78 ± 17.54b 41.38 ± 12.05b 30.94 ± 8.43b

Hg 0.50 ± 0.47a 1.04 ± 0.92b 0.50 ± 0.38a 1.17 ± 1.06b 1.36 ± 1.23b 0.49 ± 0.30a

Ni 29.40 ± 17.16c 8.89 ± 4.45a 22.68 ± 8.61bc 51.42 ± 16.88d 30.58 ± 11.64c 15.49 ± 5.93b

Se 4.33 ± 1.28a 3.40 ± 0.54a 4.14 ± 0.82a 3.07 ± 0.96a 3.56 ± 1.05a 3.95 ± 0.38a

Zn 61.17 ± 18.04ab 69.80 ± 14.80b 100.4 ± 27.2c 56.13 ± 19.48a 319.3 ± 77.09d 52.51 ± 10.84a

Liver As 3.12 ± 1.51a 3.72 ± 1.09a 3.10 ± 0.34a 7.06 ± 1.02b 6.26 ± 0.79b 6.59 ± 0.44b

Cu 801.6 ± 297.6c 771.8 ± 393.5bc 526.1 ± 232.4a 497.3 ± 137.0a 548.8 ± 175.5cd 516.4 ± 125.9a

Cr 29.50 ± 9.67cd 18.23 ± 5.82b 14.45 ± 8.50a 23.38 ± 7.10c 11.69 ± 2.72a 35.70 ± 10.83d

Fe 1995 ± 594.1c 2402 ± 1108c 1244 ± 578.9b 2096 ± 873.0c 2238 ± 662.9c 508.2 ± 190.0a

Mn 23.75 ± 11.88a 56.34 ± 30.33b 18.80 ± 6.02a 48.16 ± 13.67b 94.40 ± 23.74c 17.03 ± 6.70a

Hg 0.38 ± 0.26a 1.21 ± 0.76b 0.50 ± 0.36a 0.39 ± 0.34a 0.64 ± 0.48a 1.31 ± 1.27b

Ni 22.20 ± 7.90b 9.22 ± 4.19a 11.56 ± 7.67a 17.69 ± 7.78b 10.36 ± 4.30ab 9.04 ± 2.27a

Se 3.97 ± 0.81a 3.43 ± 0.65a 3.95 ± 1.15a 2.95 ± 0.97a 3.39 ± 1.19a 3.52 ± 0.34a

Zn 54.18 ± 10.12b 59.59 ± 17.61b 116.3 ± 28.88c 49.31 ± 9.80b 33.42 ± 13.71a 62.38 ± 18.80b

Mean ± standard deviation. Different superscript letters by row indicate significant differences at α= 0.05

Number of samples in each ecosystem= 30; number of samples in each season= 90
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were digested in microwave (MARS-X) in one step: 5 mL
of concentrated HNO3 were added to 0.30 ± 0.003 g of tis-
sue and heated to 100 °C for 5 min, to 120 °C for 5 min, and
to 140 °C for 10 min (Jara-Marini et al. 2020). The quan-
tification of Cr, Cu, Fe, Mn, Ni, and Zn were determined
with air–acetylene (for Cu, Fe, Mn, Ni, and Zn) and nitrous
oxide–acetylene (Cr) flames, using the SpectrAA-240 FS
Absorption Atomic Spectrophotometer (AAS, Varian,
Mulgrave, Australia). The determination of As, Hg, and Se
were performed using AAS coupled to hydride and vapor
generator (Varian VGA 77).

Standard reference material (DORM-4 Fish protein from
the National Research Council of Canada) and blanks were
used as controls. Certified values for all elements were
better than 15%, with recovery percentages of:

Cr = 90.75%, Cu = 96.60%, Fe = 101.55%,
Mn = 88.70%, Ni = 91.80%, and Zn = 103.30%,
As = 85.90%, Hg = 90.55% and Se = 86.20%. The
detection limits were estimated (μg g−1) as Cr = 0.035,
Cu = 0.026, Fe = 0.041, Mn = 0.024, Ni = 0.036, and
Zn = 0.030; for the rest of elements (ng g−1) were
As = 0.41, Hg = 0.34 and Se = 0.38. The metal(loid)
concentrations are reported as dry weights.

Data analysis

Metal(loid) results are represented as mean ± standard
deviation (n from 5 to 90, see Tables 2 and 3). For com-
parison of somatic indices (FC, HSI and GSI), mt gene
expression, and liver metal concentrations, a one-way

Table 3 Concentrations of metal(loid)s (μg g−1) in tissues of largemouth bass (M. salmoides) collected in three ecosystems (La Angostura, ANG;
El Cajon de Onapa, ECO; and El Oviachic, OVI) of the Yaqui River Basin

Dry season Rainy season

Tissue Metal(loid) ANG ECO OVI ANG ECO OVI

Gill As 4.38 ± 1.12c 1.69 ± 0.26a 2.68 ± 1.12b 5.30 ± 1.00cd 5.01 ± 0.54cd 5.43 ± 0.64d

Cu 33.88 ± 16.70c 15.79 ± 1.03 21.02 ± 3.64b 16.23 ± 0.72a 18.43 ± 1.19ab 20.85 ± 5.70b

Cr 25.20 ± 7.75c 23.84 ± 2.96 14.49 ± 5.94b 17.57 ± 5.17b 8.14 ± 2.27a 23.71 ± 6.34c

Fe 160.6 ± 85.79b 387.4 ± 63.73 56.83 ± 22.91a 50.53 ± 20.44a 220.1 ± 72.77c 40.87 ± 14.90a

Mn 7.23 ± 2.22a 5.31 ± 0.94 27.03 ± 7.07c 8.28 ± 2.34a 11.02 ± 3.34b 7.69 ± 2.68a

Hg 0.58 ± 0.34a 2.68 ± 2.14c 0.65 ± 0.46ab 0.47 ± 0.15a 1.05 ± 0.76b 0.54 ± 0.26a

Ni 23.96 ± 8.69d 11.94 ± 1.35 18.53 ± 7.29cd 10.16 ± 2.87b 6.63 ± 2.46a 15.41 ± 3.37c

Se 2.70 ± 0.72a 3.95 ± 0.68b 3.17 ± 1.57ab 3.26 ± 0.52ab 5.59 ± 1.47c 3.39 ± 0.29ab

Zn 44.99 ± 5.61c 42.85 ± 3.33c 63.46 ± 9.83d 20.73 ± 6.95a 27.86 ± 10.23b 60.69 ± 20.84d

Gonad As 4.09 ± 1.15b 1.73 ± 0.23a 2.65 ± 0.95a 10.84 ± 3.01c 5.36 ± 0.64b 5.52 ± 0.35a

Cu 47.72 ± 16.16c 17.85 ± 4.54 35.28 ± 16.67b 24.72 ± 8.50a 26.80 ± 9.58ab 26.27 ± 6.03ab

Cr 41.81 ± 19.99d 26.63 ± 3.55 24.08 ± 9.09b 29.08 ± 9.16bc 12.04 ± 4.63a 35.36 ± 9.96cd

Fe 169.9 ± 74.97b 322.0 ± 124.1 263.7 ± 104.7c 65.94 ± 15.11a 195.3 ± 52.52bc 81.13 ± 16.70a

Mn 6.53 ± 2.96a 8.65 ± 3.55 40.98 ± 10.67d 93.07 ± 24.25e 14.41 ± 6.59b 27.91 ± 6.91c

Hg 0.58 ± 0.12a 3.32 ± 1.06c 0.92 ± 0.88ab 0.64 ± 0.33ab 0.57 ± 0.31a 1.09 ± 0.96b

Ni 33.84 ± 14.01c 11.80 ± 1.14 18.39 ± 7.76ab 21.93 ± 7.32b 15.65 ± 4.76a 19.27 ± 5.43ab

Se 3.08 ± 0.89a 3.75 ± 0.20a 3.30 ± 1.58a 3.48 ± 0.46a 5.74 ± 0.99b 3.29 ± 0.12a

Zn 161.6 ± 73.39a 143.3 ± 45.78 245.4 ± 85.8b 209.9 ± 48.76b 178.33 ± 45.21ab 1096 ± 468.5c

Liver As 4.42 ± 1.14b 1.77 ± 0.20a 2.63 ± 0.85a 7.62 ± 1.02c 6.44 ± 0.74c 6.56 ± 0.36c

Cu 30.23 ± 16.85c 17.90 ± 0.82 18.61 ± 5.04b 9.71 ± 3.58a 9.77 ± 2.87a 9.28 ± 2.91a

Cr 29.53 ± 15.40c 22.14 ± 3.54c 13.05 ± 6.53b 18.24 ± 5.95b 8.02 ± 2.62a 23.15 ± 3.68c

Fe 189.4 ± 74.41a 1275 ± 213.4 1152 ± 480.4c 763.3 ± 280.0b 1433 ± 564.2c 1161 ± 387.9c

Mn 11.89 ± 2.60b 8.82 ± 2.45 25.69 ± 3.72c 7.40 ± 2.78a 6.07 ± 2.53a 10.44 ± 2.64b

Hg 0.83 ± 0.17ab 3.67 ± 1.44c 1.40 ± 0.49b 0.44 ± 0.17a 3.59 ± 3.24c 0.81 ± 0.38ab

Ni 26.85 ± 12.00d 9.17 ± 2.34a 12.71 ± 5.42b 14.30 ± 4.54b 8.81 ± 2.26a 18.07 ± 3.53c

Se 2.96 ± 1.09a 4.04 ± 0.18b 3.01 ± 1.31a 3.28 ± 0.42ab 5.78 ± 0.74c 3.38 ± 0.31ab

Zn 60.92 ± 13.09c 60.40 ± 7.66 111.6 ± 26.33d 41.29 ± 15.78a 53.18 ± 15.63b 78.13 ± 24.27b

Mean ± standard deviation. Different superscript letters by row indicate significant differences at α= 0.05

Number of samples in dry season= 63 (ANG= 30; ECO= 5; OVI= 28); number of samples in rainy season= 85 (ANG= 30; ECO= 25;
OVI= 30)
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ANOVA was used to compare differences of means among
sampling sites, at the level of α= 0.05. To calculate the
biomarker responses between sites and to compare the
impact of metal(oid)s contamination, the integrated bio-
marker response (IBR) was calculated according to Beliaeff
and Burgeot (2002) and Sanchez et al. (2013). Correlation
between hepatic somatic indices, mt expression and
metal(loid) concentrations in fish between seasons were
evaluated using the Pearson correlation analysis. Multiple
linear regression analysis was calculated to explain rela-
tionships between metals (predictors) and, FC, GSI, and mt
for tilapia, and FC, HSI, and mt for largemouth bass

(responses). Canonical Correspondence analysis was used
to evaluate the relationship between metal(oid)s and bio-
marker responses in liver tissue. To evaluate the effect of
the sites and seasons on the distribution of metal(oids) in
liver samples, and which Site-Season combination differed
from each other, the distance-based permutational multi-
variate analysis of variance (PERMANOVA) was used.
Two one-way ANOVA designs were conducted, the first
one compared the metal(oid) concentrations in tilapia liver,
whereas the second design was used to evaluate differences
in metal(oid) distribution in largemouth bass liver; both,
comparing all the Site-Season levels. All the statistical

Fig. 2 Condition factor (CF) in
female and male tilapia
(Oreochromis niloticus) and
largemouth bass collected from
three ecosystems (La Angostura,
ANG; El Cajon de Onapa, ECO;
and El Oviachic, OVI) of the
Yaqui River Basin in
northwestern of Mexico.
Different letters indicate
statistical differences (lower
case for ecosystems and upper
case for seasons) at α= 0.05
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analyses were performed using Minitab 17 R v. 3.6.1 (R
Core Development Team 2017), and PRIMER 7 + PER-
MANOVA (PRIMER-E Ltd., Devon, UK) software.

Results

Metal(oid) concentrations were higher, in orders of mag-
nitude, in tilapia than in the largemouth bass. Both species
accumulate high concentrations of metals like Cu, Cr, Fe,
Zn (Tables 2 and 3), and followed a decreased order by
ecosystems (ECO > ANG >OVI). The results of Cu, Cr, Fe,

Mn, Ni, Zn were previously reported in Martinez-Durazo
et al. (2020).

Values for condition factor (CF), hepatosomatic index
(HSI), and gonadosomatic index (GSI) for tilapia and lar-
gemouth bass are shown in Figs. 2–4. In general, the highest
values of CF, HSI, and GSI were recorded in largemouth
bass compared with tilapia. Biomarker responses in both
species followed a similar tendency but different magnitude.
In tilapia, metal concentrations did not alter CF, GSI, and
HSI (Figs. 2–4); however, mt gene expression and HAI
were significantly altered by metals (Fe, Cu, Zn, Cr) (Fig.
5a, b). The largemouth bass followed a similar biomarker

Fig. 3 Hepatosomatic indexes
(HSI) in female and male tilapia
(Oreochromis niloticus) and
largemouth bass (Micropterus
salmoides) collected from three
ecosystems (La Angostura,
ANG; El Cajon de Onapa, ECO;
and El Oviachic, OVI) of the
Yaqui River Basin in
northwestern of Mexico.
Different letters indicate
statistical differences (lower
case for ecosystems and upper
case for seasons) at α= 0.05
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response pattern but not in the same order of magnitude, for
instance, CF, GSI, and HSI did not show a significant
(p < 0.05) response in the IBR analysis, whereas mt gene
expression and HAI showed significant differences
(p < 0.05) in largemouth bass in the different ecosystems.

Although the overall mt gene expression in both fish
species was not significant (p > 0.05) among seasons (Fig.
6), relative mt expression in liver of tilapia and largemouth
bass showed significant differences (p < 0.05) between the
three ecosystems (Fig. 6). Tilapia mt gene expression fol-
lowed an order by ecosystems ECO > ANG >OVI. The
relative expression of mt in largemouth bass showed the
highest (p < 0.05) values in fish collected in OVI, and ANG.

Histology analysis showed different kinds of damage in
gill and liver tissues of the tilapia and largemouth bass
(Figs. 7 and 8, respectively). In general, the tissues of both
species in the three ecosystems showed reversible lesions,
SI types (changes that are reversible for organ structure) to
SII types (changes that are more severe but may be
repairable), according to Bernet et al. (1999) and Poleksić
and Mitrović-Tutundžić (1994). The main lesions in gills
were lamellar fusion (principal and secondary lamellas),
deformation of the secondary lamella, epithelial lifting,
hypertrophy of mucous membrane cells, lamellar aneur-
ysms, and loss of gill cell structure (Fig. 7). Similarly, livers
analyzed in both species from three dams presented

Fig. 4 Gonadosomatic index
(GSI) in in female and male
tilapia (Oreochromis niloticus)
and largemouth bass
(Micropterus salmoides)
collected from three ecosystems
(La Angostura, ANG; El Cajon
de Onapa, ECO; and El
Oviachic, OVI) of the Yaqui
River Basin in northwestern of
Mexico. Different letters
indicate statistical differences
(lower case for ecosystems and
upper case for seasons) at
α= 0.05
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different types of damages. The most common lesions
determined in tilapia and largemouth bass were pycnosis,
vacuolization, inflammation, and necrosis (Fig. 8).

Histological damage in the tissues of both fish species
was also determined semi-quantitatively with the HAI
(Fig. 9). The ranges of mean HAI values in the livers of

Fig. 5 Canonical
correspondence analysis of
metal(loid) concentrations and
biological indexes in tilapia
(Oreochromis nilocticus,
grouped by metals (a) and
organisms (b)) and largemouth
bass (Micropterus salmoides,
grouped by metals (c) and
organisms (d)) from three
ecosystems (La Angostura,
ANG; El Cajon de Onapa, ECO;
and El Oviachic, OVI) of the
Yaqui River Basin in
northwestern of Mexico

Fig. 6 Metallotionein (mt) gene
expression in the livers of in
tilapia (Oreochromis niloticus)
and largemouth bass
(Micropterus salmoides)
collected from three ecosystems
(La Angostura, ANG; El Cajon
de Onapa, ECO; and El
Oviachic, OVI) of the Yaqui
River Basin in northwestern of
Mexico. Different letters
indicate statistical differences
(lower case for ecosystems and
upper case for seasons) at
α= 0.05
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tilapia varied from 66.5 to 88.5% in the dry season and from
65.0 to 77.0% in the rainy season. The highest HAI values
in the livers of tilapia during the dry season were observed
in the ANG and OVI ecosystems, while the HAI values in
the rainy season were similar between ecosystems
(p > 0.05). Similarly, the ranges of mean HAI values in the
gills of tilapia varied from 17.0 to 40.0% in the dry season
and from 22.0 to 38.5% in the rainy season. The highest
mean HAI values in the gills of tilapia were found in the
ANG ecosystem in both seasons (HAI= 40.0% and 38.5%
in the dry and rainy seasons, respectively).

In the largemouth bass, the ranges of mean HAI values in
the liver varied from 29.0 to 88.0% in the dry season and

from 29.0 to 88.5% in the rainy season (Fig. 9). The highest
(p < 0.05) mean HAI values in the liver during the dry
season were found in the ECO (HAI= 85.0%) and OVI
(HAI= 88.5%) ecosystems, while the highest mean HAI
value was found in the OVI ecosystem in the rainy season
(HAI= 85.2%). The ANG and ECO ecosystems showed
similar HAI values. The mean HAI values in the gills of
largemouth bass ranged from 30.5 to 59.5% in the dry
season and from 59.0 to 79.5% in the rainy season. During
the dry season, the highest (p < 0.05) mean HAI values were
found in the ECO (59.7%) and OVI (59.8%) ecosystems,
while the highest values were found in ANG (76.5%) and
OVI (79.7%) ecosystems in the rainy season. The IBR

Fig. 7 Histology of the gills from tilapia (Oreochromis niloticus) and
largemouth bass (Micropterus salmoides) collected from three eco-
systems (La Angostura, ANG; El Cajon de Onapa, ECO; and El
Oviachic, OVI) of the Yaqui River Basin in northwestern of Mexico.
Tissue without damages (Control, A) and tissues with damage [tilapia

from ANG (a), ECO (b), and OVI (c); largemouth bass from ANG (d),
ECO (e), and OVI (f)]. Damage: 1. Epithelium lifting. 2. Hypertrophy
of mucous membrane cells. 3. Deformation of secondary lamellar
structure. 4. Aneurysm of lamella. Arrowhead: lamella fusion. *Loss
of gill cell structure
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analysis revealed that the biomarker response agreed with
that of the impacts of metals in the different ecosystems and
followed a decreasing pattern with regard to the manifes-
tation of biological endpoints (ECO > ANG >OVI). In
addition, there were significant differences (p < 0.05) in IBR
between species and between ecosystems (Figs. 10 and 11).

The results of the Pearson correlation analysis indicated
that relationships between metal(loid) concentrations and
biological indexes were present. For tilapia, no correlation
was found between HSI and the metal(loid) concentrations,
although the GSI was significantly and positively correlated
with the Zn concentration (p= 0.007, r= 0.484). The CF
was significantly correlated with the Fe (p= 0.034,
r= 0.367), Ni (p= 0.008, r= 0.474), and Hg (p= 0.000,

r=−0.631) concentrations. In largemouth bass, a sig-
nificant and negative correlation was found between HSI
and the Fe concentration (p= 0.005, r=−0.539), while
significant correlations were also found between GSI and
the Cu concentration (p= 0.052, r= 0.386) and CF and the
Hg (p= 0.000, r= 0.841) and Se (p= 0.000, r= 0.859)
concentrations.

The results of the CCA also revealed associations among
biological indices and metal(loid) concentrations. The first
two axes of CCA for tilapia represented 95% of the varia-
bility (65% in the first axis and 30% in the second axis). The
biological responses were mainly distributed among three
quadrants of the CCA (Fig. 5b). Also, in tilapia, the CF was
canonically correlated with the Fe, Hg and Se

Fig. 8 Histology of livers from tilapia (Oreochromis niloticus) and
largemouth bass (Micropterus salmoides) collected from three eco-
systems (La Angostura, ANG; El Cajon de Onapa, ECO; and El
Oviachic, OVI) of the Yaqui River Basin in northwestern of Mexico.

Tissue without damages (Control, A) and tissues with damages [tilapia
from ANG (a), ECO (b), and OVI (c); largemouth bass from ANG (d),
ECO (e), and OVI (f)]. Damage: 1. Pycnosis. 2. Vacuolization.
Arrowhead: inflammation. n: necrosis
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concentrations, and the GSI was canonically correlated with
the Cr, Cu, Mn, Ni, and Zn concentrations, whereas the HSI
was not canonically correlated with any metal(loid) con-
centration. The results of the multiple regression analysis
corroborated these associations with the following correla-
tion equations for FC= 0.15+ 0.07 Fe− 0.34 Hg
(r= 0.51, p < 0.05) and GSI=−0.37− 0.09 Mn+ 0.22
Ni+ 0.21 Zn+ 0.48 Hg (r= 0.41, p < 0.05).

In the case of largemouth bass, the two main axes of the
CCA represented 96% of the variance (65% in the first axis
and 45% in the second axis; Fig. 5c, d). The FC was
canonically correlated with the Fe and Ni concentrations,
and to a lesser extent with the Cr, Cu, and Mn concentra-
tions. The HSI was canonically correlated with the As, Cr,
Cu, Mn, and Ni concentrations and to a lesser degree with
the Zn and Hg concentrations. The GSI was not canonically

correlated or related with any metal(loid) concentration
given the results of the CCA and multiple regression ana-
lysis. The multiple regression analysis corroborated these
associations with the following correlation equations for
FC= 0.0316− 0.0502 Fe− 0.1586 Cr+ 0.2942 As+
0.4158 Se+ 0.2531 Hg (r= 0.97, p < 0.05) and
HSI= 1.48+ 0.77 Ni− 0.65 Cu− 0.63 Zn− 1.20 As+
2.37 Se− 0.76 Hg (r= 0.36, p < 0.05). In tilapia, the
results of the CCA indicated positive correlations between
mt expression in the liver and the As and Fe concentrations,
while the multiple regression analysis resulted in the fol-
lowing correlation equation of mt=−1.185+ 0.27 Fe+
0.24 Zn+ 0.29 As+ 0.46 Hg (r= 0.22, p < 0.05). In lar-
gemouth bass, the CCA showed significant correlations
between mt expression and the As, Cu, Fe, Mn, Ni and Se
concentrations, which were confirmed by the results of the

Fig. 9 Histopathological alterations index (HAI) in tissues of tilapia
(Oreochromis niloticus) and largemouth bass (Micropterus salmoides)
collected from three ecosystems (La Angostura, ANG; El Cajon de

Onapa, ECO; and El Oviachic, OVI) of the Yaqui River Basin in
northwestern of Mexico

Fig. 10 Integrated Biomarker Response (IBR) analysis for metal
exposure in tilapia (Oreochromis niloticus) in the three ecosystems (La
Angostura, ANG; El Cajon de Onapa, ECO; and El Oviachic, OVI) of

the Yaqui River Basin in northwestern of Mexico and sampling sea-
sons (rainy and dry)
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multiple regression analysis with the following correlation
equation of mt=−3.17+ 1.04 Mn− 0.74 Ni+ 0.80
Cu+ 0.76 Zn+ 1.67 As (r= 0.32, p < 0.05).

In the case of IBR, the results of the PERMANOVA
indicated differences between biomarker responses and
metal(oid) concentrations in both species (pseudo-
F= 65.59, p= 0.001; pseudo-F= 58.15, p= 0.001 for
tilapia and largemouth bass, respectively). Tilapia showed
higher IBR values than those of the largemouth bass, with
the highest IBR found in the ECO ecosystem (Fig. 10). The
main metal(oid)s recorded in the ECO ecosystem for tilapia

were Fe, Cu, Zn, and Cr [Similarity percentages (SIMPER;
similitude, contribution): Fe (23.8%, 25.5%), Cu (19.2%,
20.5%), Zn (12.5%, 13.4%), and Cr (11.5%, 12.3%)]. In
largemouth bass, the main metal(oid)s recorded were Fe,
Cu, Zn, and Cr [SIMPER (similitude, contribution): Fe
(27.0%, 27.9%), Zn (15.5%, 16.0%), Cr (11.6%, 12.0%),
and Cu (11.1%, 11.5%); Tables 4–6]. The results of the IBR
analysis of the metal(oid)s were higher in tilapia than in
largemouth bass. Biomarker responses in both species fol-
lowed similar tendencies but of different magnitudes. In
tilapia, the CF, GSI, and HSI were not altered by metal

Fig. 11 Integrated Biomarker Response (IBR) analysis for metal
exposure in largemouth bass (Micropterus salmoides) in the three
ecosystems (La Angostura, ANG; El Cajon de Onapa, ECO; and El

Oviachic, OVI) of the Yaqui River Basin in northwestern of Mexico
and sampling seasons (rainy and dry)

Table 4 Comparisons of ecosystem-season pairs from the permutational multivariate analysis of variance (PERMANOVA) of metal concentrations
in tilapia (O. niloticus) and largemouth bass (M. salmoides) livers

Tilapia Largemouth bass

Groups t p (perm) Dissimilitude average (%) t p (perm) Dissimilitude average (%)

ANG—Dry, ANG—Rainy 4.71 0.0001 7.21 8.45 0.0001 6.48

ANG—Dry, ECO—Dry 4.76 0.0001 8.27 5.16 0.0001 12.44

ANG—Dry, ECO—Rainy 7.14 0.0001 9.60 11.08 0.0001 12.68

ANG—Dry, OVI—Dry 10.22 0.0001 14.57 9.33 0.0001 17.03

ANG—Dry, OVI—Rainy 6.38 0.0001 9.30 8.64 0.0001 12.92

ANG—Rainy, ECO—Dry 4.24 0.0001 7.21 4.48 0.0001 11.12

ANG—Rainy, ECO—Rainy 4.35 0.0001 6.87 5.61 0.0001 10.43

ANG—Rainy, OVI—Dry 11.38 0.0001 15.20 9.15 0.0001 12.77

ANG—Rainy, OVI—Rainy 6.84 0.0001 9.18 4.22 0.0001 6.97

ECO—Dry, ECO—Rainy 3.81 0.0001 7.49 3.38 0.0001 10.26

ECO—Dry, OVI—Dry 9.62 0.0001 14.63 3.77 0.0001 8.60

ECO—Dry, OVI—Rainy 6.32 0.0001 9.88 5.62 0.0001 8.82

ECO—Rainy, OVI—Dry 11.65 0.0001 16.12 8.02 0.0001 12.83

ECO—Rainy, OVI—Rainy 8.08 0.0001 10.84 6.85 0.0001 9.98

OVI—Dry, OVI—Rainy 10.51 0.0001 15.31 8.32 0.0001 9.48
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concentrations (Fig. 10). On the other hand, mt gene
expression and HAI were significantly altered by these
elements. The IBR analysis in largemouth bass did not
show a significant (p < 0.05) response for CF, GSI, or HIS
(Fig. 11), while mt gene expression and HAI showed sig-
nificant differences (p < 0.05) among the three ecosystems.

Discussion

The Yaqui River Basin is an important ecoregion in
northwestern Mexico and is particularly important for the
state of Sonora, as it supplies water for human consumption
and various economic activities are conducted along its
margins (Arreola-Lizarraga et al. 2020). In the upper part of
the watershed, extensive mining projects dominate the
activities of the region, and most of the wastewater from
these activities ends up in the watershed in the absence of
any regulations (Meza-Figueroa et al. 2009; De la

O-Villanueva et al. 2013; Martínez-Durazo et al. 2020). In
the central portion of the watershed, subsistence and arti-
sanal activities are the most important economic occupa-
tions, and the region has not been notably altered by
anthropogenic activities; however, important natural
mineralization and metal(oid) contaminants are of special
concern in this area (Gortáres-Moroyoqui et al. 2011).
Finally, the lower portion of the basin, known as the Yaqui
Valley, serves as one of the most important agriculture
zones in Mexico, and untreated wastewater effluents are
discharged from agricultural activities (Ochoa-Contreras
et al. 2021). Environmental monitoring research in this zone
is scarce, which is particularly concerning due to the eco-
logical, social, cultural, and economic importance of the
region.

Due to the different anthropogenic activities of the
region, this study aimed to establish associations between
metal(oid) concentrations and biomarkers (biological and
histological indexes) in tilapia and largemouth bass, both of

Table 5 Similarity percentages (SIMPER) analysis for metal(loid)s applied to ecosystem-season sets of tilapia (O. niloticus) liver samples from
three ecosystems of the Yaqui River Basin (La Angostura, ANG; El Cajon de Onapa, ECO; and El Oviachic, OVI)

Group Average
abundance

Average
similarity

Accumulative
contribution (%)

Group Average
abundance

Average
similarity

Accumulative
contribution (%)

ANG
dry season

ANG
rainy season

Fe 7.45 23.00 24.40 Fe 7.58 23.19 24.41

Cu 6.60 20.53 46.17 Cu 6.19 19.08 44.49

Zn 3.99 12.54 59.47 Zn 3.90 12.02 57.14

Cr 3.38 10.41 70.51 Cr 3.93 11.75 69.51

Ni 3.09 9.35 80.43 Ni 3.23 9.66 79.68

Mn 3.20 9.02 89.99 Mn 2.94 8.42 88.55

Se 1.59 4.84 95.12 Se 2.08 6.35 95.23

ECO
dry season

ECO
rainy season

Fe 7.64 23.83 25.50 Fe 7.62 24.09 25.55

Cu 6.42 19.22 46.06 Cu 6.26 19.62 46.35

Zn 4.05 12.58 59.52 Zn 4.44 13.70 60.89

Cr 3.90 11.57 71.89 Cr 3.58 10.49 72.02

Ni 2.89 8.88 81.39 Ni 2.52 7.94 80.44

Mn 2.21 6.29 88.12 Mn 2.34 6.79 87.64

Se 1.56 4.65 93.10 Se 1.98 6.25 94.27

OVI
dry season

OVI
rainy season

Fe 7.07 26.00 28.10 Fe 6.26 20.43 21.77

Cu 4.73 17.68 47.20 Cu 6.03 19.47 42.52

Zn 2.90 10.61 58.67 Zn 4.09 13.32 56.72

Cr 2.86 9.71 69.16 Cr 3.39 10.69 68.11

Ni 2.62 8.89 78.77 Ni 2.83 8.94 77.63

Mn 2.34 7.56 86.94 Mn 2.30 7.27 85.38

Se 1.59 5.60 92.99 Se 2.03 6.84 92.67
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which are resident species in the reservoirs of the Yaqui
River Basin. Several biotic and abiotic factors are known to
drive accumulation of contaminants in aquatic environ-
ments. In addition, fish species can incorporate metals and
metalloids through respiratory and/or gastrointestinal pro-
cesses, which produce differential distributions of these
compounds among different tissues (Rainbow and Luoma
2011; Mackay et al. 2018). The incorporation rates in fish
gills are strongly affected by the amounts of dissolved
metal(loid)s, while the bioavailable fractions of these ele-
ments in food items are incorporated through the digestive
tract (Rainbow and Luoma 2011; Lall and Kaushik, 2021).
Given that incorporated metal(loid)s are metabolized in the
liver, several biomarkers are used to measure their levels in
liver tissue (Corredor-Santamaría et al. 2021). In this study,
the concentrations of metal(loid)s in the tissues of tilapia
and largemouth bass presented differences in accumulation
as well as seasonal variability among the three ecosystems.
Differential metal accumulation in fish tissues depends on

the function of each organ (Łuczyńska et al., 2018), and
thus the liver accumulates notably greater levels of these
elements than those in other organs, followed by the levels
in the gills and gonads (Martinez-Durazo et al. 2020).

In this study, tilapia showed higher concentrations of
metal(loid)s than largemouth bass, which could be
explained by the feeding habits of each species. In an earlier
study, Leung et al. (2014) reported similar accumulation of
metal(loid)s, which were also higher in tilapia than in lar-
gemouth bass. Yi et al. (2017) reported that fishes living in
middle-lower layers or fishes feeding on benthos accumu-
lated higher concentrations of metal(loid)s when compared
with fishes living in the pelagic zone. Usually, benthic fish
are more exposed to metal(loid)s because these elements are
deposited on sediments and are linked to fine particles
(fractions <63 μm; Suresha et al. 2012). However, other
authors explain that pelagic predatory fishes maybe more
exposed to these elements because of the variety of prey and
may accumulate higher levels of metal(loid)s than benthic

Table 6 SIMPER analysis for metal(loid)s applied to ecosystem-season sets of largemouth bass (M. salmoides) liver samples from three
ecosystems of the Yaqui River Basin (La Angostura, ANG; El Cajon de Onapa, ECO; and El Oviachic, OVI)

Group Average
abundance

Average
similarity

Accumulative
contribution (%)

Group Average
abundance

Average
similarity

Accumulative
contribution (%)

ANG
dry season

ANG
rainy season

Fe 4.84 17.67 18.90 Fe 6.46 25.70 27.50

Cu 3.33 12.39 62.50 Zn 3.67 14.37 42.88

Zn 4.08 15.81 35.80 Cr 2.89 11.29 54.96

Cr 3.34 12.58 49.26 Ni 2.69 10.55 66.25

Ni 3.26 12.29 75.64 Cu 2.31 8.81 75.67

Mn 2.54 9.72 86.04 As 2.15 8.72 85.01

Se Mn 1.89 6.88 92.37

ECO
dry season

ECO
rainy season

Fe 7.14 27.05 27.97 Fe 7.19 28.12 30.36

Zn 4.11 15.51 44.00 Zn 3.94 15.14 46.70

Cr 3.13 11.68 56.08 Cu 2.32 8.62 56.02

Cu 2.94 11.19 67.65 Cr 2.15 8.01 64.67

Ni 2.30 8.25 76.17 As 2.00 7.87 73.17

Mn 2.26 8.03 84.48 Ni 2.19 7.65 81.42

Se 1.62 6.13 90.81 Se 1.91 7.45 89.47

OVI
dry season

OVI
rainy season

Fe 6.97 25.51 27.08 Fe 6.98 25.9 27.01

Zn 4.70 17.31 45.46 Zn 4.29 15.63 43.31

Mn 3.27 12.09 58.30 Cr 3.17 11.87 55.68

Cu 2.95 10.68 69.63 Ni 2.93 10.8 66.93

Ni 2.55 8.79 78.96 Mn 2.40 8.63 75.93

Cr 2.51 8.29 87.76 Cu 2.30 8.13 84.40

Se 1.35 4.46 92.49 As 2.02 7.65 92.38
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fishes (Gu et al. 2016; Yi et al., 2017). However, the
accumulation of essential elements (in this study Cu, Cr, Fe,
Mn, Ni, Se, and Zn) in different tissues and fish species may
be related to their physiological demand in specific organs
according to biological characteristics (such as sex, matur-
ity, nutritional status, and age) (Leung et al. 2014; Łuc-
zyńska et al. 2018).

Fish gills are the main sites for physiological functions
such as acid-base balance, gas exchange, ion pumps, and
waste excretion. Metal(loid)s are bioreactive with the gills,
increasing the incorporation rates with dissolved ion levels
in the water, and therefore gills are sensitive to metal(loid)
accumulation. The toxicity of these elements may produce
interference in gill functions, mainly gas exchange and ion
pumps (Wood 2011).

The gonads are sensitive to endocrine disruptors. Some
studies in which fish were exposed to metal(loid)s have
shown that accumulation in the gonads resulted in reduc-
tions in the production and viability of gametes. Further,
fertilization rate, vitellogenin storage, and embryonic
development in fish may be adversely affected by metal
contamination (Jezierska et al. 2009; Paschoalini et al.
2019). Our data showed similar accumulation of metal(loid)
s in tilapia and largemouth bass, except Zn, that accumu-
lated at higher levels in largemouth bass. The levels of Cu,
Fe, Mn, Ni, and Zn in gonads in both fish species were
higher than those reported by Oğuz and Yeltekin (2014) in
Tarek (Alburnus tarichi); the authors explain that gonadal
abnormalities may derive from the accumulation of Zn and
Cu; moreover, the combination of metals with other che-
micals present in the aquatic environment might have led to
those abnormalities.

Somatic indices have been widely used in environmental
risk assessments with different fish species (Kroon et al.
2017). Previous studies have measured somatic indices in
largemouth bass and tilapia to assess metal contamination in
aquatic ecosystems (Gehringer et al. 2013; Girgis et al.
2019). The metal accumulation results in this study for tilapia
agree with those of Shaw and Handy (2006). In that study,
fish were exposed to various levels of Cu in food, and dif-
ferences in metal accumulation among tissues were observed,
with Cu accumulation being higher in exposed specimens
than in control specimens. However, the HSI, which is an
indicator of hepatomegaly, was similar between exposed and
non-exposed organisms. In a different study with tilapia
exposed to metals and persistent organic pollutants (Ibor
et al. 2017), HSI values were found to be lower in exposed
organisms (0.3–0.9) than in control fish (no exposure,
0.9–5.7); moreover, males showed higher HSI values than
females. In contrast, another study with Tilapia mossambica,
Al-Ghais (2013) reported that higher HSI values were
observed in organisms exposed to sewage effluents (with
elevated levels of contaminants including metals) than non-

exposed organisms. In that study, HSI values were also
higher in exposed organisms compared to those of organisms
exposed to sewage effluents that were then cleared in fresh
water for 6 weeks. In a bioassay with tilapia exposed to Cd,
Cu, and a mixture of both elements, El-Serafy et al. (2013)
reported that the CF, HSI and GSI were significantly lower in
the exposed specimens with respect to the values of the
control fish. These outcomes were then considered to be
adverse effects due to metal exposure.

In a study with largemouth bass conducted by Orlando
et al. (1999), significant differences in the HSI were
reported between organisms collected from a contaminated
site in Florida (0.57 ± 0.02) and those collected from a
reference site (0.85 ± 0.03) in the same state. Similarly,
Friedmann et al. (2002) reported significant variations in the
HSI in largemouth bass collected from sites with different
degrees of Hg contamination, with values ranging from
0.81 ± 0.04 in organisms from the most contaminated site to
1.16 ± 0.09 in organisms from the least contaminated site.
The study showed that CF and GSI were not associated with
an Hg gradient of contamination, as similar values were
detected among sites. In a bioassay with largemouth bass
fingerlings exposed to contaminated water and sediments
with effluents from the paper industry, the highest HSI and
CF values were observed in non-exposed organisms that
had been maintained in carbon-dechlorinated tap water,
while organisms exposed to contaminated effluents showed
lower values (Baer et al. 2009). These lower HSI and CF
values were attributed to the elevated amounts of con-
taminants present in the ecosystem. A study with yellow
perch from three lakes with different degrees of metal
contamination showed different results, with the highest
HSI and CF values found in organisms from the most
contaminated lakes, while the GSI values were higher in
organisms from lakes with lower levels of contamination
(Pyle et al. 2005).

In a study with various contaminants and biological
indexes in eight basins of rivers in the Unites States, the
variations in the accumulation of 15 metal(loid)s in whole-
body composite samples of largemouth bass Micropterus
spp. were reported by Hinck et al. (2008). Slight variations
in CF, HSI, and GSI were determined between females and
males from the different ecosystems, in spite of differences
in the accumulation of some elements. However, some
significant positive correlations between biological indexes
and some metals were found. Positive associations between
metal(loid)s and biomarkers are usually associated to the
use of these elements in physiological processes, either for
metabolic processes or in regulatory routes (Rainbow and
Luoma 2011; Huang et al 2022).

Changes in GSI are mostly determined by variations in
yolk concentration during different oocyte stages in
females, and the size and mobility of sperm in males; thus,
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it provides information about maturation and seasonal pat-
terns in gonad development (McPherson et al. 2011; Flores
et al. 2015). In this study we determined differences in GSI
values among seasons and ecosystems, with the highest
values in largemouth bass. GSI correlated with Cr, Cu, Mn,
Ni, and Zn in tilapia, which may be explained by their
physiological use in oocyte development.

The expression of metallothionein (mt) is a biomarker
frequently used in studies of metal(oid) exposure, both in
field and laboratory studies. Because mt is an intracellular
protein involved in regulation and detoxification of
metal(loids), the exposure to these elements is a common
inducer of its synthesis (Vašák and Hasler 2000). The
exposure of O. niloticus to different levels of methyl mer-
cury chloride for 60 days increased the relative expression
of mt from 0.5 to 10%, in respect to non-exposed organisms
(Alam et al. 2021). Similarly, the exposure of farmed tilapia
to Cu and Pb induced the expression of mt (Girgis et al.
2019). The expression of mt is usually different among
target tissues, as was reported in tilapia O. niloticus injected
with different concentrations of metals (Cheung et al.
2004); all of the metal ions tested induced high levels of
hepatic and gill mt, contrasting with the low renal mt levels.
High hepatic mt levels were also induced by the exposure to
various metal ions in O. mossambicus and O. aureus
(Cheung et al. 2005). In another study with tilapia O.
niloticus fingerlings exposed to silver nanoparticles,
Thummabancha et al. (2016) reported that the expression in
liver and spleen decreased from 0.3 to 0.7 times, while the
expression of mt in kidney increased 2–3 times.

The expression of mt as biomarker of exposure to
metal(loid)s has also been used in the largemouth bass, in
which mt expression was proportional to Hg levels in fish
collected in the Quachita River, USA (Schlenk et al. 1995);
the concentrations of Hg were associated with predatory
habits. Gehringer et al. (2013) reported the expression of mt
in kidney and liver of largemouth bass collected in the San
Joaquín River, California, which is an area contaminated by
mining activities; gene expression was significantly higher
in organisms with elevated concentrations of Cu, Zn, Mn,
Al, and Ni. In contrast, Mehinto et al. (2014) reported that
adults of largemouth bass did not show increased hepatic mt
levels after intraperitoneal exposure to Cd (20 µg CdCl2/Kg)
(Vašák and Hasler 2000). However, a study with the Afri-
can catfish Clarias gariepinus reported an increase of mt
expression in wild specimens collected in sites con-
taminated with Zn and Cu (M’kandawire et al. 2017).

Our data showed variations of mt expression in tilapia
between seasons and ecosystems (ECO > ANG >OVI dur-
ing the dry season and ANG > ECO >OVI during the rainy
season), with significant increments in expression from dry
to rainy seasons only in the ANG dam. Multivariate ana-
lysis indicated positive correlations between mt expression

in tilapia and Fe, Zn, As and Hg. The higher expression of
mt in ECO agrees with higher levels of Fe and Hg in this
ecosystem during the dry season, contrasting with the levels
of Cu, Mn, Zn, and As.

Our data also showed seasonal variations of mt expres-
sion in largemouth bass among ecosystems, presenting
higher mt expression in the OVI dam during the dry season
and in the ANG dam during the rainy season. Multivariate
analysis indicated correlations between mt expression in
largemouth bass and As, Cu, Fe, Mn and Ni, which did not
correspond with levels of these elements (except for Mn)
found in OVI in the dry season, and neither corresponded
with the levels of any element found in ANG in the rainy
season. The expression of mt in largemouth bass in the
ecosystems varied between seasons (mean range of
0.85–1.56 during dry season, and of 0.94–1.34 during rainy
season), consistent with variations in the levels of metal(-
loid)s. The levels of contamination with metal(loid)s of the
ecosystems of this study were variable. Multivariate ana-
lysis showed correlations between mt expression in tilapia
with Fe, Zn, As, and Hg, and mt expression in largemouth
bass with As, Cu, Fe, Mn, Ni, and Se. However, mt can be
induced by a variety of environmental and physiological
factors, such as oxygen reactive species, water temperature
and glucocorticoids, which can be present in waterbodies
and affect mt gene expression. (Vašák and Hasler 2000;
Cheung et al., 2005; Wang et al. 2014). In our studies, fish
were captured in dams of the Yaqui River Basin in the
absence of any fishing restrictions and as a result were
subjected to a variety of pollutants, including metal(oid)s.

In this study, the histology of the gills and liver of tilapia
and largemouth bass revealed reversible lesions. The HAI in
both tissues showed similar values among ecosystems in each
season, with the highest values in ANG for tilapia and in ECO
and OVI for largemouth bass. Similar results were found by
Abdel-Khalek (2015) in tilapia from two sites in the Nile
River in Egypt with different degrees of metal contamination.
The authors reported evidence ranging from reversible his-
tological changes to severe tissue damage in gills. The his-
tology of the livers of tilapia in a freshwater ecosystem of
Saudi Arabia contaminated with various metals reported
vacuolization, necrosis, and sinusoidal dilation associated
with different types of anthropogenic discharges (Mahboob
et al. 2020). Tilapia fingerlings presented gill damage
(including hyperplasia, detachment of the branchial epithe-
lium, edema, deformations of the secondary lamella, and total
fusion of the lamellae) due to acute exposure to Cu (Alkobaby
and El-Wahed 2017). Wepener et al. (2011) reported rever-
sible damage in tissues from the Orange River mudfish
(Labeo capensis) that were considered functional in terms of
structure; however, some reported alterations, such as fusion
of the primary lamellae, that could lead to adverse health
effects. Studies with largemouth bass exposed to metal(loid)s
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have also reported histological damage. The most frequent
histopathological lesions found in the livers of wild fish
exposed to As and Hg were vacuolated hepatocytes, focal
necrosis, and granulomas (Hatice and Turgay 2020). Geh-
ringer et al. (2013) reported major histological damage in
juvenile organisms due to exposure to MeHg. Moreover,
juvenile fish collected from areas highly contaminated with
Hg showed histological damage.

The results presented in this study are limited to some
responses and their associations with metal and metalloid
concentrations; however, wild fish populations are exposed
to complex mixtures of compounds. In addition, environ-
mental physical and chemical factors were not measured in
this study. All these factors interact in complex networks
making it impossible to establish causal relationships. In
addition, fish responses vary depending on age, sex, food
availability, and developmental stage. In other words, field
studies like this are an approximation to understand eco-
system health but by no means establish causality. Never-
theless, associations between metal and metalloid
concentrations and biological responses measured in wild
fish populations provide insights into environmental
impacts of anthropogenic origin. According to our results,
the biomarkers measured in the two fish species provided
useful information regarding the status of the three eco-
systems of the Yaqui River Basin. As a whole, the system
seems to be moderately impacted by metals and metalloids.
Surprisingly, ECO, which sustains small-scale agriculture,
fish aquaculture, and cattle raising, seems to be the most
impacted of the three ecosystems in this study.

Conclusions

This study examined metal(loid) accumulation in tilapia and
largemouth bass and associations among biomarkers from
three ecosystems of the Yaqui River Basin. Our results
show that tilapia can incorporate higher concentrations of
metal(oid)s, with a clear and more consistent biomarker
response compared to that of largemouth bass, which
showed a comparatively milder response to the adverse
effects of metal(oid)s. There are several other biotic and
abiotic factors that were not measured in this study that
affect biomarker responses in wild fish populations, which
may have influenced the results. However, based on our
data, the three ecosystems seem to be moderately impacted
by metals and metalloids, with the ECO dam being the most
impacted ecosystem in this study.
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