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Abstract
Toxicity imposed by organophosphate pesticides to the freshwater cultivable fish species mrigal (Cirrhinus mrigala) was
assessed under laboratory conditions. Healthy juveniles were exposed to chlorpyrifos, dichlorvos, and their equitoxic
mixture in geometric series. Median lethal concentrations of chlorpyrifos were found to be 0.906 (0.689–1.179), 0.527
(0.433–0.633), 0.435 (0.366–0.517) and 0.380 (0.319–0.450) mg/L and dichlorvos were found to be 38.432
(33.625–47.866), 22.477 (19.047–26.646), 12.442 (9.619–14.196) and 11.367 (9.496–13.536) mg/L after 24 h, 48 h, 72 h
and 96 h of exposure respectively. Surprisingly, the joint toxicity of these organophosphates in the binary mixture was less
than additive during most of the exposure periods. Behavioral changes exhibited by individual as well as mixture pesticide
treatments were loss of schooling behavior, aggregating at corners of the test chamber, elevated opercular beatings, surplus
mucus secretion, slight color changes and sudden and rapid body movements before death. Loss of fish equilibrium was
noticed only in chlorpyrifos treated fish, whereas sluggish behavior was noticed only in mixture pesticide treatment. Such
behavioral studies can be applied as a non-invasive bio-monitoring tool for water quality assessment for fish growth and
development. Despite the same mode of action of both pesticides, the antagonistic action in the binary mixture is an
interesting outcome of this research that requires further investigation for a lucid understanding of the joint toxicity
mechanism of such pesticides.
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Introduction

Pesticides are toxic compounds and their capacity to harm
fish and aquatic animals depends on exposure time, con-
centration, and persistence in the environment (Sabra and
Mehana 2015). Pesticides can be classified as minimal,
slight, moderate, high, extreme and super-toxic compounds
based on their LC50 values (Sabra and Mehana 2015). There
are a number of studies that estimated median lethal con-
centration (LC50) of chlorpyrifos (Bhatnagar et al. 2017),
dichlorvos (Velmurugan et al. 2009, Srivastava et al. 2012),
carbaryl, carbofuran, profenfos and triazophos (Mahboob
et al. 2015), endosulfan (Ilyas and Javed 2013) and mala-
thion (Rauf 2015) in mrigal (Cirrhinus mrigala).

Pesticides are one of the most potentially harmful che-
micals and even small amounts of pesticides can be fatal
(Jokanović, 2009), therefore increasing pesticide applica-
tion is a serious threat to human health and biodiversity.
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Chlorpyrifos is a broad-spectrum organophosphate pesti-
cide. It is extensively used for pest control throughout the
world for agriculture and domestic purposes (Ali et al.
2009, Sun et al. 2015). Dichlorvos is another commonly
used organophosphate pesticide (Ural and Çalta 2005, Sun
et al. 2015). It is one of the main chemical agents used in
bath treatment against fish ectoparasites (Varó et al. 2007).
A small fraction of the applied pesticide reaches the target
pests and the majority of it is released into the environment
(Tišler et al. 2009). During the rainy season, the pesticides
from agricultural fields are flushed away and drained into
the aquatic system (Adhikari et al. 2004, Ramesh and Sar-
avanan 2008) that alter physico-chemical parameters of
water and ultimately affect the performance of aquatic
organisms inhabiting there (Muthukumaravel et al. 2013).
Since the final destination of all applied pesticides is the
water bodies, organisms thriving there are always threa-
tened by the mixture of various pesticides which can be
more hazardous than single pesticide exposure. Laetz et al.
(2009) also reported that pesticide mixtures can be much
more toxic compared to single pesticide exposure.

Pesticides become fatal to fish at higher concentrations
but even at lower concentrations they are able to generate
biochemical modifications without any fatality (Kunwar
et al. 2022). Such sub-lethal effects are generally ignored
and receive less attention since no direct mortality is
observed, but these effects ultimately determine the overall
success of any species and their population. Behavioral
change is one of the sub-lethal effects which is an important
indicator of water pollution and stress (Chebbi and David
2010, Kesharwani et al. 2018). In recent studies, behavioral
observations have gained popularity because they are
noticed at low chemical concentrations and are non-invasive.

The global fisheries sector is threatened by aquatic pol-
lution and pesticides are one of the serious sources of pol-
lution. In this context, we selected mrigal as a model
organism to evaluate the toxicity of pesticides. This is an
important aquaculture candidate species in Nepal which is
successfully cultivated under single stocking and multiple
harvesting techniques. This farming technique, locally
called Chhadi farming, is gaining popularity in Nepal
(Mishra and Kunwar 2014, Kunwar and Adhikari 2016 and
2017, Adhikari et al. 2018). Chlorpyrifos and dichlorvos
were selected for a toxicity assessment because they are
commonly used in many countries (Sun et al. 2015) and
their traces were detected in nature, fish and fisheries pro-
ducts (Kafle et al. 2015, Singh et al. 2015, Akoto et al.
2016, Zahran et al. 2018, Nag et al. 2020). Chlorpyrifos
residue was reported to be 0.0091 ± 0.0020 mg/L in the
river Deomoni, West Bengal, (Singh et al. 2015). Similarly,
water sampled from the Chilika lake, India contained
chlorpyrifos with concentration ranging 0.019–2.73 µg/L
(Nag et al. 2020).

Individual effects of chlorpyrifos and dichlorvos on
mrigal had already been documented but their joint toxic
effect on this species is still lacking. Pesticides in a mixture
can interact with each other (additive or competitive) to
modulate the overall resultant toxicity effect, therefore
water quality assessment based on single pesticide toxicity
can be misleading. Wang et al. (2015) had also highlighted
that single pesticide risk assessments are more likely to
underestimate the impacts of these pesticides to aquatic
organisms. Therefore, the present study was designed with
the aim to elucidate lethal toxicity as well as behavioral
manifestation of mrigal in response to chlorpyrifos and
dichlorvos not only individually but also in combination.
The results obtained from this study are expected to enrich
the existing knowledge on joint pesticide toxicity.

Materials and methods

Fish acclimatization

Mrigal hatchlings (one week after hatching) were purchased
from Fish Pure-line Breed Conservation and Promotion
Centre, Bhairahawa, Rupandehi, Nepal and transported in
oxygen-packed polythene bags to Central Fisheries Pro-
motion and Conservation Centre (CFPCC) Balaju, Kath-
mandu, Nepal. Hatchlings were grown in an earthen pond
for two months until they reached finger size. Healthy fin-
gerlings with uniform size (exact weight provided below)
were transferred to a 350-L indoor glass aquarium of
CFPCC for acclimatization. The aquarium was fitted with a
water filter and aeration system. Fish were regularly fed ad
libitum with commercial pellet feed having 32% protein
(Sreema feed Pvt. Ltd., India). Uneaten food and fecal
matter were removed with the help of a scoop net and
siphon. Everyday approximately half of the aquarium water
was exchanged with freshwater to maintain optimum water
quality. Water pumps, air stones, pipes and filters were
cleaned twice a week. Water temperature, pH, dissolved
oxygen and total ammonia ranged between 23.97–24.62 °C,
7.68–7.85, 5.80–6.74 mg/L and 0.20–0.23 mg/L, respec-
tively. Fish were acclimatized for 15 days before using them
for the lethal toxicity experiment.

Pesticides selection

Two pesticides-chlorpyrifos and dichlorvos were selected
for the present toxicity experiment. These are commonly
applied organophosphate insecticides in crops for pest
control. Dichlorvos (G-VAN-80%) Greenriver Industry Co.,
Ltd., ShenZhen, China and chlorpyrifos (Dursban-20%)
Dow AgroSciences Pvt. Ltd., India were the commercial-
grade pesticides used in this study.
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Lethal toxicity test

Lethal toxicity tests were conducted according to the standard
guidelines (OECD 1992) in semi-static conditions. Well
cleaned glass aquaria (35-L capacity) with 25-L water volume
were used for the test. The average weight of the fish used in
this experiment was 5.52 ± 0.91 g (mean ± SD). Feeding was
ceased 24 hours prior to the exposure experiments to avoid
any interference of waste with pesticides. Stock solutions
were freshly prepared in distilled water and calculated
amounts of the solution were added in the aquaria to obtain
five different pesticide concentrations in geometric series
(chlorpyrifos: 0.25, 0.5, 1.0, 2.0 and 4.0mg/L; dichlorvos:
4.0, 8.0, 16.0, 32.0 and 64.0 mg/L). The exposure range was
determined by performing a range finding test for the pesti-
cides chlorpyrifos and dichlorvos. The actual concentration of
the pesticide in the water was not measured but the water was
renewed on a daily basis to maintain the desired pesticide
concentration at the same level (Nwani et al. 2013). There
were four replicates for each concentration with 5 five fish in
each group. In total 200 fish were used for the lethal toxicity
tests. Exposed fish were regularly monitored and dead fish
were immediately removed from the aquaria; no fish died in
the control. Mortality was recorded after 24 h, 48 h, 72 h and
96 h of exposure. The mortality data obtained from chlor-
pyrifos and dichlorvos treatments were analyzed to estimate
lethal concentrations (24 h to 96 h-LC10–90) of both pesticides
by using a log probit analysis program.

After estimation of individual pesticide toxicity, their
joint toxicity was assessed. For this, five geometric series of
pesticides mixtures were prepared by adding both pesticides
in equitoxic concentration i.e. 12.5%, 25%, 50%, 100% and
200% 96 h-LC50 of chlorpyrifos and dichlorvos. Fish
mortality was recorded as described above. As before, no
fish mortality was observed in the control. Similar to indi-
vidual pesticides, 24 h to 96 h-LC10 to LC90 of the mixture
pesticide toxicity was also calculated; where LC10 and LC90

indicate pesticide concentrations required to kill 10% and
90% of the fish population, respectively.

Joint toxicity assessment

The joint toxicity of pesticide was assessed by the additive
index (AI). This was calculated according to Marking (1985).

AI ¼ 1=Sð Þ � 1 for S � 1 and;

AI ¼ 1� S for S> 1

where, AI represents additive index and S represents the
sum of biological activity

S ¼ Am=Aið Þ þ Bm=Bið Þ

where, A and B represent two different pesticides, ‘m’

represents LC50 of pesticides in mixture, ‘i’ represents LC50

of individual pesticides.
AI values equal, greater or less than zero indicates

additive, synergistic or antagonistic action of the pesticide
mixture respectively.

Fish behavior

Fish exposed to chlorpyrifos, dichlorvos and mixture
pesticides in geometric series (doses mentioned above)
for lethal toxicity assessment were carefully observed
during the whole experimental period and their behavior
like body movements, operculum movements, color
change, swimming pattern, schooling behavior, mucus
secretion was recorded. Although the behavior study was
started with five concentrations of each pesticide, data
from all treatments could not be presented due to fish
mortality in higher pesticide concentrations.

Data presentation and analysis

The average weight, standard deviation and mortality
percentage of fish were calculated in Microsoft Excel.
The diagrams were also prepared in Microsoft Excel. The
lethal concentrations (24 h, 48 h, 72 h and 96 h LC10 to
LC90) of individual and mixture pesticides were calcu-
lated by log probit analysis using statistical program
SPSS version 20. The lethal concentration data are pre-
sented with their upper and lower limit at a 95% con-
fidence interval. The joint toxicity of the pesticides was
analyzed in Microsoft Excel based on formulae described
by Marking (1985).

Results

Lethal toxicity of chlorpyrifos

Lethal toxicity testing of chlorpyrifos was conducted in
five different concentrations ranging from 0.25 mg/L to
4 mg/L. Chlorpyrifos at a low dose (0.25 mg/L) was
slightly toxic to fish where mortality started at a later
phase (after 72 h) where only 10% of the fish population
died by the end of the experiment (96 h). In contrast,
chlorpyrifos concentrations 1 mg/L, 2 mg/L and 4 mg/L
caused 100% fish mortality after 72 h, 48 h and 24 h of
exposure periods, respectively (Fig. 1).

The median lethal concentrations (LC50) of chlorpyrifos
with their 95% confidence limit were found to be 0.906
(0.689-1.179), 0.527 (0.433–0.633), 0.435 (0.366–0.517) and
0.380 (0.319–0.450) mg/L at 24 h, 48 h, 72 h and 96 h,
respectively (Table 1). The range of LC10 to LC90 at 24 h,
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48 h, 72 h and 96 h were 0.312 (0.167–0.445) to 2.630
(1.873–4.737), 0.311 (0.203–0.388) to 0.894 (0.727–1.316),
0.287 (0.195–0.345) to 0.659 (0.547–0.973) and 0.251
(0.172–0.302) to 0.575 (0.479–0.829) mg/L, respectively,
showing a decreasing trend of lethal pesticide concentration
with increasing time of exposure (Table 1).

Lethal toxicity of Dichlorvos

Lethal toxicity of dichlorvos to mrigal was assessed by
exposing fish to five different concentrations ranging from
4 mg/L to 64 mg/L. The lower dichlorvos concentrations
(4 mg/L and 8 mg/L) exhibited no fish mortality during 96 h
exposure. Other pesticide concentrations viz. 16 mg/L,
32 mg/L and 64 mg/L killed 100% of stocked fish after 96 h,
48 h and 24 h of exposure, respectively (Fig. 2).

The median lethal concentrations (LC50) at 24 h, 48 h, 72 h
and 96 h with 95% confidence limits were 38.432

(33.625–47.866), 22.477 (19.047–26.646), 12.442
(9.619–14.196) and 11.367 (9.496–13.536) mg/L, respectively
(Table 2). The range of LC10 to LC90 at 24 h, 48 h, 72 h and
96 h were calculated to be 28.710 (20.917–32.898) to 51.447
(43.129–87.287), 17.453 (13.322–20.394) to 28.948
(24.723–38.344), 9.837 (6.003–11.713) to 15.736
(13.759–19.275) and 9.068 (6.821–10.655) to 14.250
(12.146–18.718) mg/L, respectively, showing a decreasing
trend of lethal pesticide concentration with increasing time of
exposure (Table 2). The acute toxicity results of both pesticides
clearly indicate that chlorpyrifos is more toxic than dichlorvos
to freshwater fish such as mrigal (Tables 1 and 2).

Lethal toxicity of mixture pesticides

To assess the lethal toxicity of chlorpyrifos and dichlorvos
mixture, fish were exposed to 5 different pesticide mixtures

Fig. 1 Mortality of mrigal at different concentrations of
chlorpyrifos (CPF)

Table 1 24–96 h lethal
concentrations (LC10- LC90) of
chlorpyrifos to mrigal

Toxicity 24 h (mg/L) 48 h (mg/L) 72 h (mg/L) 96 h (mg/L)

LC10 0.312
(0.167–0.445)

0.311
(0.203–0.388)

0.287
(0.195–0.345)

0.251
(0.172–0.302)

LC20 0.450
(0.280–0.603)

0.373
(0.268–0.451)

0.331
(0.246–0.389)

0.289
(0.217–0.340)

LC30 0.586
(0.401–0.762)

0.425
(0.325–0.507)

0.367
(0.289–0.428)

0.320
(0.253–0.374)

LC40 0.734
(0.536–0.945)

0.475
(0.379–0.566)

0.400
(0.329–0.469)

0.350
(0.287–0.409)

LC50 0.906
(0.689–1.179)

0.527
(0.433–0.633)

0.435
(0.366–0.517)

0.380
(0.319–0.450)

LC60 1.118
(0.867–1.503)

0.585
(0.489–0.718)

0.472
(0.403–0.576)

0.412
(0.352–0.500)

LC70 1.401
(1.083–1.994)

0.654
(0.550–0.832)

0.515
(0.442–0.654)

0.450
(0.385–0.565)

LC80 1.824
(1.376–2.838)

0.746
(0.622–1.001)

0.571
(0.486–0.768)

0.498
(0.424–0.660)

LC90 2.630
(1.873–4.737)

0.894
(0.727–1.316)

0.659
(0.547–0.973)

0.575
(0.479–0.829)

Values in parentheses are lower and upper bound at 95% confidence limit

Fig. 2 Mortality of mrigal at different concentrations of
dichlorvos (DDVP)
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prepared in an equitoxic concentration ranging from 12.5% to
200% 96 h-LC50 values of the respective pesticide. 12.5%
pesticide mixture caused no fish mortality whereas 25%, 50%
and 100% of pesticide mixture killed 20%, 40% and 70% of
the fish population respectively during 96 h of exposure. 200%
pesticide mixture was highly toxic and killed all fish within
48 h of exposure (Fig. 3).

In the pesticides mixture, the LC50 values of chlorpyrifos
with 95% confidence limit were 0.761 (0.535–1.665), 0.337
(0.279–0.413), 0.306 (0.252–0.374) and 0.217
(0.170–0.279) mg/L and dichlorvos were 22.774
(16.010–49.793), 10.088 (8.332–12.358), 9.155
(7.533–11.200) and 6.484 (5.089–8.333) mg/L at 24 h,
48 h, 72 h and 96 h, respectively (Table 3). In joint toxicity
assessment, the dominating action of chlorpyrifos and
dichlorvos mixture was found to be antagonistic (Table 4).

Fish behavior

In terms of body movement, fish treated with the pesticide
mixture became hypo-active compared to chlorpyrifos and
dichlorvos exposed fish. Such fish behavior was more
intense with increasing concentrations of the pesticide
mixture. Fish were unable to balance their body in chlor-
pyrifos treatments but such loss of equilibrium was not
noticed in other pesticide treatments. Slight color changes
were observed in fish; caudal and pectoral fins were reddish
and the body became pale in higher dose of all treatment
groups. Fish schooling behavior was influenced by chlor-
pyrifos, dichlorvos and the pesticide mixtures and changes
became more distinct with increasing pesticide concentra-
tions where swimming coordination among fish was lost
and fish were scattered everywhere in the test chamber
occupying a greater space than control fish. Frequently, fish
were also aggregated at the corners of the test chambers in
all pesticide treatments. In each treatment group, fish were
overexcited and suddenly showed vigorous movements in
different directions before death. The dead fish were found
to be loaded with mucus around their respiratory organs in
higher pesticide concentrations. Opercular movements of
fish were also elevated after pesticide exposure in all
treatment groups (Table 5).

Discussion

The first step in determining a chemical’s safety threshold in
the aquatic environment is to ascertain its lethal toxicity.

Table 2 24 h–96 h lethal
concentrations (LC10 - LC90) of
dichlorvos to mrigal

Toxicity 24 h (mg/L) 48 h (mg/L) 72 h (mg/L) 96 h (mg/L)

LC10 28.710
(20.917–32.898)

17.453
(13.322–20.394)

9.837
(6.003–11.713)

9.068
(6.821–10.655)

LC20 31.733
(25.407–36.257)

19.037
(15.208–22.140)

10.663
(7.093–12.449)

9.800
(7.704–11.473)

LC30 34.109
(28.721–39.581)

20.267
(16.638–23.622)

11.302
(7.980–13.041)

10.363
(8.371–12.159)

LC40 36.279
(31.377–43.364)

21.381
(17.882–25.083)

11.877
(8.803–13.604)

10.871
(8.952–12.828)

LC50 38.432
(33.625–47.866)

22.477
(19.047–26.646)

12.442
(9.619–14.196)

11.367
(9.496–13.536)

LC60 40.713
(35.671–53.374)

23.630
(20.200–28.427)

13.033
(10.466–14.876)

11.887
(10.037–14.335)

LC70 43.304
(37.710–60.428)

24.929
(21.415–30.603)

13.697
(11.384–15.738)

12.469
(10.606–15.304)

LC80 46.546
(39.997–70.309

26.540
(22.812–33.534)

14.517
(12.430–16.988)

13.186
(11.260–16.602)

LC90 51.447
(43.129–87.287)

28.948
(24.723–38.344)

15.736
(13.759–19.275)

14.250
(12.146–18.718)

Values in parentheses are lower and upper bound at 95% confidence limit

Fig. 3 Mortality of mrigal at different concentrations (12.5% to 200%
of 96 h LC50) of pesticide mixture (CPF and DDVP) where 96 h-LC50

of CPF- 0.380 mg/L and DDVP-11.367 mg/L

Chlorpyrifos and dichlorvos in combined exposure reveals antagonistic interaction to the freshwater. . . 661



In our study 96 h-LC50 value of chlorpyrifos to mrigal was
found to be 0.380 (0.319-0.450) mg/L. Our recent work on
common carp (Cyprinus carpio) and golden mahseer (Tor
putitora) reported 96 h median lethal concentration of
chlorpyrifos to be 0.44 and 0.753 mg/L respectively (Kun-
war et al. 2021a, b). Similarly, 96 h-LC50 values of chlor-
pyrifos were reported to be 0.44 mg/L in mrigal (Bhatnagar
et al. 2017) and 0.58 mg/L in common carp (Xing et al.
2015). In this experiment, we found 96 h-LC50 of dichlor-
vos was 11.367 (9.496-13.536) mg/L. The present finding
corroborates to other experiments that documented 96 h
median lethal concentration of dichlorvos to be 9.1 mg/L in
mrigal (Velmurugan et al. 2009), 9.41 mg/L (Ural and Çalta

2005) or 15.705 mg/L in common carp (Kunwar et al.
2021a) and 12.964 mg/L in golden mahseer (Kunwar et al.
2021b). Our results distinctly reveal chlorpyrifos is rela-
tively more toxic than dichlorvos for mrigal.

In general, toxicity evaluations are based on single pes-
ticide assessments but these compounds are oftentimes
found as complex mixtures in nature; therefore such
assessment studies on individual pesticides cannot represent
the actual threats posed to aquatic organisms. The combined
pesticide toxicity can be additive (an effect produced by
mixture pesticides is exactly equal to the sum of individual
pesticide’s effects), synergistic (an effect caused by mixture
pesticides is higher than the sum of its individual pesticide’s
effect) or antagonistic (an effect caused by mixture pesti-
cides is less than the sum of its individual pesticide’s
effect). In our study, the joint action of chlorpyrifos and
dichlorvos to mrigal was observed to be antagonistic. An
antagonistic effect of these two pesticides was also recorded
in our recent experiment with golden mahseer (Kunwar
et al. 2021b). Wang et al. (2017) documented antagonistic
effect of chlorpyrifos and other pesticides mixture on zeb-
rafish (Danio rerio). Antagonistic effects of chlorpyrifos
and carbosulfan (Chen et al. 2014) and fenobucarb with
triazophos or malathion (Wang et al. 2015) were also
observed in common carp.

Chlorpyrifos and dichlorvos belong to the organopho-
sphate group that have the same mode of action (MOA).
Pesticides having the same MOA are not necessarily

Table 3 24–96 h lethal concentrations (LC10–LC90) in mg/L of pesticide mixture (chlorpyrifos ‘CPF’ and dichlorvos ‘DDVP’) to mrigal

Toxicity 24 h (CPF and DDVP) 48 h (CPF and DDVP) 72 h (CPF and DDVP) 96 h (CPF and DDVP)

LC10 0.236 and 7.052
(0.113–0.332, 3.387–9.945)

0.190 and 5.671
(0.126–0.236, 3.781–7.063)

0.170 and 5.072
(0.112–0.212, 3.348–6.353)

0.086 and 2.563
(0.051–0.116, 1.537–3.465)

LC20 0.353 and 10.546
(0.225–0.495, 6.740–14.807

0.231 and 6.911
(0.170–0.280, 5.075–8.364

0.208 and 6.212
(0.151–0.252, 4.522–7.547)

0.118 and 3.525
(0.080–0.152, 2.388–4.548)

LC30 0.471 and 14.097
(0.334–0.730, 10.005–21.829)

0.266 and 7.970
(0.207–0.320, 6.202–9.558)

0.240 and 7.189
(0.186–0.289, 5.555–8.641)

0.148 and 4.435
(0.108–0.188, 3.233–5.613)

LC40 0.604 and 18.063
(0.435–1.095, 13.020–32.756)

0.301 and 9.002
(0.243–0.362, 7.272–10.843

0.272 and 8.146
(0.219–0.328, 6.545–9.816)

0.180 and 5.397
(0.138–0.228, 4.123–6.825)

LC50 0.761 and 22.774
(0.535–1.665, 16.010–49.793)

0.337 and 10.088
(0.279–0.413, 8.332–12.358)

0.306 and 9.155
(0.252–0.374, 7.533–11.200)

0.217 and 6.484
(0.170–0.279, 5.089–8.333)

LC60 0.960 and 28.714
(0.645–2.583, 19.285–77.269)

0.378 and 11.304
(0.315–0.477, 9.423–14.268)

0.344 and 10.288
(0.286–0.433, 8.557–12.947)

0.260 and 7.790
(0.206–0.346,
6.171–10.355)

LC70 1.230 and 36.794
(0.777–4.185, 23.245–125.176)

0.427 and 12.768
(0.355–0.563, 10.617–16.846)

0.390 and 11.657
(0.324–0.512, 9.682–15.315)

0.317 and 9.480
(0.249–0.444,
7.458–13.287)

LC80 1.644 and 49.182
(0.958–7.425, 28.668–222.120)

0.492 and 14.724
(0.403–0.692, 12.066–20.702)

0.451 and 13.491
(0.369–0.631,
11.050–18.872)

0.399 and 11.928
(0.306–0.604,
9.162–18.075)

LC90 2.459 and 73.550
(1.271–16.591,
38.018–496.275)

0.600 and 17.942 (0.476–0.933,
14.225–27.906

0.552 and 16.523
(0.438–0.854,
13.095–25.558)

0.548 and 16.403
(0.401–0.942,
11.981–28.175

Values in parentheses are lower and upper bound at 95% confidence limit

Table 4 Joint toxicity of chlorpyrifos and dichlorvos to mrigal

Toxicity Additive Index (AI) value

24 h 48 h 72 h 96 h

LC10 0.00 0.06 -0.11 0.37

LC20 −0.12 0.02 −0.21 0.23

LC30 −0.22 −0.02 −0.29 0.11

LC40 −0.32 −0.05 −0.37 −0.01

LC50 −0.43 −0.09 −0.44 −0.14

LC60 −0.56 −0.12 −0.52 −0.29

LC70 −0.73 −0.17 −0.61 −0.46

LC80 −0.96 −0.21 −0.72 −0.71

LC90 −1.36 −0.29 −0.89 −1.10
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synergistic (LeBlanc et al. 2012, Wang et al. 2017). To the
best of our knowledge, this is the first study to show that
chlorpyrifos and dichlorvos have antagonistic effects in the
freshwater fish mrigal. There are various explanations put
forward by investigators for the antagonistic effect. Her-
nández et al. (2013) described that the pesticide mixture
changes the toxicokinetics of the individual compounds,
thus modifying their toxicity. Therefore, chemical interac-
tion between two pesticides might be the reason for the
antagonistic result (Imam et al. 2018). Likewise, authors
(Stepić et al. 2013, Wang et al. 2017) stated enhanced
metabolization processes leading to faster excretion of
metabolites, eventually resulting in decreased pesticide
toxicity. A potential basis for such an antagonistic outcome
could be the elevation of carboxylesterases (CaEs) activity.
CaEs can detoxify pesticides by hydrolysis (Jokanović
2001, Wheelock et al. 2005). Moreover, this enzyme is also
believed to protect AChE from pesticide toxicity by direct
binding and sequestration (Jokanović 2001, Maxwell 1992).
Therefore, the observed outcome in this experiment might
be due to the protective role of CaEs induced by the
chlorpyrifos and dichlorvos mixture in mrigal. Another
possible interpretation for antagonistic interaction could be
Glutathione-S-transferase (GST) mediated pesticide detox-
ification. Available reports suggest that GST promotes
cellular detoxification of xenobiotics including pesticides
(Booth et al. 1998, Jin-Clark et al. 2002). In response to
pesticide co-exposure, GST activity was reported to be
significantly higher compared to individual pesticide
exposure (Stepić et al. 2013). Based on this, we hypothe-
sized that combined treatment of chlorpyrifos and dichlor-
vos might have elevated GST activity in our experimental
animal which played a role in efficient detoxification of
metabolites leading to reduced toxicity.

Fish behavior studies are an important non-invasive tool
for toxicity assessment. Pesticide exposed fish exhibited
loss of coordination with each other, residing at corners of
the test chamber, excess mucus secretion, becoming pale,
rapid opercular movements and abrupt swimming before

death. Alike behavioral expressions in response to pesticide
were exhibited by common carp and golden mahseer
(Kunwar et al. 2021a, b) under similar exposure environ-
ments. Many other authors (Kavitha and Rao 2008, Halappa
and David 2009, Nwani et al. 2013, Ullah et al. 2014,
Padmanabha et al. 2015, Saha et al. 2016, Soni and Verma,
2018) have also documented comparable behavioral chan-
ges in fish after pesticides exposure. Inhibition of acet-
ylcholinesterase (AChE) leads to accumulation of
acetylcholine (ACh) in cholinergic synapses and over-
stimulation resulting behavioral changes in fish (Halappa
and David 2009). The excess mucus secretion by pesticide
exposed fish would protect them by avoiding contact with
toxicants or by getting rid of it through the shedding of the
mucus layer (Patil and David 2008, Halappa and David
2009). Fish are stressed when exposed to pesticides and
their oxygen demand becomes high during such circum-
stances (Schmidt et al. 2005). Therefore rapid opercular
movements after pesticide exposure in mrigal would have
facilitated in supplying high oxygen to detoxify pesticides
and protect them from deleterious effects. Most of the
behavioral symptoms were similar in all pesticide treat-
ments but only chlorpyrifos treated fish exhibited equili-
brium loss. This behavioral difference might be due to the
severe inhibition of chlorpyrifos on AChE leading to high
accumulation of ACh in these fish groups compared to other
pesticide treated groups.

Conclusion

Compared to dichlorvos, chlorpyrifos is highly toxic to fish.
Despite the same mode of action, the majority of the binary
mixture effects were antagonistic in the present study. This
requires in-depth investigation such as measurement of
ACh, AChE, CaE and GST to explore the toxicity
mechanism of these pesticides in co-exposure. Behavioral
manifestations detected even at low pesticide concentration
suggest that such observations should be incorporated in

Table 5 Behavioral changes shown by mrigal during 96 h acute exposure of chlorpyrifos (CPF), dichlorvos (DDVP) and their mixture

Fish behavior CPF (mg/L) DDVP (mg/L) Mixed pesticides (mg/L)

0.25 0.5 1 2 4 8 16 32 CPF-0.047
DDVP-1.420

CPF-0.095
DDVP-2.841

CPF-0.190
DDVP-5.683

CPF-0.380
DDVP-11.367

Hypo-activity − − − NA − − − NA + + ++ ++

Equilibrium loss + ++ ++ NA − − − NA − − − −

Color change − − + NA − − + NA − − + +

Aggregating at corners of the
aquarium

+ + ++ NA + + ++ NA + + + +

Avoiding schooling behavior − + ++ NA − + + NA ++ + + +

Mixed concentrations were prepared as 12.5%, 25%, 50%, 100% and 200% of 96 h-LC50 values of the respective pesticides. 96 h-LC50 of CPF-
0.380 mg/L and DDVP-11.367 mg/L (−: absent; +: mild; ++: moderate; +++: strong)
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toxicity studies because it is a highly sensitive and non-
invasive bio-monitoring tool. Such assessments can be
correlated to the health status and growth performance of
fish under the available rearing condition. To sum up, the
application of toxic pesticides should be regulated and the
use of bio-pesticides and integrated pest management pro-
grams should be promoted to save precocious aquatic flora
and fauna from pesticide threats.
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