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Abstract
The pollution of polycyclic aromatic hydrocarbons was serious in sediments of the Pearl River estuary, China. A fluorene-
degrading bacterium, strain A2-3, was isolated from hydrocarbon contaminated sediment of this estuary and identified as
Rhodococcus sp. based on the analyses of 16S rRNA gene sequence and morphology. Rhodococcus sp. A2-3 can take
naphthalene, p-Teropheny, fluorene, pyrene, salicylic acid, citric acid, acetic acid, diethyletheranhydrous, methanol or 4,4′-
dibromodiphenyl ether as sole carbon source. 100% of 100 mg/L fluorene or 89% of 400 mg/L fluorene was removed in
7 days by strain A2-3 at 30 °C and pH 7.5. The strain A2-3 showed a high degradation efficiency of fluorene when pH values
ranged from 5.5 to 8.5. The proposed pathway of fluorene catabolism by strain A2-3 was initially attacked by 3,4
dioxygenation. Our results suggested Rhodococcus sp. A2-3 can degrade PAHs under aerobic conditions and can function in
bioremediation, particularly for weakly acid environment.
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Introduction

The rapid urbanization and industrialization in the delta
region of the Pearl River estuary causes increasingly accu-
mulation of toxic organic compounds and heavy metals in
the Pearl River estuary, which is one of the largest river
system in China (Chau 2006; Ye et al. 2012). Because the
sediment can react both as an important pollutant sink and
as a carrier and potential future source of contaminants,
the discussion about pollution status in sediments of this

estuary is very important and necessary (Chau 2006).
Polycyclic aromatic hydrocarbons (PAHs) are a series of
ubiquitous hydrophobic organic pollutants, showing toxic,
mutagenic, or carcinogenic properties (DeBruyn et al. 2007;
Zhou et al. 2006). The PAHs pollution is serious in the
Pearl River estuary, and total PAHs concentrations vary
from 323 to 21,324 ng/g dry weights in surface sediments of
the Pearl River estuary (Mai et al. 2001). Furthermore,
Guangzhou channel locating in the upstream of the Pearl
River estuary shows the highest concentrations of PAHs in
sediments because Guangzhou city releases many urban/
industrial waste (Mai et al. 2001; Zhang et al. 2015). In
addition, the percentage of 2–3 rings PAHs shows a
declined tendency from upstream to downstream of the
Pearl River estuary (Mai et al. 2001).

Great efforts are taken to remove PAHs in environment.
However, bacterial degradation of PAHs is considered as the
most cost-effective option to cleanup PAH-contaminated
sites (Margesin and Schinner 1997; Ling et al. 2011; Jeon
and Madsen 2013). A high diversity of bacterial species
can degrade PAHs, including the common genera of Sphin-
gomonas, Pseudomonas, Cycloclasticus, Mycobacterium,
Bacillus and Rhodococcus (Dean-Ross et al. 2002; Finkel-
stein et al. 2003; Lu et al. 2011; Khanna et al. 2012;
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Kim et al. 2015). Moreover, our previous study demonstrated
higher diversity of PAHs-metabolizing bacteria was found in
the Guangzhou channel through culture-independent meth-
ods targeting the bacterial PAHs ring-hydroxylating dioxy-
genase gene (Wu et al. 2014). Nevertheless, up to now, no
PAHs-degrading bacterium is reported to isolated from the
Pearl River estuary.

Fluorene, a 3-ring PAH with similar structure to several
carcinogenic PAHs, is often used as a model low molecular
weight (LMW) PAH for biodegradation. Furthermore, the
US Environmental Protection Agency has taken fluorene as
a priority pollutant (Finkelstein et al. 2003; Chupungars
et al. 2009). Considering the high amount of LMW PAHs in
Guangzhou channel, the purpose of the present study was to
isolate and purify fluorene-degrading bacteria from the
Pearl River estuary, and to discuss the PAHs-degradation
capability.

Materials and methods

Chemicals and media

Phenanthrene, fluorene and pyrene were bought from
Sigma–Aldrich company with the purity of 97–99%. Indivi-
dual PAH stock solutions were prepared in acetone (10 g/L).
All other chemicals and solvents in this study belong to
analytical grade or better. Mineral salt medium (MSM) con-
tained per liter of deionized water: (NH4)2SO4, 1.0 g;
MgSO4·7H2O, 0.2 g; Na2HPO4, 0.8 g; Ca(NO3)2·4H2O,
0.05 g; KH2PO4, 0.2 g and trace elements made up of
FeCl3·3H2O, 5 mg; (NH4)6Mo7O24·4H2O, 1mg; MnCl2,
0.2mg; CoCl2, 0.02mg; CuSO4, 0.02mg. Modified Luria-
Bertani (LB/5) medium contained peptone 2 g/L, NaCl 2 g/L
and yeast extract 1 g/L (pH 7.5).

Isolation, purification and identification of PAHs-
degrading bacteria

The collected sediments from the Guangzhou channel of the
Pearl River estuary were inoculated into MSM amended with
fluorene and pyrene (each 0.1 g/L) and incubated at 30 °C
under shaking condition (200 rpm). 2-ml aliquots of super-
natant were then weekly transferred to fresh MSM containing
the same concentration of fluorene and pyrene. The transfor-
mation procedure was repeated more than four times until
obvious bacteria grew in the fresh MSM. Fluorene and pyrene
(each 0.1 g/L) were dissolved in acetone and sprayed on the
surface of the MSM agar plates. After evaporating the solvent
of acetone, conventional spread plate techniques were used to
isolate and purify bacteria on MSM-PAHs agar plates. All
isolates with different morphological characteristic were later
confirmed with an ability to degrade PAHs in fresh liquid

medium. Finally, an isolate named strain A2-3 grew best with
fluorene and pyrene as the sole carbon and energy source.

The 16S rRNA gene and cell morphology of strain A2-3
was employed to identify this strain. The 16S rRNA gene of
strain A2-3 was amplified and sequenced by PCR using the
following primers: F27 (5′-AGAGTTTGATCCTGGCT
CAG-3′) and R1492 (5′-GGTTACCTTGTTACGACTT-3′)
(Edwards et al. 1989). The phylogenetic tree was con-
structed using MEGA 5 by the neighbor-joining method
with bootstrap analyses for 1000 replicates (Tamura et al.
2011). The 16S rRNA sequence of strain A2-3 was sub-
mitted in the NCBI database with the accession number
KP851854. The cell morphology of the isolate was also
observed by light microscopy and scan electron
microscope (SEM).

Carbon source utilization

Experiments were employed to determine whether the strain
A2-3 could grow on other organics following the recom-
mendations of Zhang et al. (2009). The purified strain A2-3
was cultivated on one of the following compounds at 0.01% as
the sole carbon source at 30 °C: pyrene, fluorene, naphthalene,
p-Terophenyl, salicylic acid, terephthalic acid, toluene, acetic
acid, ethanol, ethanediol, lactate, diethyletheranhydrous,
methanol, xylene, trichloromethane, formic acid, phthalic acid,
citric acid and 4,4′-dibromodiphenyl ether. Bacterial growth
was measured by the increase of the culture (OD600). All
treatments were incubated in dark at 200 rpm and 30 °C.

Degradation of fluorene by strain A2-3

Cells of strain A2-3 pre-grown for 3 days in LB/5 medium
were then harvested, centrifuged, washed and resuspended
in MSM. Biodegradation of fluorene was performed in
50-ml sterilized Erlenmeyer flasks holding 20 ml of MSM
and 0.2 ml of fluorene stock solution (10 g/L). Make sure to
evaporate the solvent before the addition of 1 ml of resus-
pended cells. Non-inoculated flasks and flasks without
substrate (with acetone only) were served as controls. All
treatments were conducted in triplicate. The cultures were
incubated (30 °C, 200 rpm in the dark) and removed for
further analysis at various time intervals. The cell growth
was measured by OD600. The rest PAHs in the liquid culture
were deeply extracted by hexane with four times. The
extract was dried, re-dissolved in 5 ml of hexane, and
analyzed with gas chromatography/mass spectrometry (GC/
MS) (N6890/5975B, Agilent, USA).

In addition, effects of different initial concentrations (100,
400, 800 mg/L), and pH (5.5, 6.5, 7.5, 8.5 and 9.5) on
fluorene removal have also been investigated. All biode-
gradation experiments were conducted three times with
7 days in culture.
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Results

Identification and classification of strain A2-3

Strain A2-3 was aerobic, Gram-positive actinobacterium.
On LB medium, the colonies of strain A2-3 were circular,
glistening, opaque, convex, creamish pink in colour and
have regular edges (Fig. 1). The SEM micrograph presented
that the strain A2-3 was rod-like with diameter about 1.0 μm
and length 5.0 μm (Fig. 1). The partial 16S rRNA sequence
of strain A2-3 was a continuous stretch of 1359 nucleotides.
Sequence alignment using a BLAST search demonstrated
that strain A2-3 was 100% similarity to R. rubber Ebht1
(JF895525) and Rhodococcus rubber E10 (EU427319).
Phylogenetic tree analyses also indicated that strain A2-3
was closely related to the species in genus Rhodococcus
(Fig. 2).

Utilization of carbon source

Nineteen kinds of carbon sources were selected and tested for
strain A2-3 to investigate the carbon substrate utilization. This
strain showed capability to degrade aromatic compounds
containing 2–4 rings of phenyl (naphthalene, p-Teropheny,

fluorene and pyrene). Salicylic acid (the key metabolic
intermediate of PAHs) and citric acid (the intermediate of
tricarboxylic acid cycle) can be utilized for strain A2-3 as the
sole carbon and energy source (Table 1). Strain A2-3 can also
use acetic acid, diethyletheranhydrous, methanol, while this
strain cannot take terephthalic acid, toluene, ethanol, ethane-
diol, lactate, xylene, trichloromethane, formic acid and
phthalic acid as carbon source (Table 1). In addition, 4, 4′-
dibromodiphenyl ether, a kind of persistent organic pollutant
utilized as flame retardant, can be degraded by strain A2-3.

Fluorene degradation

The time-courses of bacterial growth and fluorene degra-
dation (initial concentration: 100 mg/L) were determined
under the condition at 30 °C and 200 rpm in the dark.
Fluorene was rapidly removed, and an obvious growth of
strain A2-3 corresponding to the decline of fluorene was
founded in this study (Fig. 3). The concentration of fluorene
was reduced to only 8 mg/L after four days of incubation.
Within 5 days, the initial amount of fluorene was com-
pletely utilized, and the highest cell density was reached
with a culture turbidity of 0.25 at OD600 (Fig. 3). However,
no growth was observed in the controls (Fig. 3).

a bFig. 1 Photographs of colony
and cell of Rhodococcus sp.
strain A2-3: a colony growth on
LB agar plate; b SEM
photograph

Rhodococcus ruber E10 (EU427319)

Rhodococcus sp. An (AF529079)

Rhodococcus ruber Ebht1 (JF895525)

Rhodococcus sp. JN10 (KC121037)

Rhodococcus sp.A2-3

Rhodococcus aetherivorans IR34-DHCE-402 (AB546298)

Rhodococcus aetherivorans PG-3-6 (JF820103)

Rhodococcus pyridinovorans (AF173005)

Rhodococcus triatomae IMMIB RIV-085 (AJ854055)

Rhodococcus fascians DSM 20669T (X79186)

Rhodococcus erythreus DSM 43066T (X79289)
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Fig. 2 Neighbour-joining tree
constructed for the phylogenetic
relationship between strain A2-3
and other related species of the
genus Rhodococcus. Bootstrap
values beyond 50% are denoted
in each node (expressed as
percentages of 1000
replications)
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The GC-MS analysis of the fluorene degradation process
showed that the peak at retention time (Rt) 11.0009 min in
the beginning (day 0) was the fluorene based on the pub-
lished mass spectra (Fig. 4a). After incubation for 9 days,
the peak of fluorene disappeared, and some new peaks
occurred (Fig. 4b). However, no typical metabolic inter-
mediate of fluorene was observed by GC-MS.

Effect of initial concentrations and pH on fluorene
degradation

The fluorene biodegradation was carried out at different
initial concentrations of fluorene and various pH values
(Fig. 5). As shown in Fig. 5a, strain A2-3 can completely
degrade the 100 mg/L fluorene in 7 days, and this strain can
remove nearly 89% of fluorene in 7 days with an original
concentration of 400 mg/L. However, about 36% of fluor-
ene were removed in 7 days with an initial concentration of
800 mg/L.

Strain A2-3 can utilize almost 100% of 100 mg/L fluor-
ene at pH ranged from 5.5 to 8.5 in 7 days. Meanwhile, only
10% of fluorene were degraded at pH 9.5 and slight growth
of strain A2-3 was observed (OD600= 0.02) (Fig. 5b).

Discussion

Important role of the genus Rhodococcus in PAHs
degradation

Bacteria from the genus Rhodococcus were widespread in
nature and played a key role in the detoxification of per-
sistent pollutants (Finkelstein et al. 2003). Up to now, many
PAHs-degrading bacteria belonging to this genus were
isolated and identified from the natural environment.
Fluorene, one of the 16 most hazardous PAHs, was often
recognized as a model PAH for biodegradation (Finkelstein

Table 1 Utilization of carbon substrates by strain A2-3

Substrate Strain A2-3

Pyrene ++

Fluorene ++

Naphthalene ++

p-Terophenyl ++

Salicylic acid +

Terephthalic acid −

Toluene −

Acetic acid ++

Ethanol −

Ethanediol −

Lactate −

Diethyletheranhydrous +

Methanol +

Xylene −

Trichloromethane −

Formic acid −

Phthalic acid −

Citric acid ++

4, 4′-dibromodiphenyl ether ++

Bacterial growth was measured by the increase of OD600nm after 6 days
of incubation. (−) no growth: OD600nm < 0.02; (+) growth: OD600nm >
0.1; (++) Good growth: OD600nm > 0.2
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Fig. 3 Degradation of fluorene (100 mg/L) by Rhodococcus sp. A2-3.
Cells were cultivated at 30 °C, 200 rpm in the dark for 9 days. Controls
were performed without bacteria or carbon source

Fig. 4 GC–MS analysis of fluorene degradation by strain A2-3 at
regular interval (a) day 0 and (b) day 9
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et al. 2003; Chupungars et al. 2009). Finkelstein et al.
(2003) investigated four Rhodococcus species (R. opacus
4a, R. rhodochrous 172, R. opacus 557 and R. rhodnii 135)
to degrade fluorene and found that the first three strains can
completely transform fluorene when fluorene was treated as
the sole source of carbon in the culture at concentration of
12–25 mg/L. However, when a fluorene concentration in the
medium ranged from 50 to 100 mg/L, three strains trans-
formed 50% of fluorene for 14 days incubation. In this
study, within 7 days, Rhodococcus sp. A2-3 can absolutely
remove the 100 mg/L fluorene and can degrade about 89%
of 400 mg l−1

fluorene (Fig. 5a). Therefore, strain A2-3
showed a higher efficiency to transform fluorene.

Bacteria from the genus Rhodococcus can degrade not
only fluorene but also other PAHs. Tongpim and Pickard
(1996) showed that the isolated Rhodococcus sp. S1 can
mineralized anthracene, but not phenanthrene or naphthalene.
Di Gennaro et al. (2001) found Rhodococcus opacus R7
isolated from a PAHs contaminated soil can grow on 1 g/L
naphthalene as the exclusive carbon and energy source. R.
rhodnii 135 and R. opacus 412 were adapted to mineralize
phenanthrene (Leneva et al. 2009). Pasternak et al. (2011)

invetisgated the biodegradation of coal tar performed by R.
erythropolis B10 and found this strain had the capacity to
utilize 2–3 rings of PAHs. Song et al. (2011) demonstrated
that Rhodococcus sp. P14 can utilize phenanthrene, pyrene,
and benzo[a]pyrene as a sole carbon and energy source. After
30 days of cultivation with 50mg/L of following PAHs,
strain P14 consumed 43% phenanthrene, 34% pyrene and
30% benzo[a]pyrene. R. wratislaviensis strain 9 can degrade
high-molecular weight PAHs. Within 7 days, 40% of 50 μM
pyrene or 28% of 40 μM benzo[a]pyrene (BaP) was degraded
by R. wratislaviensis strain 9 (Subashchandrabose et al.
2019). Rhodococcus sp. NJ2 can degraded 78% of 1000 ppm
anthracene supplemented in minimal salt medium, within
10 days (Jauhari et al. 2020). In this study, strain A2-3 can
utilize naphthalene, fluorene and pyrene (Table 1). Thus,
results from this study further imply that the genus Rhodo-
coccus should be one of the important and common genera to
degrade the PAHs.

Environmental conditions controlling PAHs
degradation

Environmental conditions can affect the bacterial process
of PAHs degradation, while pH and initial concentration
are common factors to control PAHs degradation (Zhang
et al. 2009; Lu et al. 2011). To investigate the degradation
capacity of fluorene by strain A2-3, a series of different
concentration of fluorene was set. When the original
concentration of fluorene was below 400 mg/L, the high
degradation efficiency was shown (Fig. 5a). But, the
degradation capacity was suppressed by the higher con-
centration of fluorene (800 mg/L) (Fig. 5a). The reason
was probably due to the toxicity of fluorene on bacterial
reproduction. This was consistent with previous studies
which demonstrated the toxicity effect of high PAHs
concentration on bacterial community (Zhang et al. 2009;
Ling et al. 2011).

Previous studies suggest that many bacteria exhibit opti-
mal degradation of PAHs at neutral pH (Lu et al. 2011). In
addition, there are several reports suggest that slightly
alkaline values are benefit for bacteria to transform PAHs.
Hambrick et al. (1980) demonstrated that soil bacteria can
degrade PAHs preferring to alkaline condition rather than
acid condition. Zhao et al. (2009) found that a highly effi-
cient degradation of phenanthrene by Pseudomonas stutzeri
ZP2 was observed when pH at 8.0. Feng et al. (2012) tested
the ability of phenanthrene biodegradation by Martelella sp.
AD-3 at pH 6.0–10.0 and found the 100% depletion of
phenanthrene when the initial pH value was 9.0. However,
strain A2-3 reached a high degradation efficiency of fluorene
when pH values belong to weakly acid. 100mg/L fluorene
was completely transformed by strain A2-3 at pH 5.5–7.5
after 7 days (Fig. 5b). Except for the factors mentioned
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above, surfactant, co-substrate and nutrient can also exert
influence on bacterial degradation of PAHs (Haritash and
Kaushik 2009; Lu et al. 2011).

The proposed pathway of fluorene catabolism by
strain A2-3

Fluorene catabolism can be transformed by three alter-
native pathways (Casellas et al. 1997; Habe et al. 2004).
Two of these pathways started with a dioxygenation at the
1,2-C or 3,4-C positions. The third pathway was initiated
via a monooxygenation at the C-9 position to give 9-
fluorenol, which can be then transformed to phthalic acid
(Casellas et al. 1997; Habe et al. 2004). The pathway by
dioxygenase at 3,4 positions can be further metabolized,
yielding salicylic acid (Casellas et al. 1997; Habe et al.
2004). Carbon source utilization indicated that strain A2-3
can take salicylic acid as the sole carbon source, but not
with phthalic acid (Table 1). Therefore, the analysis of
carbon source utilization and the GC-MS analysis of the
fluorene degradation pathway suggest that strain A2-3
complete utilize the fluorene molecules initially attacked
by 3, 4 dioxygenation (Fig. 6).

Conclusions

A high effective fluorene degrading strain named A2-3 was
isolated from hydrocarbon contaminated sediment of the
Pearl River estuary, China. The strain was identified
belonging to the genus Rhodococcus based on the analyses
of 16S rRNA gene sequence and morphology. Rhodococcus
sp. strain A2-3 can utilize 2-4 rings of phenyl, salicylic acid,
citric acid, acetic acid, diethyletheranhydrous, methanol or
4,4′′-dibromodiphenyl ether as sole carbon source. Strain
A2-3 can absolutely remove the 100 mg/L fluorene and can
degrade about 89% of 400 mg/L fluorene within 7 days at
30 °C and pH 7.5. The analysis of carbon source utilization
and the GC-MS analysis of the fluorene biodegradation
indicated that strain A2-3 transformed fluorene by a diox-
ygenase at 3, 4 positions. This strain showed a high
degradation efficiency of fluorene when pH values ranged
from 5.5 to 8.5. Our results further indicated that the genus
Rhodococcus was one of the important and common genera
to degrade the PAHs.
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