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Abstract
Mercury (Hg) is a global pollutant that affects songbird populations across a variety of ecosystems following conversion to
methylmercury (MeHg)—a form of Hg with high potential for bioaccumulation and bioavailability. The amount of
bioavailable MeHg in an ecosystem is a function of the amount of total Hg present as well as Hg methylation rates, which
vary across the landscape in space and time, and trophic transfer. Using songbirds as an indicator of MeHg bioavailability in
terrestrial ecosystems, we evaluated the role of habitat, climate, and trophic level in dictating MeHg exposure risk across a
variety of ecosystems. To achieve this objective, 2243 blood Hg samples were collected from 81 passerine and near-
passerine species in New York State, USA, spanning 10 different sampling regions from Long Island to western New York.
Using a general linear mixed modeling framework that accounted for regional variation in sampling species composition, we
found that wetland habitat area within 100 m of capture location, 50-year average of summer maximum temperatures, and
trophic position inferred using stable isotope analysis were all correlated with songbird blood Hg concentrations statewide.
Moreover, these patterns had a large degree of spatial variability suggesting that the drivers of MeHg bioavailability differed
significantly across the state. Mercury deposition, land cover, and climate are all expected to change throughout the
northeastern United States in the coming decades. Terrestrial MeHg bioavailability will likely respond to these changes.
Focused research and monitoring efforts will be critical to understand how exposure risk responds to global environmental
change across the landscape.
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Introduction

Mercury (Hg) is a pollutant that is globally distributed, but
locally variable in its availability for biomagnification and
bioaccumulation (Evers and Clair 2005; Driscoll et al. 2013).
After being emitted to the atmosphere from natural (e.g.,
volcanoes) and anthropogenic sources (e.g., coal-fired power
plants, municipal incinerators), Hg can be transported globally
and deposited in habitats far from the original sources
(VanArsdale et al. 2005; Driscoll et al. 2007). Additionally,
Hg can enter habitats from local sources through atmospheric
deposition (e.g., Evers et al. 2007) or via soil and/or water
contamination from human activities (e.g., artisanal gold

mining Telmer and Veiga 2009; Gibb and O’Leary 2014;
industrial sites; Reis et al. 2009; Davis et al. 2012; Amos et al.
2013). Micro-organisms convert inorganic Hg to methyl-
mercury (MeHg)—a form of Hg that has high potential for
bioaccumulation and biomagnification (Boening 2000; Ull-
rich et al. 2001; Podar et al. 2015). In terrestrial habitats Hg
methylation can occur in upland soils (Demers et al. 2007;
Rodenhouse et al. 2019) and particularly wetland soils (St.
Louis et al. 1994; Kramar et al. 2005).

Songbirds are recognized as critical indicators of MeHg
in terrestrial ecosystems, where MeHg can biomagnify in
food webs to concentrations that can adversely affect bird
populations (Cristol et al. 2008; Jackson et al. 2015). In
vertebrates, and specifically avian communities, numerous
neurological, immunological, and physiological effects
have been documented as a result of MeHg exposure
(Scheuhammer et al. 2007; Hawley et al. 2009; Wada et al.
2009). These effects can influence population demography
(Brasso and Cristol 2008; Evers et al. 2008; Jackson et al.
2011; Whitney and Cristol 2017). In particular, invertivores

* Evan M. Adams
evan.adams@briloon.org

1 Biodiversity Research Institute, 276 Canco Rd., Portland, ME
04103, USA

12
34

56
78

90
()
;,:

12
34
56
78
90
();
,:

http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-019-02151-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-019-02151-w&domain=pdf
http://crossmark.crossref.org/dialog/?doi=10.1007/s10646-019-02151-w&domain=pdf
http://orcid.org/0000-0002-4327-6926
http://orcid.org/0000-0002-4327-6926
http://orcid.org/0000-0002-4327-6926
http://orcid.org/0000-0002-4327-6926
http://orcid.org/0000-0002-4327-6926
mailto:evan.adams@briloon.org


like many warblers, vireos, wrens, and some sparrows and
thrushes, have been utilized in studies to provide a repre-
sentation of MeHg concentrations in a variety of ecosystems
(Rimmer et al. 2005; Lane et al. 2011; Edmonds et al. 2012;
Townsend et al. 2014). However, songbirds can use a variety
of habitats in a survey area resulting in individual variation in
diet and trophic position resulting in pairing stable isotope
with songbird MeHg studies to gain clarity on the causes of
the results (Kidd et al. 1995; Cizdziel et al. 2002; Becker
et al. 2002; Tsui et al. 2017). When species are habitat
generalists, information on individual foraging ecology helps
maximize accuracy and precision of monitoring efforts.

Global environmental changes are predicted over this
century (Schindler 2001; Meehl et al. 2007), many of which
will likely affect MeHg bioavailability in terrestrial food
chains and songbirds. Methylmercury production has been
shown to vary with Hg inputs, meteorological and hydro-
logical conditions, redox status and land cover (Miskimmin
et al. 1992; Ramlal et al. 1993; Sellers et al. 1996; Taylor
et al. 2019; Eagles-Smith et al. 2018). In addition to the
direct effects of climate on Hg methylation, climate and
habitat change will likely alter the location and timing of
hotspots of Hg methylation by influencing the abundance
and distribution of wetland soils and the frequency and
duration of wetting and drying cycles (Craft et al. 2009;
Kirwan et al. 2010; Kirwan and Megonigal 2013; Mitsch
and Hernandez 2013; Schile et al. 2014). Influx of Hg into
ecosystems will change with Hg emissions (Zhang et al.
2016) and the influence of weather on Hg deposition (Mao
et al. 2017a, 2017b; Ye et al. 2019). Finally, climate
changes can remobilize local stores of Hg in soils and ice,
which further increases MeHg bioavailability in habitats
with high Hg methylation rates (Stern et al. 2012). Ulti-
mately, as global environmental change alters spatial and
temporal patterns of Hg deposition and methylation on the
landscape, the future of MeHg bioavailability becomes
increasingly uncertain.

In the face of anticipated changes in Hg emissions,
deposition, and methylation rates, research on MeHg bioac-
cumulation in New York State, USA has used passerine and
near-passerine communities to explain current patterns of
terrestrial Hg biomagnification and bioaccumulation. A single
indicator species is rarely present in terrestrial habitats state-
wide. As a result, sampling multiple species from a broader
community is necessary to allow for more cost-effective and
geographically comprehensive assessments. This research
builds on 14 previous years of Hg research in New York State
as well as other long-term Hg monitoring studies on songbirds
across the northeastern United States (e.g., Sauer et al. 2019;
Lane et al. 2011, 2019) to inform future MeHg monitoring
efforts.

Songbird blood Hg concentrations collected in New
York State from 2013–2017 were used to better understand

the environmental variables that affect MeHg bioavailability
in terrestrial ecosystems. As both abiotic and biotic condi-
tions are known affect Hg methylation rates, we hypothe-
size that both climate and habitat at the sampling location
combine to influence Hg concentrations in songbird blood.
Moreover, we hypothesize that individual foraging patterns
and diet influence blood Hg concentrations in songbirds. To
describe patterns of Hg concentrations in songbird blood in
New York and address these hypotheses we determined: (1)
the species with the highest blood Hg concentrations in each
sampling region; (2) the effects of habitat and climate on
songbird blood Hg concentrations across all the sampling
sites; and (3) the importance of individual diet on Hg blood
concentrations using stable carbon and nitrogen isotope
analysis. Further, we assess regional variation in the
importance of climate, habitat, and individual diet to
songbird blood Hg.

Methods

Sampling design and study areas

Songbird Hg sampling took place throughout New York
State. Sites were selected in a based on the following cri-
teria: (1) previous Hg sampling efforts for songbirds or
other biota, (2) habitat sensitivity to MeHg bioaccumula-
tion, and (3) proximity to Hg emission sources. Four ‘core’
sampling sites were selected in each of three regions known
to have consistent elevated Hg concentrations capable of
causing adverse effects in biota: the Adirondack Mountains,
Catskill Mountains, and Long Island (Driscoll et al. 2007;
Evers et al. 2007; Fig. 1). Core sites were visited each year
to robustly sample each community and estimate inter-
annual variation in Hg exposure (Table 1). Study sites
within the Adirondack Park included boreal Sphagnum bog
and wetland habitats and a mix of deciduous and coniferous
upland forests types. Sites within the Catskills were repre-
sentative of large wetland complexes, upland deciduous
forest, and high-elevation mixed pine-oak forest. Long
Island sites were primarily composed of tidal marsh and
riparian forest.

In addition to these 12 core sites an additional 40 sam-
pling sites were visited once during the five-year study.
These sites were selected to increase the spatial scope and
habitat diversity of the sampling effort. Previous informa-
tion on songbird Hg exposure was not a prerequisite for site
selection, but the remaining two selection criteria from the
core site study design were used. Consequently, five addi-
tional regions were identified for statewide sampling:
Western New York, Northern New York, Tug Hill Plateau,
New York City, the Capital Region and the Finger Lakes
(Fig. 1). Sites within the Western New York region were
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Table 1 Mean of songbird blood Hg concentration (ppm ww) with standard deviation (SD) and sample size (n) of data by region and year in New
York, USA (2013–2017)

Region Year

2013 2014 2015 2016 2017 All

Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n Mean SD n

Adirondacks 0.18 0.16 68 0.18 0.17 101 0.18 0.13 110 0.18 0.14 167 0.23 0.17 90 0.19 0.15 536

Capital region 0.05 0.04 56 0.05 0.04 56

Catskills 0.12 0.10 139 0.13 0.20 105 0.12 0.14 93 0.19 0.24 90 0.15 0.16 82 0.14 0.16 509

Finger Lakes 0.37 0.20 17 0.35 0.54 84 0.35 0.48 101

Long Island 0.52 0.41 126 0.45 0.44 176 0.72 0.65 73 0.65 0.49 132 0.61 0.57 96 0.57 0.49 603

Northern New York 0.10 0.10 55 0.20 0.14 33 0.14 0.12 88

New York City 0.41 0.33 75 0.49 0.51 107 0.53 0.57 62 0.50 0.55 64 0.48 0.49 308

Tug Hill 0.10 0.07 38 0.17 0.13 41 0.14 0.10 79

Western NY 0.14 0.11 46 0.12 0.08 98 0.13 0.09 144

Fig. 1 Sampling locations for songbird blood Hg monitoring in New York, 2013–2017. Core regions are sites that were sampled in all five years of
the study
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comprised of mixed forest, forested wetlands, and emergent
freshwater wetlands. Study sites in Northern New York and
the Capital Region included a mix of alvar grasslands, large
wetland complexes, and spruce bog/cedar swamp habitats.
Tug Hill Plateau included sites representing deciduous
upland forests and marsh-beaver meadow. Study sites
within the greater New York City region included estuarine
emergent marsh and coastal scrub. Finger Lakes sites were
represented by several marsh and large wetland complexes
interspersed with forest. Within each region, four to six sites
were sampled. Generally, all sites in a given region were
sampled in the same year, though there were a few excep-
tions for logistical reasons.

Bird capture and tissue sampling

All bird capture and tissue sampling was conducted from
2013–2017 during periods of peak breeding activity in June
and July. Birds were captured by opening 6 m- and 12 m-
long, 30–36 mm mesh mist nets for a minimum of 2 h.
During this period, capture effort was augmented with
conspecific vocalization playback for up to 30 min to attract
birds to each net. Vocalizations from species known to be
sensitive to Hg bioaccumulation were used in the audio
playback to increase capture rate and bias the sample toward
these species (Jackson et al. 2015).

Once captured, each bird was banded with a uniquely-
numbered USGS aluminum band and sampled. Age, sex,
and reproductive status were assessed using plumage and
presence of cloacal protuberances/brood patches, and mor-
phometric measures like wing chord length were recorded.
Blood samples were collected via venipuncture of the
cutaneous ulnar vein with a 27-gauge sterile disposable
needle. Fifty to 75 μl of whole blood was collected into
heparinized, Mylar-wrapped capillary tubes for Hg and
stable isotope analysis. Not all samples were large enough
for both Hg and stable isotope analysis, so Hg determina-
tion was prioritized. The capillary tubes were sealed with
Critocaps® and stored in plastic vacutainers on ice for up to
6 h before freezing at −17° Celsius. All birds were released
unharmed within 10–25 min of capture.

Laboratory analysis

Blood samples were analyzed for total Hg at BRI’s Wildlife
Mercury Research Laboratory in Portland, Maine. Mercury
concentration was determined via thermal decomposition
coupled with atomic absorption spectroscopy using a
Milestone DMA 80, following Environmental Protection
Agency SW-846 Method 7473. Prior to analysis, the
equipment was calibrated using NIST-certified standard
solutions, and accuracy and precision were evaluated within
each analytical batch through continued calibration

verifications and the inclusion of certified reference mate-
rials, duplicates, blanks, and matrix spikes (approximately
ten out of every 40 measurements). Quality control meth-
ods, including the use of one of the DOLT-certified refer-
ence materials (DOLT 4, DOLT 5) and BCR 463 or CE 464
were used to ensure consistent analytical precision and
accuracy. Calibration utilized a blank and two standards,
one for each of the two detector cells. Percent recovery of
certified reference materials was >90% and relative percent
difference (RPD) of duplicates were within 10%. The
instrument detection limit was 0.001 µg/g, and all blood Hg
concentrations were reported in µg/g wet weight (ww).
Methylmercury was not analyzed because approximately
95% of total Hg in songbird blood is in the form of MeHg
(Rimmer et al. 2005, Edmonds et al. 2010) and we assume
this relationship is consistent across all songbird species.

A total of 1018 songbird blood samples were analyzed at
the Boston University Stable Isotope Laboratory in Boston,
Massachusetts for stable carbon and nitrogen isotope ratios.
Bird blood was analyzed using automated continuous-flow
isotope ratio mass spectrometry (Michener and Lajtha
2007). Blood was transferred from capillary tubes into pre-
weighed tin capsules. Assuming 70% water content,
approximately 1.3 mg of blood was added to the capsules.
All capsules were oven dried at 60 °C for 24 h and then
reweighed for dry mass. The capsules were then folded and
compressed prior to analysis. The samples were combusted
in a EuroVector Euro EA elemental analyzer. The com-
bustion gases (N2 and CO2) were separated on a gas chro-
matography (GC) column, passed through a reference gas
box and introduced into a GV Instruments IsoPrime isotope
ratio mass spectrometer; water was removed using a mag-
nesium perchlorate water trap.

Climate, habitat, and trophic position data
integration

Independent variables were gathered from publicly available
data sources to explain songbird blood Hg concentrations.
To describe patterns of biomagnification, standardized diet
composition data for each species was collected from the
Wilman et al. (2014) database. The percentage of year-round
diet comprised of invertebrates was extracted for each spe-
cies, which serves as a relative measure of trophic position
for most invertivores and can correlate with MeHg exposure
risk (Cristol et al. 2008; Jackson et al. 2015). As stable
isotope data was only available for a subset of the samples,
the Wilman et al. (2014) data were used to infer species-
level dietary differences for all sampled individuals.

Land cover data were gathered from the National Land
Cover Database 2011 (Homer et al. 2015). The three cate-
gories of forest habitat (Deciduous Forest, Evergreen For-
est, and Mixed Forest) were combined into a single category
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of forested habitats. Similarly, the two wetland habitat
categories (Woody Wetlands and Emergent Herbaceous
Wetlands) were combined into a single category of wetland
habitats. The area of these aggregated categories was
summed within a 100 m radius circle around the capture
location of each sample (i.e., the capture net) to approx-
imate the foraging habitat of captured birds.

Climate data were gathered from downscaled BCSD-
CMIP5 climate projections (https://gdo-dcp.ucllnl.org/dow
nscaled_cmip_projections). Monthly climate analysis results,
used to train climate projection models from a common
20C3M simulation, were acquired at the 1/8-degree grid size
scale from the Hydrology projection set. These data were used
to describe the 50-year averages of maximum temperature and
precipitation at the monthly time scale from 1950–1999. These
data are not themselves assuming a climate projection sce-
nario, but rather are modeled climate baseline data used to
describe the climate of New York. The capture locations of all
birds in our database were associated with the climate averages
from a 1/8-degree grid cell. Some capture locations were just
outside of the closest grid cell (e.g., tidal marsh sites on Long
Island) so the climate averages from the nearest available cell
were used as a reasonable approximation. Climate variables
were averaged across a three-month seasonal window that
matches the songbird breeding season for most species (June-
August).

Statistical analysis

The mean, standard deviation, and sample size of Hg samples
were used to describe overall patterns of Hg exposure for each
region. To determine how differing factors influenced Hg
bioavailability across sites, however, it was necessary to
control for random variation in species and site sampling
frequency. Blood Hg concentrations varied considerably
across species, primarily due to differences in foraging habitat
and diet, and the sampled songbird community varied sig-
nificantly among sites, which was necessary to achieve
unbiased estimates of site-level MeHg bioavailability.

To make comparisons among large numbers of species, this
analysis controls for species-level and site-level variance and
explains relative differences in species across habitat, climate,
and trophic level. To achieve this goal, we parameterized three
different general linear mixed models to answer three different
questions; all models had a similar overall structure. The
response variable used for the models was loge-transformed
blood Hg concentrations. Goodness-of-fit was evaluated using
R2 (both marginal and conditional), quantile-quantile plots,
and fitted versus residual plots. Samples without enough Hg to
reach the detection limit were given the value of the analytical
detection limit (0.001Hg ppm ww) to avoid zeroes in the
untransformed response variable. All independent covariates
were tested for multicollinearity before inclusion. Continuous

covariates were scaled by subtracting the mean then dividing
by the standard deviation to improve maximum likelihood
optimization. Not all individuals sampled were included in the
analysis; only breeding birds (i.e., adults) and passerines or
near-passerines (i.e., including woodpeckers but excluding
incidental captures of raptors, shorebirds, and rails) were
included in analysis (n= 2243). Recaptures within years were
not included in the analysis, though the small number of
recaptures among years were included.

The first model was designed to assess regional variation
in species-level blood Hg concentrations and identify spe-
cies with significant Hg bioaccumulation potential in each
region. We used a general linear model with multiple nested
random effects; this model parameterization allowed the
average Hg blood concentration to be estimated indepen-
dently for each species/region combination. The species
variable was nested within region, and year (a categorical
variable) was nested within site to account for spatial and
temporal variation in Hg bioavailability. Region was
included as an additional standalone random effect. Sex was
included in the model as the only fixed effect. Parametric
bootstrapping (n= 250) was used to estimate 95% con-
fidence intervals around parameter estimates and predic-
tions from this model (and the following models).

The second model was designed to assess the importance of
climate and habitat in influencing terrestrial MeHg bioavail-
ability (as estimated via songbird blood Hg). Nested random
effects, fixed effects, and fixed effects with random compo-
nents were all used to parameterize this model. Random
effects were both nested and standalone; species nested within
year and region was used to estimate annual means for each
species in each region sampled. Site was also included as a
random effect with no nesting or interactions to account for
spatial variation in sampling within each region. Fixed effects
included individual and environmental covariates that were
thought to influence blood Hg levels: sex (male/female/
unknown), the amount of forest/wetland habitat area around
the capture area, the 50-year averages of maximum summer
temperatures and total rainfall for the capture area, and the
species-level percentage of invertebrates in the diet. For the
wetland, temperature, rainfall, and diet covariates we added a
random effect that allowed for regional variation in the main
fixed effect, as these variables had the potential to have sig-
nificant spatial variation in their effects.

The third model included the subset of Hg samples for
which stable isotope analysis was conducted (n= 1018) and
was constructed in a similar manner to the second model.
Stable carbon (δ13C) and nitrogen (δ15N) isotopes in blood
were used to refine our understanding of the habitat origins of
food source (as estimated by δ13C) and trophic level (as esti-
mated by δ15N) in determining blood Hg at the individual
scale. Using a similar general linear model structure to that
described above, we parameterized a single model that
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included nested random effects, fixed effects, and fixed and
random mixtures. Regional variation the relationship between
δ13C and δ15N was allowed to account for differences in
isotope composition among biomes (Hobson 1999). Sex was
included as a fixed effect, and stable carbon and nitrogen
isotopes were included as fixed effects with random compo-
nents nested within region. As above, parameters that com-
bined fixed and random effects estimated an overall effect of
these covariates across all regions and then allowed for var-
iation in Hg availability between regions.

All analyses were conducted using the R statistical
software platform (R Core Team 2018). General linear
mixed modeling was conducted using package ‘lme4’
(Bates et al. 2015). Data manipulation and figure creation
used ‘dplyr’ (Wickham et al. 2018) and ‘ggplot2’ (Wick-
ham 2009), respectively.

Results

Mercury concentrations varied widely among sites and spe-
cies. The blood Hg concentrations ranged from a low of
<0.001 ppm ww (i.e., below the instrument detection limit) in
an American Goldfinch at Neversink Preserve (Catskills) to a
high of 4.1 ppm ww in a Swamp Sparrow from Northern
Montezuma Wildlife Management Area (Finger Lakes).
Songbirds on Long Island and New York City had the highest
average blood Hg concentrations, followed by the Finger
Lakes, Adirondacks and Catskills regions (Table 1). Among
the core regions, Long Island showed the highest overall
interannual variation in Hg concentrations (Table 1).

Overall model fit

All three general linear mixed models showed strong overall
goodness-of-fit (R2 ranged from 0.80 to 0.87) and there
appeared to be no signs of heteroscedasticity or other
examples of poor fit based on the use of a normal dis-
tribution to describe the dependent variable (log-trans-
formed blood Hg). The complex random effects structure
used in this effort consistently explained more of the
response variance than the fixed effects in all the models.
Overall, this shows the importance of controlling for the
species and location (site and region) random effects, par-
ticularly when using these data to make inference about
broader patterns of MeHg availability.

Regional variation in species Hg concentrations

The large number of sites and multi-species sampling
approach of this project provided an opportunity to evaluate
the blood Hg concentration of many species. A summary of
all species/region combinations can be found in

supplemental materials (Appendix). Sixty-two percent of
the total variation in the blood Hg data was explained by the
species nested within region parameters. Changes in song-
bird Hg within sites and across years represented about 18%
of the total variation. The five species with the highest Hg
concentrations in each region included a wide range of
invertivorous passerines (Fig. 2). Blood Hg concentrations
in species varied significantly by region, thus the highest
species in some regions were not significantly higher than
the overall study average (e.g., the Capital Region) while
other regions had many species that were significantly
higher than the overall average (e.g., Long Island, the
Adirondacks, and the Catskills). Seaside and Saltmarsh
Sparrows had much higher average blood Hg concentra-
tions than the other species but were only found in two
regions. While Swamp Sparrows were identified as having
elevated Hg concentrations relative to the other species
sampled in seven different regions. Most species were only
observed with elevated blood Hg concentrations in a single
region. Sex was not an important predictor of blood Hg
concentrations across this sampled community.

The effects of climate and habitat on Hg
bioavailability

In the generalized linear mixed model with habitat and
climate variables, random effects explained approximately
80% of the total variation in songbird blood Hg. Fixed
effects explained 8%. Of the random effects, the nested
parameters of year, region and species explained 24% of the
total variation, and the regional variation in 50-year average
summer maximum temperatures explained 44% of the total
variation. Site explained 8% of the variation and all other
random components explained <5% of the total variation.
Of the fixed effects, the amount of wetland habitat in the
sampling area was the only parameter that showed a sta-
tistically significant effect (β= 0.17, 95% Confidence
Interval: 0.03–0.32; Fig. 3). The 50-year average summer
rainfall was marginally statistically significant (β= 0.23,
95% CI: −0.04–0.49; Fig. 3). Species-level diet and forest
habitat were not important to explaining patterns of Hg
concentrations.

There was significant regional variance in the effects of
wetlands and climate on songbird blood Hg concentrations.
Overall, songbird blood Hg concentrations increased with
increasing amounts of wetland habitat within 100 m of the
sampling site; the positive effect of wetlands on blood Hg
was particularly important in the New York City and
Catskills regions (Fig. 4a). Summer maximum temperature
had a more variable effect across regions. Western New
York, New York City, and the Finger Lakes regions showed
a strong positive relationship between temperature and
blood Hg, while Northern New York had a negative
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relationship (Fig. 4b). Here, even though the effect was not
statistically significant for all regions, average temperatures
were important to blood Hg concentrations in many regions
and was one of the most important variables for explaining

songbird blood Hg concentrations overall. Summer rainfall
had a borderline important positive effect on blood Hg
overall, but there was minimal regional variation in the
effect.

Fig. 2 Model estimated mean and variance of blood Hg concentrations
(ppm ww) for the five highest species in each region. Estimates were
obtained from a general linear mixed model that nested species within
region and were calculated for males of each species. Error bars

represent bootstrapped 95% confidence intervals of the mean. The
vertical black line represents the study-wide average blood Hg con-
centration (0.14 ppm ww)

Fig. 3 Parameter estimates for fixed effects from two separate general
linear mixed models that explained patterns in songbird blood Hg
concentrations (ppm ww). All covariates were scaled before analysis
so covariate magnitude is an accurate reflection of importance. Stable

carbon and nitrogen estimates represent a subset of the total database
and come from a different model than the rest of the estimates. Points
represent maximum likelihood estimates of beta parameters and error
bars are bootstrapped 95% confidence intervals
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The effect of trophic position on Hg exposure risk

Using the stable isotope general linear mixed model, we
were able to quantify the effects of individual-level δ13C
and δ15N on songbird blood Hg levels. In this model, the
random effects represented 72% of the total variance in

songbird blood Hg and the fixed effects 8%. The most
important random effect was region, which explained the
vast majority of the variance in the data. Species nested
within region and year parameters as well as the site para-
meters both explained much smaller portions of the total
variance. In terms of fixed effects, there was a marginal

Fig. 4 Regional variation in the effect of wetland habitat area (a),
summer maximum temperatures (b), and trophic position (c) on
songbird blood Hg (ppm ww). The x-axis represents the slope of the
relationship between the covariate and the response variable from a
general linear mixed effects model. Regional means are a combination
of the overall fixed effect beta estimate and random regional variation

in the effect. The error bar represents two times the standard deviation
of the combined estimate and the dotted blue line is at zero. If the error
bar overlaps zero, then it is likely that the effect is not strong in that
region. The standard deviation is estimated by combining the variance
of the fixed and random effects
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negative effect of δ13C on blood Hg levels that was con-
sistent among regions (β=−0.04, 95% CI: −0.11–0.04;
Fig. 3). Depleted (i.e., more negative) δ13C values would
indicate that the animal’s food was coming from more
mesic habitats, but we find no evidence of this effect. We
lacked the data to understand site to site variation in stable
carbon isotope signatures, and this likely reduced our power
to assess this effect on Hg bioavailability. The effect of
δ15N was strongly positive overall (β= 0.11, 95% CI:
0.04–0.2, Fig. 3), and also variable by region (Fig. 4c). As
enriched δ15N values indicate an individual foraging from a
higher trophic position, higher trophic level was strongly
positively correlated with blood Hg. The effect was stron-
gest in the Adirondacks, Catskills, New York City, North-
ern New York, and Long Island, and was unimportant only
in Western NY, Tug Hill, and the Finger Lakes. The effect
of sex on blood Hg concentration was negligible in this
model, as it was in the previous analyses.

Discussion

From 2013–2017, blood Hg concentrations across the New
York songbird community were affected by habitat, climate,
and trophic level. The highest blood Hg concentrations were
found in areas of historical Hg monitoring activity: Long
Island, the Adirondack Mountains, and the Catskill Moun-
tains. Saltmarsh Sparrows and Seaside Sparrows in the
Long Island tidal marshes had elevated blood Hg con-
centrations that were similar to those found in past studies
in the northeastern United States (Warner et al. 2010; Lane
et al. 2011, 2019). At inland sites, wetland-dependent spe-
cies like Palm Warblers also had elevated blood Hg levels
that were similar to past studies (Sauer et al. 2019). We
found evidence that wetland habitat, climate, and food webs
combined to influence MeHg bioavailability in New York
songbirds. The amount of nearby wetland habitat and the
average maximum summer temperatures explained sig-
nificant spatial variation in songbird blood Hg across New
York. Summer precipitation had a marginally significant
effect across all sites, while summer maximum temperature
was highly variable in importance and effects across regions.

Variation in Hg bioaccumulation across songbirds

Species with elevated blood Hg concentrations are often
useful for detecting spatiotemporal patterns in Hg distribu-
tions, as they show consistent accumulation of MeHg at sites
and are efficient monitors of changes in MeHg availability
(Furness 1993). Some of these species are distributed widely
across regions; Swamp Sparrows, for example, were asso-
ciated with freshwater wetland habitats with elevated Hg
methylation rates and were found in multiple regions (e.g.,

New York City, Northern New York, Western New York,
Tug Hill, and the Adirondack Mountains). Other species have
narrow habitat requirements; Saltmarsh Sparrows and Seaside
Sparrows are tidal marsh obligates (Correll et al. 2017) and
while they were only found in two regions (New York City
and Long Island) they had some of the highest average blood
Hg concentrations found in this study.

Regional differences in Hg exposure results from a
combination of many factors. Changes in atmospheric
deposition of Hg over New York State (Mao et al. 2017a)
and habitat- and soil-specific methylation rates (Ullrich
et al. 2001; Podar et al. 2015; Rodenhouse et al. 2019)
likely explain much of the observed variation. However,
aside from species-level diet composition, we do not
explore species-level traits as explanations for interspecies
differences in Hg exposure. Annual schedules of nesting,
migration, and molt can influence breeding ground blood
Hg concentrations (Rimmer et al. 2005, Jackson et al. 2015,
Seewagen 2018), and these trends are not accounted for in
this study. Female birds eliminate Hg body burden during
egg production (Heinz and Hoffman 2009), but we see no
evidence of lower female body burden across all species in
this study. This could be due to a non-random sampling of
females overall (they were only 29% of the total sample),
untested species-level variation, or sampling across multiple
breeding stages.

Many of the species identified in this study are used as
indicators in previous songbird Hg monitoring efforts.
Previous studies in the northeastern United States suggest
that Saltmarsh Sparrow, Common Yellowthroat, Swamp
Sparrow, and Red-eyed Vireo have elevated tissue Hg
concentrations (Jackson et al. 2015, Sauer et al. this issue),
and several species have been used to assess environmental
Hg bioavailability in other studies, including Tree Swallows
(Longcore et al. 2007), Catharus thrushes (Townsend et al.
2014) and Northern Waterthrush (Adams et al. 2019). Some
of these species, particularly tidal marsh endemics, are
experiencing population declines and the role of MeHg in
such trends is unclear (Lane et al. 2011, Correll et al. 2017).
Monitoring efforts that include means to assess long-term
effects of MeHg exposure are needed for species of con-
servation concern.

The effects of habitat and climate on MeHg
exposure

Past research has suggested mechanisms for both habitat
and climate to influence Hg deposition and methylation
rates. Dry Hg deposition is elevated in forested landscapes
while wet Hg deposition is dependent on rainfall (Mao et al.
2017a, 2017b; Risch and Kenski 2018; Ye et al. 2019).
Rates of Hg methylation are highest in wetland soils and are
increased by higher temperatures and flooding frequencies
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(Ramlal et al. 1993; St. Louis et al. 2004; Windham-Myers
et al. 2014). Causal connections between climate, habitat
and songbird MeHg bioaccumulation have yet to be made,
though the observations in this study emphasize the value of
future work in this area. The role of wetland habitat area in
Hg methylation rates seems clear (more wetlands increase
MeHg production) but maximum summer temperatures
could be associated with both Hg deposition or methylation
rates (Meehl et al. 2007; Schindler 2001) and the mechan-
ism of effect is unknown.

Regional variation in the relationship among wetland
area, maximum summer temperatures, and songbird blood
Hg suggest complex interactions dependent on habitat
subtypes and spatial variation in Hg deposition. The
regional effect of wetland area ranged from neutral to
positive on songbird blood Hg and the mechanism of this
effect is unknown. While data on this issue are limited, this
result does not appear to be related to wetland subtype.
Wetland area is most important to predicting songbird blood
Hg concentrations in New York City (where the wetlands
are almost entirely tidal marsh) and the Catskills (freshwater
wetlands, lakes, and streams) but not extremely important in
other similar regions. Given this observation, variation in
biomagnification factor or species trophic niches across
regions could be a major cause of this pattern. As this study
observes the relative effect of habitat after accounting for
species-level variation, this result could be dependent upon
inconsistency in diet or habitat use within species. The
effect of maximum summer temperatures on songbird blood
Hg showed the most variation across regions. Northern New
York shows a negative correlation between temperature and
blood Hg, unlike the other regions where neutral to positive
relationships were observed. These patterns are difficult to
interpret due to the uncertainty of mechanism between
temperature and terrestrial songbird Hg bioaccumulation.
Spatial changes in this relationship could be due to variance
in atmospheric Hg emissions or prevalence of appropriate
Hg methylation conditions (Ullrich et al. 2001; Risch and
Kenski 2018). A notable confounding variable could be
elevation, which is correlated with both temperature and Hg
deposition and would only influence regions with topo-
graphic variation (Yu et al. 2013).

Forecasted changes to wetland habitats and climate in
North America in the coming decades have the potential to
influence songbird MeHg bioavailability. Wetland habitat
has declined globally (Zedler and Kercher 2005; Kirwan
and Megonigal 2013) but appears stable in the northeastern
United States partly due to human-created wetlands (Dahl
2011). Climate change is expected to increase both tem-
perature and precipitation in the northeastern United States
(Hayhoe et al. 2007, 2008). Moreover, changes to climate in
New York also influences the amount of statewide wetland
habitat, in both estuarine (Warren and Niering 1993) and

palustrine systems (Hayhoe et al. 2007; Brooks 2009). The
present study is based on continental-scale land cover data
and 50-year climate averages; future work should focus on
understanding the response of MeHg bioavailability to fine-
scale changes in climate that will help build model-based
forecasts of MeHg bioavailability.

The role of individual foraging niche on MeHg
exposure

Individual trophic level is related to tissue Hg concentrations
in biota across many ecosystems (Kidd et al. 1995; Cizdziel
et al. 2002; Becker et al. 2002; Rodenhouse et al. 2019). While
species-level traits can be useful for understanding variation in
tissue Hg concentrations (Jackson et al. 2015), they do not
explain much of the data observed in this study after species is
accounted for. Moreover, regional variation in the relationship
between δ15N and blood Hg concentrations—a useful estimate
of regional biomagnification factor—is significant in this
study. Regional variation in food chain length is a potential
explanation for this relationship (Cabana et al. 1994) and
would further explain why species-level trophic level estimates
are not predictive of the patterns seen in this study.

Given the lack of overall importance of δ13C and sig-
nificant regional differences in the relationship between
δ13C and songbird blood Hg concentrations, we find these
data were not useful for explaining statewide patterns of
MeHg bioavailability. While δ13C is associated with
mesic habitats with Hg methylation potential in past stu-
dies (Marra et al. 1998), it could also be associated with
marine to freshwater transitions and other changes in C3

and C4 plant abundance (Kelly 2000). This lack of spe-
cificity limits the usefulness of these data to the present
study, particularly due to the diversity of habitats sam-
pled. Mercury isotopes are useful for identifying local
sources of Hg in songbirds (Tsui et al. 2017), and these
techniques show promise for understanding individual-
level variation in songbird Hg exposure risk. Further work
is needed to identify additional tools that accurately
describe risk of increased Hg bioavailability across a
range of habitats.

Conclusions

Using community sampling techniques, this study was able to
estimate blood Hg concentrations across a large number of
songbird species and determine how habitat and climate
combine to influence relative changes in species Hg exposure
across New York State. Wetland habitat and summer max-
imum temperatures influenced patterns in songbird blood Hg
variably across regions. Blood Hg concentrations were also
correlated with relative trophic position of individuals. The
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importance of habitat, climate, and trophic position varied by
sampling region, which suggests that unmeasured differences
in ecosystems are interacting with these variables to create
multiple responses. While single-species study designs could
lead to clear results when habitat is similar across study sites
(e.g., Evers et al. 2007), this study showed that inference
could be made across diverse species and habitats when
sample size was sufficiently large and information was shared
across species and regions. More research into the impact of
sampling scheme on MeHg bioavailability is needed to assess
current methods and develop new ones. A clear next step
would be to add stable nitrogen sampling to all birds, as well
as soils and invertebrates to better describe trophic relation-
ships across regions.

While we have achieved an improved understanding of
the scope and origin of songbird MeHg exposure in New
York, there are many questions that remain. With some
wetland habitats table in the northeast (Dahl 2011) and
temperatures increasing (Hayhoe et al. 2007, 2008), future
increases in terrestrial MeHg bioavailability appear likely.
However, habitat and climate changes can create no-analog
communities (Williams and Jackson 2007) that will make
forecasting changes to MeHg bioavailability challenging.
Recent industrial regulations in the United States appeared
to reduce Hg emissions and depositions in the northeast
(Driscoll et al. 2015) and reduction in emissions can lead to
reductions in bioavailable MeHg (Lee et al. 2016), but these
rules are currently in legal flux and their future is unclear.
Thus, subsequent monitoring efforts must have the capacity
to address multiple objectives: status and trends assess-
ments will need to paired with connections to management
actions and meaningful conservation decisions to maximize
the knowledge that we gain and the impact of our science
(Lyons et al. 2008). In this case, we must design projects
that accurately estimate site- and species-level Hg exposure
and trends while expanding our knowledge of the effect of
habitat and climate and Hg bioaccumulation in terrestrial
food webs. Studies that experimentally test mechanisms for
climate and habitat interactions on MeHg bioavailability,
while gathering detailed and site-specific data on habitat
and climate in a variety of terrestrial ecosystems, will be
critical to identifying species at risk to future adverse
effects of Hg.
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Appendix. Estimates of methylmercury
exposure across all species and all regions

Eighty-three species were sampled across all regions,
including 214 unique species/region combinations. Here
we include a figure that summarizes the average blood Hg
concentrations (ppm ww) of all species/region combina-
tions as estimated in the analysis. These averages (and
95% confidence intervals) are based on the generalized
linear mixed modeling approach described in the text to
identify species with elevated blood Hg concentrations in
each region. Here we document the results for all species
(Table 2).
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Table 2 Model-estimated mean blood Hg concentrations for all species in each region using a general linear mixed modeling framework

Region Species Mean blood Hg estimate
(ppm ww)

Lower 95% CI Upper 95% CI N

Adirondacks Yellow Palm Warbler (Setophaga palmarum) 0.31 0.26 0.39 25

Swamp Sparrow (Melospiza georgia) 0.3 0.23 0.42 6

Blue-headed Vireo (Vireo solitarius) 0.29 0.23 0.36 11

Yellow-rumped Warbler (Setophaga coronata) 0.25 0.21 0.29 32

Savannah Sparrow (Passerculus sandwichensis) 0.24 0.17 0.34 4

Common Yellowthroat (Geothlypis trichas) 0.22 0.19 0.28 21

Lincoln's Sparrow (Melospiza lincolnii) 0.21 0.18 0.26 39

Red-eyed Vireo (Vireo olivaceus) 0.2 0.18 0.23 71

Red-breasted Nuthatch (Sitta canadensis) 0.17 0.13 0.24 6

Canada Warbler (Cardelli canadensis) 0.15 0.11 0.19 9

Song Sparrow (Melospiza melodia) 0.14 0.09 0.25 1

White-breasted Nuthatch (Sitta carolinensis) 0.13 0.08 0.22 1

Brown Creeper (Certhia america) 0.13 0.09 0.21 4

American Redstart (Setophaga ruticilla) 0.13 0.11 0.15 22

Blackburnian Warbler (Setophaga fusca) 0.12 0.1 0.14 24

Black-and-white Warbler (Mniotilta varia) 0.12 0.09 0.17 6

Magnolia Warbler (Setophaga magnolia) 0.12 0.09 0.17 6

Black-throated Green Warbler (Setophaga virens) 0.11 0.09 0.14 20

Hermit Thrush (Catharus guttatus) 0.11 0.1 0.13 37

Swainson's Thrush (Catharus ustulatus) 0.11 0.1 0.13 43

Nashville Warbler (Leiothlypis ruficapilla) 0.11 0.09 0.14 16

Northern Parula (Setophaga america) 0.11 0.07 0.16 5

Chestnut-sided Warbler (Setophaga pensylvanica) 0.1 0.06 0.15 2

Black-throated Blue Warbler (Setophaga
caerulescens)

0.09 0.07 0.1 37

Black-capped Chickadee (Poecile atricapillus) 0.09 0.07 0.12 10

White-throated Sparrow (Zonotrichia albicollis) 0.08 0.07 0.1 19

Field Sparrow (Spizella pusilla) 0.08 0.04 0.14 1

Ovenbird (Seiurus aurocapilla) 0.07 0.06 0.08 47

Dark-eyed Junco (Junco hyemalis) 0.05 0.04 0.07 10

Downy Woodpecker (Picoides pubescens) 0.05 0.02 0.08 1

Yellow-bellied Sapsucker (Sphyrapicus varius) 0.04 0.02 0.06 2

Capital region Common Yellowthroat (Geothlypis trichas) 0.18 0.12 0.27 6

Common Grackle (Quiscalus quiscula) 0.18 0.12 0.27 3

Brown Thrasher (Toxostoma rufum) 0.16 0.09 0.28 4

Eastern Bluebird (Sialia sialis) 0.15 0.09 0.25 5

Orchard Oriole (Icterus spurius) 0.15 0.08 0.26 1

Chipping Sparrow (Spizella passeri) 0.14 0.09 0.24 2

Ovenbird (Seiurus aurocapilla) 0.14 0.09 0.25 1

Chestnut-sided Warbler (Setophaga pensylvanica) 0.14 0.08 0.24 1

Prairie Warbler (Setophaga discolor) 0.13 0.08 0.21 1

Red-winged Blackbird (Agelaius phoeniceus) 0.13 0.09 0.18 7

Baltimore Oriole (Icterus galbula) 0.13 0.07 0.21 8

Song Sparrow (Melospiza melodia) 0.13 0.08 0.21 4

Gray Catbird (Dumetella carolinensis) 0.11 0.08 0.16 6

Brown-headed Cowbird (Molothrus ater) 0.09 0.06 0.16 3
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Table 2 (continued)

Region Species Mean blood Hg estimate
(ppm ww)

Lower 95% CI Upper 95% CI N

American Robin (Turdus migratorius) 0.09 0.05 0.15 1
Cedar Waxwing (Bombycilla cedrorum) 0.05 0.03 0.1 3

Purple Finch (Haemorhous purpureus) 0.04 0.02 0.07 3

Catskills Red-winged Blackbird (Agelaius phoeniceus) 0.27 0.18 0.4 3

Swamp Sparrow (Melospiza georgia) 0.25 0.2 0.31 20

Eastern Towhee (Pipilo erythrophthalmus) 0.24 0.19 0.31 12

Song Sparrow (Melospiza melodia) 0.24 0.2 0.28 34

Eastern Phoebe (Sayornis phoebe) 0.23 0.14 0.37 2

Eastern Wood-Pewee (Contopus virens) 0.22 0.16 0.34 4

Eastern Kingbird (Tyrannus tyrannus) 0.21 0.12 0.35 1

Alder Flycatcher (Empidonax alnorum) 0.21 0.12 0.39 1

Great Crested Flycatcher (Myiarchus crinitus) 0.19 0.13 0.29 3

Louisiana Waterthrush (Parkesia motacilla) 0.19 0.15 0.24 11

Gray Catbird (Dumetella carolinensis) 0.18 0.16 0.22 48

Carolina Wren (Thryothorus ludovicianus) 0.17 0.11 0.28 2

American Redstart (Setophaga ruticilla) 0.17 0.14 0.21 27

American Robin (Turdus migratorius) 0.17 0.11 0.24 3

Wood Thrush (Hylocichla musteli) 0.16 0.12 0.22 7

Yellow-rumped Warbler (Setophaga coronata) 0.16 0.12 0.23 7

Common Yellowthroat (Geothlypis trichas) 0.16 0.13 0.17 64

Red-eyed Vireo (Vireo olivaceus) 0.15 0.13 0.17 48

Magnolia Warbler (Setophaga magnolia) 0.14 0.09 0.24 1

Pine Warbler (Setophaga pinus) 0.14 0.09 0.24 2

Black-throated Green Warbler (Setophaga virens) 0.14 0.08 0.21 1

Acadian Flycatcher (Empidonax virescens) 0.14 0.08 0.23 1

Tufted Titmouse (Baeolophus bicolor) 0.14 0.09 0.2 3

Black-and-white Warbler (Mniotilta varia) 0.13 0.09 0.16 12

Blackburnian Warbler (Setophaga fusca) 0.12 0.07 0.2 1

Veery (Catharus fuscescens) 0.12 0.1 0.13 51

Yellow Warbler (Setophaga petechia) 0.11 0.09 0.14 18

Prairie Warbler (Setophaga discolor) 0.1 0.08 0.15 6

White-breasted Nuthatch (Sitta carolinensis) 0.09 0.05 0.14 2

Black-capped Chickadee (Poecile atricapillus) 0.09 0.06 0.11 9

Field Sparrow (Spizella pusilla) 0.08 0.05 0.14 2

Rose-breasted Grosbeak (Pheucticus ludovicianus) 0.08 0.05 0.14 1

Ovenbird (Seiurus aurocapilla) 0.08 0.07 0.1 35

Downy Woodpecker (Picoides pubescens) 0.08 0.05 0.12 4

Worm-eating Warbler (Helmitheros vermivorum) 0.07 0.05 0.12 2

Dark-eyed Junco (Junco hyemalis) 0.07 0.04 0.11 1

Yellow-bellied Sapsucker (Sphyrapicus varius) 0.07 0.04 0.11 1

Chestnut-sided Warbler (Setophaga pensylvanica) 0.07 0.06 0.09 18

Blue-winged Warbler (Vermivora cyanoptera) 0.06 0.04 0.09 5

American Goldfinch (Spinus tristis) 0.06 0.04 0.1 2

Northern Cardinal (Cardinalis cardinalis) 0.06 0.04 0.09 6

Indigo Bunting (Passeri cyanea) 0.06 0.04 0.08 11

Black-throated Blue Warbler (Setophaga
caerulescens)

0.05 0.03 0.08 3
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Table 2 (continued)

Region Species Mean blood Hg estimate
(ppm ww)

Lower 95% CI Upper 95% CI N

Finger Lakes Swamp Sparrow (Melospiza georgia) 0.24 0.18 0.3 17

Gray Catbird (Dumetella carolinensis) 0.21 0.13 0.32 2

Tree Swallow (Tachycineta bicolor) 0.2 0.13 0.31 2

Eastern Phoebe (Sayornis phoebe) 0.18 0.11 0.29 2

Wood Thrush (Hylocichla musteli) 0.18 0.12 0.26 4

Marsh Wren (Cistothorus palustris) 0.16 0.09 0.28 1

Eastern Wood-Pewee (Contopus virens) 0.15 0.08 0.26 1

Common Yellowthroat (Geothlypis trichas) 0.15 0.12 0.19 17

Song Sparrow (Melospiza melodia) 0.14 0.11 0.17 19

Common Grackle (Quiscalus quiscula) 0.14 0.09 0.24 1

Tufted Titmouse (Baeolophus bicolor) 0.13 0.08 0.23 1

Willow Flycatcher (Empidonax traillii) 0.12 0.07 0.22 1

Red-winged Blackbird (Agelaius phoeniceus) 0.12 0.08 0.17 4

White-breasted Nuthatch (Sitta carolinensis) 0.12 0.07 0.2 1

Warbling Vireo (Vireo gilvus) 0.11 0.08 0.15 9

American Robin (Turdus migratorius) 0.09 0.06 0.16 3

Downy Woodpecker (Picoides pubescens) 0.09 0.06 0.16 1

Yellow Warbler (Setophaga petechia) 0.09 0.05 0.15 1

Black-capped Chickadee (Poecile atricapillus) 0.08 0.06 0.11 7

Hairy Woodpecker (Picoides villosus) 0.06 0.03 0.09 1

Long Island Saltmarsh Sparrow (Ammodramus caudacutus) 0.62 0.54 0.7 237

Seaside Sparrow (Ammodramus maritimus) 0.57 0.47 0.68 65

Carolina Wren (Thryothorus ludovicianus) 0.26 0.18 0.38 5

Eastern Phoebe (Sayornis phoebe) 0.26 0.18 0.39 5

Marsh Wren (Cistothorus palustris) 0.21 0.15 0.29 9

Wood Thrush (Hylocichla musteli) 0.2 0.13 0.31 3

Great Crested Flycatcher (Myiarchus crinitus) 0.18 0.14 0.23 13

House Wren (Troglodytes aedon) 0.17 0.13 0.22 14

Common Yellowthroat (Geothlypis trichas) 0.17 0.12 0.23 8

Veery (Catharus fuscescens) 0.17 0.09 0.29 1

Red-eyed Vireo (Vireo olivaceus) 0.15 0.13 0.18 32

American Redstart (Setophaga ruticilla) 0.14 0.1 0.18 15

Red-winged Blackbird (Agelaius phoeniceus) 0.14 0.1 0.18 8

Yellow-throated Vireo (Vireo flavifrons) 0.14 0.08 0.24 1

Eastern Towhee (Pipilo erythrophthalmus) 0.14 0.09 0.24 2

Common Grackle (Quiscalus quiscula) 0.12 0.09 0.17 8

White-breasted Nuthatch (Sitta carolinensis) 0.12 0.09 0.17 7

Prairie Warbler (Setophaga discolor) 0.11 0.07 0.18 3

Song Sparrow (Melospiza melodia) 0.11 0.09 0.14 13

Scarlet Tanager (Piranga olivacea) 0.11 0.07 0.17 2

Tufted Titmouse (Baeolophus bicolor) 0.09 0.08 0.12 15

Chipping Sparrow (Spizella passeri) 0.09 0.06 0.15 1

Gray Catbird (Dumetella carolinensis) 0.09 0.08 0.11 81

Hairy Woodpecker (Picoides villosus) 0.09 0.06 0.15 2

Warbling Vireo (Vireo gilvus) 0.09 0.06 0.13 6

Blue Jay (Cyanocitta cristata) 0.08 0.05 0.14 1

1856 E. M. Adams et al.



Table 2 (continued)

Region Species Mean blood Hg estimate
(ppm ww)

Lower 95% CI Upper 95% CI N

American Robin (Turdus migratorius) 0.08 0.06 0.1 14
Yellow Warbler (Setophaga petechia) 0.07 0.06 0.1 10

Downy Woodpecker (Picoides pubescens) 0.07 0.04 0.1 3

Northern Cardinal (Cardinalis cardinalis) 0.06 0.05 0.08 12

Black-capped Chickadee (Poecile atricapillus) 0.05 0.04 0.07 14

House Finch (Haemorhous mexicanus) 0.03 0.02 0.06 1

Northern
New York

Northern Waterthrush (Parkesia noveboracensis) 0.31 0.19 0.52 2

Red-eyed Vireo (Vireo olivaceus) 0.29 0.2 0.45 5

Swamp Sparrow (Melospiza georgia) 0.23 0.18 0.32 8

Yellow-bellied Flycatcher (Empidonax flaviventris) 0.18 0.11 0.31 1

Common Yellowthroat (Geothlypis trichas) 0.17 0.13 0.22 10

Hermit Thrush (Catharus guttatus) 0.17 0.11 0.28 1

White-throated Sparrow (Zonotrichia albicollis) 0.16 0.09 0.3 1

Magnolia Warbler (Setophaga magnolia) 0.16 0.11 0.23 3

Canada Warbler (Cardelli canadensis) 0.15 0.09 0.26 1

Warbling Vireo (Vireo gilvus) 0.14 0.09 0.23 2

Eastern Towhee (Pipilo erythrophthalmus) 0.13 0.09 0.19 3

Yellow Warbler (Setophaga petechia) 0.13 0.08 0.2 3

Golden-winged Warbler (Vermivora chrysoptera) 0.13 0.08 0.22 1

Swainson's Thrush (Catharus ustulatus) 0.13 0.08 0.19 2

Black-capped Chickadee (Poecile atricapillus) 0.12 0.07 0.18 1

Song Sparrow (Melospiza melodia) 0.12 0.09 0.15 9

Field Sparrow (Spizella pusilla) 0.11 0.06 0.2 1

Gray Catbird (Dumetella carolinensis) 0.1 0.06 0.17 2

Nashville Warbler (Leiothlypis ruficapilla) 0.1 0.06 0.17 1

Black-billed Cuckoo (Coccyzus erythropthalmus) 0.09 0.06 0.17 1

American Robin (Turdus migratorius) 0.08 0.05 0.15 1

Chestnut-sided Warbler (Setophaga pensylvanica) 0.08 0.05 0.14 1

Cedar Waxwing (Bombycilla cedrorum) 0.08 0.05 0.13 1

American Goldfinch (Spinus tristis) 0.05 0.03 0.08 1

Purple Finch (Haemorhous purpureus) 0.03 0.02 0.05 1

NYC Saltmarsh Sparrow (Ammodramus caudacutus) 0.24 0.2 0.27 152

Seaside Sparrow (Ammodramus maritimus) 0.22 0.2 0.26 134

Marsh Wren (Cistothorus palustris) 0.13 0.1 0.16 8

Swamp Sparrow (Melospiza georgia) 0.12 0.09 0.15 3

Tug Hill Swamp Sparrow (Melospiza georgia) 0.27 0.18 0.39 4

Eastern Wood-Pewee (Contopus virens) 0.19 0.11 0.33 1

Black-and-white Warbler (Mniotilta varia) 0.18 0.1 0.29 1

Magnolia Warbler (Setophaga magnolia) 0.16 0.09 0.24 1

Yellow-rumped Warbler (Setophaga coronata) 0.15 0.1 0.23 3

American Redstart (Setophaga ruticilla) 0.15 0.09 0.24 3

Wood Thrush (Hylocichla musteli) 0.14 0.1 0.24 4

Red-eyed Vireo (Vireo olivaceus) 0.14 0.11 0.17 13

Song Sparrow (Melospiza melodia) 0.13 0.09 0.18 7

Black-throated Green Warbler (Setophaga virens) 0.12 0.07 0.19 2

Common Yellowthroat (Geothlypis trichas) 0.12 0.08 0.16 7
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