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Abstract
Nanotechnology is a new field in the pesticide industry. Nanopesticides represent an emerging technological tool that offers
a range of benefits including increased efficacy, durability, and reduction in the amounts of used active ingredients.
However, due to the lack of studies on the toxicity and the sublethal effects on pests and natural enemies, the extent of action
and fate of these nanopesticdes is still not fully understood limitting thus their wide use. In this study, we encapsulated the
pirimicarb insecticide using nanostructured lipid carriers (NLC) and investigated the toxicity and sublethal effects (LC25) of
the resulting nanocapsules against the cabbage aphid, Brevicoryne brassicae (Linnaeus) (Hemiptera: Aphididae) and its
natural enemy the green lacewings Chrysoperla carnea (Stephens) (Neuroptera: Chrysopidae). Nanoencapsulation of
pirimicarb enhanced 12.6-fold its toxicity to cabbage aphids compared to its commercial formulation. Furthermore, analysis
of the age-stage, two-sex life table showed that negative effects on the B. brassicae aphid population growth were observed
on F0 and F1 generations when aphids of parental (F0) generation were exposed to subelethal dose (LC25) of both
formulations of pirimicarb. However, negative effects from sublethal exposure to the commercial and nanoformulated
pirimicarb resulted in significant reduction on the net reproductive rate, intrinsic rate of natural increase, and finite rate of
increase of the green lacewings C. carnea. Our findings indicate that the approaches and assumptions used to assess the risks
of conventional insecticides may not apply for nanopesticides. Further research is still needed to better understand the
environmental impact of these compounds.
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Introduction

In modern agriculture, the overreliance on chemical pesti-
cides resulted on a growing build-up of resistance in tar-
geted arthropods (e.g. see Liang et al. 2012; Guedes et al.
2019; Gul et al. 2019), as well as severe consequences for
human health and environment (Weisenburger 1993; Des-
neux et al. 2007) shifting the focus of researches to novel
and potentially eco-friendly control tools. In this context,
nanotechnology has been suggested as promising source of
new materials with enhanced properties for insect pest
control (Benelli 2018; Ferreira et al. 2019; Lade and Gogle
2019; Ragaei and Sabry 2014; Athanassiou et al. 2018).

The use of the new concept pesticides based on nano-
technology, commonly referred to as nanopecticides, can
increase efficiency and improve quality of pesticides
applications and hence reduce their adverse effects on the
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environment (Guan et al. 2010; Guan et al. 2008; Kahru
et al. 2008; Campolo et al. 2017; Athanassiou et al. 2018).
Nanoformulations of pesticides have attracted much atten-
tion due to their greater effect even at very low doses
(Camara et al. 2019; Campos et al. 2015; Sciortino et al.
2021). Indeed, nanoparticles (NPs) present altered physio-
chemical properties with increased surface to volume ratio
and high mobility across physiological barriers making
them excellent delivery systems (Lade and Gogle 2019;
Sasson et al. 2007). Furthermore, nanomaterials had no
apparent toxic effects on a number of plants in preliminary
research making promising the use of these materials in
agriculture (De La Torre-Roche et al. 2013). Pesticides
nanoformulation is expected to have significant impacts on
the fate of active ingredient improving the performance of
conventional insecticides and increasing the control effi-
ciency (Lade and Gogle 2019).

The cabbage aphid, Brevicoryne brassicae, is an oligo-
phagous and important pest of Brassicaceae causing sever
feeding damages and transmitting various phytopathogenic
viruses (Hao et al. 2017; Pereira et al. 2019; Hullé et al.
2020). Application of insecticides is the major tool for
managing cabbage aphids with numerous sprayings needed
during the plant cycle (Fening et al. 2013). Several classes
of insecticides are usually used to control aphids on vege-
table, cereal and orchard crops (Lu et al. 2012; Mohammed
et al. 2018; Shah et al. 2020). Biological control based on
natural enemies is also used to reduce the aphid popula-
tions’ density (Holland et al. 2012; Desneux et al. 2006a;
2019; Hullé et al. 2020).

However, because the activity of natural enemies cannot
prevent virus transmission, earlier and faster aphid control
methods (i.e., neurotoxic insecticides) are generally pre-
ferred (Ricupero et al. 2020). Pirimicarb is a carbamate
aphicide that inhibits acetylcholinesterase activity in the
insect nervous system (Hassall 1990). This insecticide is
fast acting and presents selectivity toward natural enemies,
such as the green lacewings Chrysoperla carnea, a genelist
predator that can significantly prey upon and is exploited for
the biological control of aphids and other soft-bodied
arthropods (Darwish and Attia 2017; El-Wakeil et al. 2013;
Koczor et al. 2019; Meissle et al. 2014).

Due to the small number of selective available insecti-
cides for aphid control, measures and techniques aiming to
reduce the risk of resistance occurrence in aphid populations
are urgently needed (Dai et al. 2020). Therefore, nano-
formulation of insecticides would help extending the market
life of these active compounds. However, only few resear-
ches have been focusing on the effects of sublethal doses of
such nanoformulations on life table parameters not only of
pest but also non-target insects. The present research aimed
to better understand and clarify some of the side effects of
pirimicarb nanocapsules across generations of aphids. Thus,

we prepared nanocapsules of pirimicarb and using a an age-
stage and two-sex life table method we investigated the
lethal and sublethal effects of nanofurmulated pirimicarb on
the life parameters of cabbage aphids, B. brassicae and its
predator the green lacewing C. carnea.

Methods

Insect rearing

The cabbage aphids, B. brassicae used in all experiments
were obtained from infected cabbage leaves in the green-
house of Urmia University, Urmia, Iran (37°39'14.88″N,
44°59'7.44″E). The aphids were kept on the cabbage plants
Brassica oleracea (var. capitata) planted in plastic pots
(15 cm diameter and 16 cm high) under greenhouse condi-
tions (26 ± 2 °C; 60 ± 10% RH; 16: 8 (L:D)).

The adults of common green lacewing C. carnea were
obtained from the Iranian Research Institute of Plant Pro-
tection of Khorasan (Mashhad, Iran) and were kept under
controlled condition of temperature (26 ± 2 °C), relative
humidity (60 ± 10%), and photoperiod (16: 8 L:D) in a
greenhouse at the University of Tabriz, Iran. Adults of
green lacewing were reared on artificial diet in clear plastic
cylinders (15 cm in diameter and 25 cm high) with both
sides covered with mesh cloth. Larvae were kept indivi-
dually in Petri dishes and fed with eggs of Ephestia kueh-
niella Zeller (Lepidoptera: Pyralidae) which was reared in a
insect rearing laboratory at the University of Tabriz.

Insecticides and chemicals

Pirimicarb (50% of active ingredient (ai); Primor) and
technical grade of pirimicarb were donated by Ariashimi
(Zahedan, Iran). Miglyol 812 (caprylic/capric triglycerides)
was obtained from Sasol (Hamburg, Germany). Precirol
ATO-5 (Glyceryl distearate) was purchased from Gattefossé
(Paris, France); and Poloxamer 407 from Sigma Aldrich
(Hamburg, Germany).

Preparation of nanocapsules

Pirimicarb nanocapsules were prepared as described in
Maroofpour et al. (2019). Briefly, in a hot water bath, the
active ingredient of the insecticide was heated up to 85 °C
in the presence of an oily solution containing precirol,
miglyol. Then, an aqueous solution containing poloxamer
was prepared at the same temperature and added drop by
drop into the oil phase containing insecticide under con-
tinuous homogenization (Silent Crusher M ultrasonic
homogenizer, Heidolph). The resulting solution was then
cooled to the room temperature. Size, polydispersity index
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(PDI) and zeta potential (ZP) of the nanocapsules were
evaluated by Dynamic Light Scattering (DLS) (Malvern
Zetasizer Nano ZS 3600). The diameter, PDI and ZP of the
nanocapsules were 35.38 ± 0.93 nm, 0.44 and +13.7 mV,
respectively (Maroofpour et al. 2019).

Concentration-response bioassays

Insecticide toxicity to cabbage aphid was performed in
plastic Petri dishes (6 cm diameter) for both formulations
(with and without nanoencapsulation) and a control (non-
treated) using leaf-dip method (Koziol and Semtner 1984).
The cabbage leaf discs (2 cm in diameter) were dipped for
10 s in the insecticide solution and allowed to dry at room
temperature (Moores et al. 1996). After drying, 20 similar-
aged adult aphids (<48 h) were transferred to the leaves
using a soft brush. Preliminary tests were conducted to
determine effective concentration ranges for both formula-
tions. Five concentrations ranging from 7.5 to 14 mg ai/l for
commercial product and from 0.5 to 1.5 mg ai/l for nano-
formulation, were used. As control for the commercial for-
mulation, distilled water containing Tween-80 0.05% (v/v)
was used while for the nanoformulation, the control con-
sisted of distilled water only. Treatments were maintained in
the above mentioned greenhouse conditions, and mortality
was recorded 48 h after exposure. The experiments were
repeated three times.

For the green lacewing C. carnea, the toxicity of both
insecticidal formulations was determined on 2nd instar lar-
vae by contact exposure to pesticide residues in individual
glass tubes (3 cm diameter and 9 cm long). A volume of
150 µl of the insecticide solution (nanoformulated or not)
was applied to the inner wall of each tube, and then the tubes
were immediately rotated until the solution dried. Four
replicates with 15 larvae were used for each concentration.
Controls treatments were similar to aphid bioassays.

Sublethal effects on biological traits of Brevicoryne
brassicae parental generation (F0)

In order to compare the sublethal effects on adult aphids,
cabbage leaf discs were treated with LC25 of each for-
mulations for 10 s following the above described method
and left to dry at room temperature (Koziol and Semtner
1984). After drying, a total of 90 adult aphids (<48 h) were
placed on treated leaf discs in individual Petri dishes. Dis-
tilled water containing Tween-80 0.05% (v/v) was used as
the control treatment. The 70 surviving aphids were trans-
ferred to new Petri dish without insecticide after 48-h
exposure, and daily observed for progeny nymphs and
parental aphid survival until the last aphid died. Leaf discs
were replaced every two days during the experiment
(26 day).

Transgenerational sublethal effects on biological
traits of the Brevicoryne brassicae F1

The F1 nymphs obtained from the treated parental genera-
tion aphids were used to assess the transgenerational sub-
lethal effects of the commercial, and nanorformulated
Primicarb. Control group consisted of F1 nymphs of
untreated aphids. The F1 nymphs were kept individually on
leaf discs in plastic Petri dishes for each of the formulations
until reaching reproductive phase. During the reproductive
period, the number of F2 newborn nymphs was counted
daily and then removed. The survival of F1 aphids were
recorded and the F2 nymphs produced per day were
counted and removed until the F1 adult aphids were dead.

Sublethal effects on the green lacewing Chrysoperla
carnea

Because no mortality was recorded in preliminary tests for
2nd instar larvae of C. carnea, even when using the highest
dose of nanoformulation corresponding to 400 mg ai/l (see
result section), this same dose was chosen to carry out the
sublethal effects bioassays. For this purpose, a cohort group
consisting of 50 eggs (<24 h) of C. carnea was randomly
selected and transferred to individual larvae glass tubes for
each treatment. After reaching second instar, the larvae were
exposed to residues of both formulations of primicarb at
400 mg ai/l as described above. After 24 h exposure period,
the larvae were transferred to individual glass tubes without
insecticides until adult emergence occured. The larvae were
fed with eggs of E. kuehniella every day. Then, the emer-
ging C. carnea adults were transferred to 250cc clear plastic
containers with their opening covered with mesh cloth. An
artificial diet including water, yeast, and honey were pre-
sented to adults every day. All treatments were maintained
under controlled condition of temperature (26 ± 2 °C),
relative humidity (60 ± 10%), and photoperiod (16: 8 L:D).
Control groups were same as in the concentration–response
bioassay.

Data analyses

Concentration-mortality data were subjected to probit ana-
lysis (SAS 2008), and 95% confidence intervals for toxicity
ratio were estimated following (Robertson et al. 2007) and
considered significant when not including the value 1.

The life table data for all individuals were analysed using
an age-stage and two-sex life table method (Chi et al. 2020).
The age-stage specific survival rate (sxj, the probability that
a newly laid egg will survive to age x and stage j), the age-
stage specific fecundity (fxj, the mean fecundity of females at
age x), the age-specific survival rates (lx, the probability of a
newly offspring surviving to age x), the age-specific
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fecundity (mx, the mean fecundity of individuals at age x),
the age-specific maternity (lxmx), the age-stage life expec-
tancy (exj, the expected time that an individual of age x and
stage j will live), age-stage reproductive value (vxj, the
expected contribution of an individual of age x and stage j to
the future population) and the population parameters of
intrinsic rate of natural increase (r, number of females
added to the population by each females per day), finite rate
of increase (λ, the population increases every day compared
to the previous day), net reproductive rate (R0, the mean
number of offspring that an individual can produce during
its lifetime), mean generation time (T, the period that a
population needs to increase to R0 -fold of its size as the
population reaches the stable age-stage distribution) were
estimated and calculated using the computer program
TWOSEX-MSChart (Chi 2019; Chi et al. 2020). The means
and standard errors of the population parameters were cal-
culated by using the bootstrap technique included in the
TWOSEX-MSChart program with 100,000 bootstrap
replicates (Chi 2019; Chi et al. 2020).

Results

Concentration-response bioassay results

The probit model satisfactorily described the concentration-
mortality data (goodness-of-fit tests showing low χ2-values
[<2] and high P-values [>0.05]). Based on the LC50 values
obtained for the two formulations, the nanoformulated

product (0.8 mg ai/l) was 12-fold (TR= 12.6) more toxic
than did the commercial one (10.2 mg ai/l) (Table 1).

Sublethal effects on biological traits of the
Brevicoryne brassicae parental generation (F0)

Population parameters were evaluated for the parental
generation under sublethal concentrations of nano and
commercial formulations of pirimicarb. According to the
results (Table 2), the exposure to sublethal concentrations of
both formulations decreased significantly (paired bootstrap
test; P < 0.05) all the life table parameters compared to the
control. Furthermore, the adverse effects of the nano-
formulation were numerically, although not statistically,
stronger compared to the commercial product for all the
aphids’ parameters except the female adult longevity.

The age-specific survival rate (lx), fecundity (mx), and net
maternity (lxmx) in parental generation of B. brassicae are
presented in Fig. 1. The exposure of adults from parental
generation to both nanoformulated and commercial pir-
imicarb seemed to delay and shorter period of oviposition
and a decline in age-specific fecundities compared to the
control, although no statistical differences were highlighted.

Transgenerational sublethal effects on biological
traits of the Brevicoryne brassicae F1

The effects of pirimicarb exposure on the development of
F1 generation of aphids are reported in Table 3. The results
showed different patterns in the effects on larvae

Table 1 Toxicity of commercial and nano formulations tested on Brevicoryne brassicae

Formulation LC25 (mg ai/l) (95% FIa) LC50 (mg ai/l) (95% FI) Slope ± SE χ2 (df) P-value TR50(95% FI)b

Commercial formulation 7.8 (6.9–8.4) 10.2 (9.6–10.8) 5.64 ± 0.73 0.26 (3) 0.967 12.6 (12.0–13.1)

Nanoformulation 0.5 (0.4–0.6) 0.8 (0.7–0.9) 3.33 ± 0.48 1.62 (3) 0.654 1

χ2=Chi-square for lack-of-fit to the probit model, and P-value = Probability associated with the chi-square statistic
aFI Fiducial Intervals
bTR50 Toxicity ratio given by LC50 of less toxic formulation/LC50 of most toxic formulation

Table 2 Life table parameters
(mean ± SE) of Brevicoryne
brassicae parental generation
treated with subelethal
concentration (LC25) different
formulations of pirimicarb

Parameter Control Nanoformulation Commercial formulation

r (day−1) 0.27 ± 4.574a 0.16 ± 1.623b 0.19 ± 1.875b

R0 (offspring/individual) 40.44 ± 1.98a 4.68 ± 0.74b 6.35 ± 1.3b

T (day) 13.72 ± 0.19a 9.42 ± 0.21b 10.0 ± 0.28b

λ (day−1) 1.31 ± 5.990a 1.18 ± 1.904b 1.20 ± 2.246b

Total fecundity (offspring/female) 52.8 ± 2.55a 6.1 ± 1.05c 21.6 ± 4.38b

Oviposition period (day) 12.6 ± 0.47a 2.4 ± 0.26b 2.9 ± 0.32b

Female adult longevity (day) 15.68 ± 0.7a 5.39 ± 0.39b 2.89 ± 0.3c

Standard errors were estimated by using the bootstrap technique with 100,000 resampling. Means were
compared with paired bootstrap test (P < 0.05). Lower case letters indicate significant differences between
the treatments
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development time and female adult longevity between the
two formulations and in comparison with the control. In
fact, the commercial product increased the development
time of first (F= 2329.96; df= 2; P < 0.001) and third

larvae (F= 376.10; df= 2; P= 0.002) and decreased the
adult longevity time of female (F= 1233.45; df= 2; P <
0.001) meanwhile the nanoformulated product increased the
developmental time only of the 2nd larvae (F= 105.65;
df= 2; P= 0.003). Furthermore, compared to the control,
both formulations decreased the longevity (F= 5903.74;
df= 2; Pwp, nano < 0.001) and total fecundity (F= 1520.56;
df= 2; Pwp < 0.001; Pnano= 0.015) and increased the pre-
adult period (F= 616.86; df= 2; Pwp < 0.001; Pnano=
0.013) while the commercial pirimicarb increased the total
pre-oviposition period (TPOP) (F= 581.88; df= 2; P <
0.001) and decreased the oviposition period (F= 1498.14;
df= 2; P < 0.001).

Results of the age-stage survival rate (sxj) of B. brassicae
offspring obtained from the sublethaly treated adults
showed that the probability of a newborn larva to survive to
adult stage tended to decline when parental were exposed to
both formulations (i.e., nanoformulationa and commercial
pirimicarb) with a more marked decline caused by nano-
formulation, although no statistical differences were high-
lighted (Fig. 2). Furthermore, the age-specific survival rate
(lx), fecundity (mx), and net maternity (lxmx) in F1 generation
showed a tended to decline beginning of oviposition in both
pirimicarb treatments compared with control and in age-
specific fecundities caused by the nanoformulation in
comparison with commercial formulations (Fig. 2).

Moreover, commercial and nano formulations seemed to
reduce the life expectancy (exj) of all stage except second
instar larve in commercial (Fig. 3) with the highest decrease
registered for the nanoformulated product and the age-
stage-specific reproductive values (vxj) of the F1 generation
of B. brassicae females tended to decrease only when
parentals were exposed to commercial formulation,
although no statistical differences were highlighted (Fig. 3).

Table 3 Life history statistics
(mean ± SE) of the F1
generation of Brevicoryne
brassicae obtained from parental
generation (F0) unexposed
(control) or sublethaly (LC25)
exposed to nanoformulated or
commercial product of
pirimicarb

Parameters Stage Control Nanoformulation Commercial formulation

Developmental time (day) Larvae 1 1.12 ± 0.04a 1.21 ± 0.1a 1.89 ± 0.09b

Larvae 2 1.88 ± 0.06a 2.42 ± 0.18b 2.27 ± 0.29ab

Larvae 3 1.89 ± 0.06a 2.44 ± 0.85ab 2.14 ± 0.06b

Larvae 4 2.29 ± 0.09a 2.25 ± 0.25a 2.36 ± 0.08a

Female adult longevity (day) 15.98 ± 0.76a 13.5 ± 3.63ab 7 ± 0.64b

Preadult (day) 7.19 ± 0.12a 8.75 ± 0.59b 8.70 ± 0.21b

Longevity (day) 21.8 ± 0.90a 5.07 ± 1.05c 13.1 ± 0.75b

APOP (day) 1.04 ± 8.30ab 0.67 ± 0.21b 1.31 ± 0.11a

TPOP (day) 8.24 ± 0.15a 9 ± 0.86 ab 10.06 ± 0.33b

Oviposition period (day) 12.67 ± 0.49a 13.67 ± 2.6a 5.82 ± 0.64b

Total fecundity (offspring/female) 39.98 ± 1.96a 22.5 ± 6.80b 16.76 ± 2.13b

Standard errors were estimated by using the bootstrap technique with 100,000 resampling. Means were
compared with paired bootstrap test (P < 0.05). Lower case letters indicate significant differences between
the treatments

APOP adult preovipositional period, TPOP total preovipositional period

Fig. 1 Age specific survival rate (lx), fecundity (mx), and net maternity
(lxmx) of parental generation (F0) in Brevicoryne brassicae treated with
different formulations of primicarb
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Fig. 2 Age-stage survival rate (sxj) and Age specific survival rate (lx),
fecundity (mx), and net maternity (lxmx) of F1 generation in Brevi-
coryne brassicae treated with with different formulations of primicarb

Fig. 3 Age-stage life expectancy (exj) and Age-stage specific repro-
ductive value (vxj) of F1 generation in Brevicoryne brassicae treated
with different formulations of primicarb
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Regarding the population parameters, of B. brassicae F1
geneartion, significant differences (P < 0.05) between the
effects of different formulations of pirimicarb and the
control were found for the net reproductive rate (R0),
intrinsic rate of natural increase (r), finite rate of increase
(λ), and mean generation time (T) (Table 4). There was a
significant difference between the commercial formulation
and nanoformulation except for mean generation time (T)
(F= 290.43; df= 2; P= 0.055). The nanoformulation sig-
nificantly reduced the values of intrinsic rate of natural
increase (F= 1742.85; df= 2; P= 0.003), finite rate of
increase (F= 2270.15; df= 2; P < 0.001) and net repro-
ductive rate (F= 6139.22; df= 2; P < 0.001) (3 and 4
times, respectively) compared to the commercial
formulation.

Sublethal effects of exposure to nanoformulation
and commercial pirimicarb on the biological traits of
the natural enemy Chrysoperla carnea

The sublethal exposure of C. carnea to nanoformulated and
commercial pirimicarb resulted in increased development

times for second (F= 166.86; df= 2; Pwp= 0.008; Pnano=
0.001) and third larvae (F= 223.22; df= 2; Pwp < 0.001;
Pnano= 0.006), pupae (F= 1122.43; df= 2; Pwp= 0.004;
Pnano < 0.001) and male (F= 39.06; Pwp= 0.026) (only for
commercial product) and prolonged preadult (F= 1325.11;
df= 2; Pwp < 0.001; Pnano < 0.001) and total pre-oviposition
(TPOP) periods (F= 277.06; df= 2; Pwp= 0.005; Pnano <
0.001) (Table 5).

The plotted peaks of the age-stage survival rate (sxj) for
each developmental stage and the probability that a new-
born larva survives to adult stage showed similar patterns in
prirmicarb treated groups (nanoformulated and commercial)
and control (Fig. 4). The beginning time of oviposition in
nanoformulation was similar to the untreated control and
earlier in the commercial formulation (Fig. 4) the later
tended to more decline in age-specific fecundities of C.
carnea than nanoformulations. The life expectancy (exj) in
all stages of control was seemed to reduce compared with
both formulations (Fig. 5). The age-stage-specific repro-
ductive values (vxj) of C. carnea females tended to decrease
as a result of the commercial formulation only, whereas
nano formulation showed almost the same pattern as the

Table 4 Life table parameters
(mean ± SE) of Brevicoryne
brassicae of the F1 generation of
Brevicoryne brassicae obtained
from parental generation (F0)
unexposed (control) or
sublethaly (LC25) exposed to
nanoformulated or commercial
pirimicarb

Parameter Control Nanoformulation Commercial formulation

r (day−1) 0.27 ± 0.0053a 0.07 ± 0.038c 0.18 ± 0.009b

R0 (offspring/individual) 36.79 ± 2.19a 3.10 ± 1.35c 12.90 ± 1.8b

T (day) 13.29 ± 0.17a 16.59 ± 1.66b 13.99 ± 0.29b

λ (day−1) 1.31 ± 7.02a 1.07 ± 3.78c 1.20 ± 1.16b

Standard errors were estimated by using the bootstrap technique with 100,000 resampling. Means were
compared with paired bootstrap test (P < 0.05). Lower case letters indicate significant differences between
the treatments

Table 5 Life history statistics
(mean ± SE) of Chrysoperla
carnea treated with different
formulation of pirimicarb

Parameters Stage Control Nanoformulation Commercial formulation

Developmental time (day) Egg 3.72 ± 0.1a 3.68 ± 0.11a 3.65 ± 0.2a

Larvae 1 3.24 ± 0.06a 3.28 ± 0.22a 3.23 ± 0.08a

Larvae 2 3.22 ± 0.06a 3.56 ± 0.09c 3.47 ± 0.07b

Larvae 3 3.31 ± 0.07a 4.57 ± 0.45b 4.11 ± 0.07b

Pupa 6.72 ± 0.8a 8.05 ± 0.12c 7.24 ± 0.16b

Female adult longevity (day) 37.04 ± 0.65a 36.58 ± 0.56a 35.28 ± 0.66a

Male adult longevity (day) 22.39 ± 1.2a 21.16 ± 0.96ab 18.7 ± 1.17b

Preadult (day) 20.23 ± 0.17a 22.43 ± 0.18b 21.87 ± 0.26b

Longevity (day) 57.5 ± 0.70a 58.89 ± 0.53a 56.72 ± 0.60a

APOP (day) 4.5 ± 0.19a 4.63 ± 0.11a 4.61 ± 0.12a

TPOP (day) 24.95 ± 0.29a 26.95 ± 0.34c 26.05 ± 0.27b

Oviposition period (day) 27.88 ± 0.72a 27.42 ± 0.65ab 25.89 ± 0.64b

Total fecundity (offspring/adult) 583.08 ± 17.78a 506.93 ± 18.36b 335.5 ± 11.27c

Standard errors were estimated by using the bootstrap technique with 100,000 resampling. Means were
compared with paired bootstrap test (P < 0.05). Lower case letters indicate significant differences between
the treatments

APOP adult preovipositional period, TPOP total preovipositional period
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control, although no statistical differences were highlighted
(Fig. 5).

The different pirimicarb formulations contributed to a
significant (P < 0.05) decrease in the population parameters
(e.i., R0, r, and λ) of C. carnea compared to the control
(Table 6). No significant difference were found between
commercial formulation and nanoformulation, although the
adverse effects of commercial formulations on all para-
meters were numerically higher.

Discussion

Although one of the assets of integrated pest management
(IPM) approaches is the reasonable use of pesticides, the
variable distribution and gradual degradation of active
ingredients under field conditions expose target and non-
target arthropod populations to sublethal concentrations of
these pesticides (Desneux et al. 2005). Such sublethal
exposure to pesticides may induce on arthropods either
positive, termed hormesis, or negative effects (Calabrese
and Baldwin 2003; Desneux et al. 2007). Therefore,
research on the sublethal effects of pesticides on target pest
and their natural enemies are relevant for a proper use of
these compounds (Desneux et al. 2006b; Xiao et al. 2015;
Guedes et al. 2016; Ullah et al. 2019a; 2019b; 2019c; Zhang
et al. 2019). The importance of these researches is even
critical when technologies like nanoformulations are used to
enhance the efficiency of pesticides. Here, results of dose-
response bioassay showed that nanoencapsulation increased
the toxicity of pirimicarb over its commercial formulation
against B. brassicae. Furthermore, the sublethal exposure to
the nanoformulated active ingredient negatively affected not
only the life parameters of both parental and following
generations of this pest but also of one of its predator, the
green lacewing C. carnea.

Nanoencapsulated pirimicarb was 12.6-fold more effi-
cient to kill exposed B. brassicae aphids compared to its
commercial formulation. Enhanced toxicity after nano-
formulation has been reported for pirimicarb (2.9-fold)
against Myzus persicae (Sulzer) (Hemiptera: Aphididae)
(Maroofpour et al. 2019), beta-cyfluthrin (3- to 4-fold)
against Callosobruchus maculatus (Fabricius) (Coleoptera:
Bruchidae) (Loha et al. 2012) and for imidacloprid (4.8- to
9.05-fold) against Glyphodes pyloalis (Walker) (Lepi-
doptera: Pyralididae) (Memarizadeh et al. 2014). The
improvement in the toxic activity can derive from increased
contact with cells of the target organism. Such greater
bioavailability is conferred by the small size of the nano-
particles resulting in higher stability, solubility and mobility
(Lade and Gogle 2019; Shahzad and Manzoor 2019).

Negative effects on F0 and F1 generations of B. brassi-
cae were observed when aphids of parental generation (F0)

Fig. 4 Age-stage survival rate (sxj) and Age specific survival rate (lx),
fecundity (mx), and net maternity (lxmx) of Chrysoperla carnea treated
with with different formulations of primicarb
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were exposed to subelethal dose (LC25) of both formula-
tions of pirimicarb. The exposure to sublethal concentration
resulted in a decrease in the aphid population growth as it

seemed to reduce all the parameters (i.e., net reproductive
rate, intrinsic rate of natural increase, finite rate of
increase, offspring/female, total fecundity, oviposition

Fig. 5 Age-stage life expectancy
(exj) and Age-stage specific
reproductive value (vxj) of
Chrysoperla carnea treated with
different formulations of
primicarb
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period and female adult longevity) of the aphid life table in
both generations. Similar reductions in reproductive and
longevity parameters after sublethal exposure have been
reported for pirimicarb also against Aphis gossypii (Glover)
(Hemiptera: Aphididae) (Amini Jam et al. 2014) and for
other carbamates insecticides, such as the aminocarb againts
Choristoneura fumiferana (Clemens) (Lepidoptera: Tor-
tricidae) (Alford and Holmes 1986), carbofuran against
Hippodamia undecimella (Schneider) (Coleoptera: Cocci-
nellidae) (Papachristos and Milonas 2008), and carbaryl
against Plutella xylostella (Linnaeus) (Lepidoptera: Plutel-
lidae) (Kumar and Chapman 1984).

Such negative effects in adults with transgenerational
carry-over may be due to disorders caused by pirimicarb in
the neurosecretory system that negatively impacted the
reproduction process. It is well known that in arthropods
reproduction is largely regulated by neurohormones, and
neurohormonal deficits due to insecticide poisoning may
affect normal reproductive performance (Lee 2000). As
these effects have been found independently of the for-
mulation (nanoformulation or commercial one) it is rea-
sonable to think that they are triggered essentially by the
action of the active ingredient (pirimicarb). The reduction in
the parameters of the aphid life table by pirimicarb indicates
that besides its direct toxicity this insecticide can decrease
the population growth of this pest through sublethal
exposure.

The sublethal negative effects of the treatments (com-
mercial and nanoformulated pirimicarb) on the development
of second and third instar larvae of C. carnea was more
intensive. These negative effects of a believed selective
active ingredient need close scrutiny as the larval instars of
this insect are the only one presenting active predation.

Furthermore, the adults’ longevity of this natural enemy
decreased and its total fecundity and preovipositional per-
iod showed a significant decrease in addition to significant
reduction on the net reproductive rate, intrinsic rate of
natural increase, and finite rate of increase in insects
exposed to the two formulations compared to the control.
Although short-term sublethal effects of direct exposure to
pesticides in natural enemies have been proven, the effect of
selective insecticides on predators and parasitoids varies

according to natural enemy species, biological stage, and
methods of application (Holland et al. 2012; Fogel et al.
2013; Biondi et al. 2015; Yao et al. 2015; Benelli et al.
2019; Morfin et al. 2019; Pereira et al. 2019).

Even though generally of small magnitude, these sub-
lethal effects found here for this generalist predator need
further selectivity investigation and highlight the impor-
tance of adapted risk assessment when nanoencapsulation
technology is used to enhance the efficiency of pesticides. It
is clear that, unlike conventional pesticides, nanopesticides
are likely to behave differently under field conditions
requiring alternative test methods to assess their environ-
mental impact (Kookana et al. 2014; Campolo et al. 2020).

In conclusion, the enhanced uptake, bioavailability, and
increased efficacy of nanopesticides represent an attractive
technological advancement for their integration in pest
management strategies. However, adaptation and improve-
ment of existing methodologies for analysis, characteriza-
tion, and environmental risk assessment are still needed.
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Table 6 Life table parameters
(mean ± SE) of Chrysoperla
carnea treated with different
formulation of pirimicarb

Parameter Control Nanoformulation Commercial formulation

r (day−1) 0.16 ± 0.005a 0.13 ± 0.006b 0.12 ± 0.005b

R0 (offspring/individual) 279.88 ± 41.92a 192.64 ± 35.46b 120.78 ± 23b

T (day) 35.18 ± 0.39a 38.77 ± 0.34 b 37.91 ± 0.31b

λ (day−1) 1.17 ± 0.01a 1.14 ± 0.01 b 1.13 ± 0.01b

Standard errors were estimated by using the bootstrap technique with 100,000 resampling. Means were
compared with paired bootstrap test (P < 0.05). Lower case letters indicate significant differences between
the treatments
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