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Abstract The predator mite Iphiseiodes zuluagai Denmark
& Muma is an important biological-control agent of mite
pests, and it is one of the most common species found in
citrus orchards. This study assessed, under laboratory con-
ditions, the toxicity and duration of the harmful effects of
five insecticides, the three pyrethroids deltamethrin, esfen-
valerate and lambda-cyhalothrin, and the two neonicoti-
noids imidacloprid and thiamethoxam on I. zuluagai.
Furthermore, we estimated the life-table parameters of the
predator. Our results showed that deltamethrin and lambda-
cyhalothrin caused higher mortality of larvae and adults
than imidacloprid and thiamethoxam. In contrast, esfenva-
lerate provided larval mortality similar to imidacloprid and
thiamethoxam, but it did not cause significant adult mor-
tality of the predator. Mites that developed on pyrethroid
residues showed lower survival of the immature stages,
fecundity, and longevity compared to neonicotinoid resi-
dues and the control treatment. The estimated life-table
parameters indicated that deltamethrin, lambda-cyhalothrin
and esfenvalerate caused greater reduction in Ro and r of I.
zuluagai compared with imidacloprid and thiamethoxam,
which were similar to the control treatment. Besides the
impacts on biological and population parameters, the
duration of the harmful activity of pyrethroid insecticides
was longer than the neonicotinoids. Therefore, the use of
pyrethroid insecticides to control pest insects may involve
serious implications for integrated pest-management

programs that aim to exploit the biological control by I.
zuluagai in citrus orchards.
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Introduction

The conservation and augmentation of biological-control
agents have been useful strategies to reduce the population
levels of arthropod pests that cause economically significant
damage to crops (Obrycki and Kring 1998; Naranjo 2001;
Zappalà et al. 2013; Asplen et al. 2015). However, the
adoption of these strategies depends on several factors,
including favorable environmental conditions, availability
of food (prey/host) for biological-control agents during the
development and reproduction of crops, intra- and inter-
specific competition, and mainly on the selectivity of the
pesticide used to control arthropod pests (Desneux et al.
2007; Lu et al. 2012; Yao et al. 2015). In citrus, although
natural enemies are useful in regulating important arthropod
pests, chemical control remains the main pest control tool
used by growers. In Brazil, a major orange producer, the use
of pesticides has increased more than 600% in recent years
(Neves et al. 2011). This increase is attributed to expansion
of orchards and increases in the number of applications the
insecticides used to control the Asian citrus psyllid, Dia-
phorina citri Kuwayama (Hemiptera: Liviidae), the vector
of the bacteria “Candidatus Liberibacter americanus” and
“Candidatus Liberibacter asiaticus” whose symptoms are
associated with huanglongbing (HLB), one of the most
important citrus diseases (Bové 2006; Belasque-Junior et al.
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2010; Grafton-Cardwell et al. 2013). Currently, Brazilian
citriculture operations consume about 5.1 kg ha−1 yr−1 of
active ingredients of insecticides (Neves et al. 2011).
Among these insecticides, the pyrethroids deltamethrin,
esfenvalerate and lambda-cyhalothrin and the neonicoti-
noids imidacloprid and thiamethoxam are most often used
for the control of insect pests (especially D. citri) due to
their high efficacy and low cost. Although these insecticides
reduce the impacts of insect pests, they can also affect the
population levels and dynamics of biological-control agents
in agroecosystems (Fragoso et al. 2002; Stark and Banks
2003; Desneux et al. 2007; Biondi et al. 2012; Guedes et al.
2016), and reduce the biocontrol services of natural enemies
that are exposed to them (Biondi et al. 2015).

Among the natural enemies that occur naturally in citrus
orchards, the predatory mites (especially those belonging to
the family Phytoseiidae) play an important role in the bio-
logical control of phytophagous mites that damage citrus
plants (Gerson et al. 2003). Iphiseiodes zuluagai Denmark
& Muma has been the most abundant phytoseiid species in
citrus orchards (Albuquerque and Moraes 2008; McMurtry
et al. 2013). This predator is associated mainly with the flat
mite [Brevipalpus phoenicis (Geijskes) (Prostigmata:
Tenuipalpidae)] and citrus rust mite [Phyllocoptruta olei-
vora (Ashmead) (Prostigmata: Eriophyidae)] (Albuquerque
and Moraes 2008), which are key pests of citrus (Andrade
et al. 2013; Maoz et al. 2014). Although I. zuluagai is
associated with these mite pests, it reaches its highest
population levels during the dry months of the year (winter),
coinciding with the highest population levels of the Citrus
red mite [Panonychus citri (McGregor) (Prostigmata: Tet-
ranychidae)], Mexican mite [Tetranychus mexicanus
(McGregor) (Prostigmata: Tetranychidae)] and Texas red
mite [Eutetranychus banksi (McGregor) (Prostigmata: Tet-
ranychidae)] (Lira et al. 2015). Besides its predatory action,
I. zuluagai can feed on pollen and honeydew (Reis et al.
1998), helping to maintain its population in production
systems during periods of low availability of prey. The use
of alternative food also allows mass rearing of the mite
under laboratory conditions and its release in small pro-
duction areas for the control of pest mites (Albuquerque and
Moraes 2008).

Due to the importance of the predator I. zuluagai for
integrated pest-management programs (IPM), and the
overuse of pyrethroid and neonicotinoid insecticides for the
control of insect pests, studies to assess the impacts of
insecticides on biological and population parameters of this
mite are essential to support IPM programs in citrus orch-
ards. Knowledge of the lethal and sublethal effects of these
insecticides on I. zuluagai can also help in the development
of management strategies that contribute to conservation
and/or augmentation of this natural enemy in production
systems. Several studies have demonstrated the acute

toxicity and sublethal effects of pesticides (especially
acaricides and fungicides) on predatory mites (Yamamoto
and Bassanezi 2003; Teodoro et al. 2005; 2009; Reis et al.
2006; 2011; Silva and Oliveira 2006; Tuelher et al. 2014),
but few studies have assessed biological and population
parameters to develop criteria to assess the impacts of
pesticides on this biological-control agents. In addition to
mortality, long-term exposure to pesticide residues can alter
the biological and behavioral parameters and affect the
development of the immature stages, sex ratio, fecundity,
fertility, longevity, mobility, orientation and feeding of
mites (Teodoro et al. 2005; Desneux et al. 2007; Reis et al.
2011; Tuelher et al. 2014; Guedes et al. 2016).

Life-table studies can be an additional tool for analysis
and understanding of insecticide effects on biological and
population parameters of natural enemies (Stark and Banks
2003). Estimation of these parameters helps to elucidate the
effects of pesticides on the population dynamics of
biological-control agents (Desneux et al. 2006a, b; Abbes
et al. 2015; Biondi et al. 2015). This study assessed the
impacts of the main pyrethroid and neonicotinoid insecti-
cides used in the management of insect pests in citrus
orchards, and estimated the duration of the harmful effects
of these compounds on the predator I. zuluagai. Based on
mortality and sublethal effects, the life-table parameters of
the predator were estimated, with the aim of evaluating the
impacts of these pesticides on population levels of the mite
and also to provide supporting information for IPM pro-
grams in citrus orchards.

Material and methods

Mites

The colony of I. zuluagai was established in 2011 from
specimens collected on Valencia sweet orange [Citrus
sinensis (L.) Osbeck (Rutaceae)] in an experimental orchard
on the campus of the “Luiz de Queiroz” College of Agri-
culture, Piracicaba, São Paulo, Brazil, where pesticides had
not been applied in the preceding 3 months. In the labora-
tory, the mites were transferred to bean leaves [Canavalia
ensiformis (L.) DC (Fabaceae)], placed with the abaxial
surface turned upward on a layer of foam moistened with
deionized water in plastic trays (38.5× 24.5× 6.0 cm in
length, width and height, respectively). Moistened cotton-
wool strips were used on the edges of the leaves to maintain
their turgor and prevent the escape of mites. On each orange
leaf, a cotton yarn was placed to provide shelter and an
oviposition site for the mites. As food, pollen from taboa
[narrow-leaved cattail, Typha angustifolia L. (Typhaceae)]
was provided on glass cover slips measuring 2× 2 cm (4
cm2), which were replaced every 48 h. The rearing and
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bioassays were performed in a climate-controlled room at a
temperature of 25± 2 °C, relative humidity (RH) of 60±
10% and photoperiod of 14 L: 10 D h.

Chemicals

Five commercial insecticides registered in the Ministry of
Agriculture, Livestock and Supply (MAPA) for the man-
agement of insect pests (specially D. citri) in Brazilian
citrus orchards (Agrofit 2015) were assessed on I. zuluagai.
The insecticides and concentrations assessed were: delta-
methrin (Decis Ultra 10 EC, at 0.008 g a.i. L−1 [g active
ingredient a liter of deionized water], Bayer CropScience S.
A.), esfenvalerate (Sumidan 15 EC, at 0.019 g a.i. L−1,
Sumitomo Chemical do Brasil Ltda.), lambda-cyhalothrin
(Karate Zeon 5 CS, at 0.010 g a.i. L−1, Syngenta Proteção
de Cultivos Ltda.), imidacloprid (Provado 20 SC, at 0.040 g
a.i. L−1, Bayer CropScience S.A.) and thiamethoxam
(Actara 25WG, at 0.025 g a.i. L−1, Syngenta Proteção de
Cultivos Ltda.). All three companies are located in São
Paulo, state of São Paulo, Brazil. Deionized water (used to
dissolve the insecticides) was used as the control treatment.

Bioassays

The bioassays were conducted in a climate-controlled room,
following a fully randomized design. During the evaluation
of bioassays, cattail fresh pollen (taboa, T. angustifolia) was
available on glass slides 0.5× 0.5 cm (0.25 cm2) as mite
food.

Effects of insecticides on the survival of larvae and adults

In order to assess the toxicity of insecticides to larvae and
adults of I. zuluagai, leaves of Valencia sweet orange (C.
sinensis) were sprayed with 2 mL of solution in a Potter
tower (Burkard Scientific Co., Uxbridge, United Kingdom),
adjusted to a pressure of 68 kPa, resulting in deposition of
1.8± 0.1 mg cm−2 fresh residues. This treatment is con-
sistent with the criteria established by the Pesticides and
Beneficial Organisms working group of the International
Organization for Biological Control of Noxious Animals
and Plants/West Palaearctic Regional Section (IOBC/
WPRS) for pesticide toxicity studies on natural enemies
(Hassan et al. 1994). After the spraying, the leaves were
kept in a climate-controlled room for 2 h to allow the resi-
dues to dry. Then, leaf discs (3.3 cm in diameter) were cut,
placed on an agar: water layer at a concentration of 25 g L−1

in Petri dishes (3.5 cm in diameter× 0.7 cm in height), and
used as experimental units. Next, 10 larvae or adults (both
up to 24 h old) from the rearing colony maintained in
laboratory conditions were released in each experimental
unit. The dishes were sealed with PVC film and kept in a

climate-controlled room. For each treatment and develop-
ment stage of the mite (larva or adult), 10 replicates were
used. The mortality of larvae or adults was assessed 24 h
after the mites were placed in the experimental units. Mites
that did not react to the touch of a fine brush were con-
sidered dead. The toxicity of each insecticide to larvae and
adults was calculated by the formula proposed by Abbott
(1925).

Effects of insecticides on I. zuluagai juvenile development
and adult reproduction

In order to assess the impacts of insecticides on the devel-
opment and reproduction of I. zuluagai, seedlings of
Valencia sweet orange (C. sinensis) were sprayed with a
volume corresponding to 43 mL m−3 canopy, resulting in
the deposition ~1.8 mg cm−2 of fresh residues on the foliar
surface, using a Jacto PJH (Jacto do Brasil S.A., Pompéia,
São Paulo, SP, Brazil) manual sprayer equipped with a FL-
5VS conical nozzle (Teejet Technologies Company, São
Paulo, SP, Brazil). 2 h after the spraying (required period for
the residues to dry on the leaf surface), one leaf of each
seedling was randomly removed, brought to the laboratory,
and discs (3.3 cm in diameter) were cut to prepare the
experimental units as described in item 2.3.1. Then, 20
newly hatched larvae (up to 12 h old) were transferred to
each experimental unit, and the dishes were sealed with
voile fabric and kept in a climate-controlled room. For each
treatment, five replicates were used. The survival and
duration of larvae, protonymphs and deutonymphs were
assessed every 12 h until the adults emerged.

The adults emerged in each treatment were transferred to
new experimental units (using leaf discs from seedlings
initially sprayed with insecticides and maintained in a
greenhouse), for evaluation of the pre-oviposition period
(from emergence to first egg period), fecundity (number of
eggs laid by females), egg viability (number of hatched
larvae) and longevity (period from emergence to death) of I.
zuluagai. The fertility of females was determined based on
the number of larvae hatched from all eggs laid by the
females. For this purpose, the eggs were placed in Petri
dishes (3.5 cm in diameter× 0.7 cm in height), sealed with
PVC film and kept in a climate-controlled room. The
duration and viability of the eggs (fertility of females) in
each Petri dish were assessed every 12 h for 5 d after the
eggs were transferred to the experimental units.

Duration of the harmful effects of insecticides on I. zuluagai

The duration of the harmful effects of insecticides was
assessed on larvae (the most susceptible stage observed in
item 2.3.2) of I. zuluagai following the same procedure
described by Lira et al. (2015). For this purpose, seedlings
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of Valencia sweet orange (C. sinensis) cultivated in plastic
pots (12 L) in a greenhouse were used as the substrate for
spraying of treatments. The treatment solutions were
sprayed until the runoff point as described in item 2.3.2. For
each treatment, five seedlings were used. After 1, 3, 7 and
10 d after spraying (DAS), one leaf of each seedling was
randomly removed, brought to the laboratory, and discs
(3.3 cm in diameter) were cut for use in preparing the
experimental units as described in item 2.3.1. Next, 20
newly hatched larvae (up to 12 h old) were transferred to
each experimental unit. For each treatment and evaluation
date, five replicates were used. The survival of larva, pro-
tonymph and deutonymph stages of the mite were assessed
every 12 h until the adults emerged. Mites that did not react
to the touch of a fine brush were considered dead.

Data analysis

Generalized linear models (Nelder and Wedderburn 1972)
with quasi-binomial distribution were used to analyze the
proportion data [mortality/survival of larvae and adults
(item 2.3.1)] of the predator mite. The quality adjustment
was determined through a half-normal graph with a simu-
lation envelope (Hinde and Demétrio 1998). In cases of
significant differences between treatments, multiple com-
parisons with the Tukey test (P< 0.05), were made with the
“glht” function of the “multcomp” package, with adjusted p
values. To analyze the duration of the harmful effects, the
number of dead mites in each treatment was submitted to
repeated-measurement analysis for interaction assessment
of explanatory variables (treatments and time), using the
generalized estimation equation (GEE) models (Liang and
Zeger 1986; Zeger and Liang 1986). As there was sig-
nificant interaction between treatments and time, the inter-
action separation was made using the “fat2.crd” function of
the “ExpDes” package, and the means compared by Tukey
test (P< 0.05). All these analyses were performed using the
statistical software “R”, version 3.1.3 (R Development Core
Team 2015).

Life table

Based on the data for duration and survival of the immature
stages (eggs, larvae, protonymphs and deutonymphs), pre-
oviposition period, fecundity and fertility of females, and
longevity of I. zuluagai observed in each treatment (item
2.3.2), life-table parameters were estimated. Life tables
were constructed based on data for all individuals tested
(including females, males and individuals that died during
the immature stage of development), as proposed by Chi
(1988). The original data for all individuals were analyzed
according to the theoretical model proposed by Chi and Liu
(1985), using the TWOSEXMSChart program (http://140.

120.197.173/ecology/Download/TWOSEX-MSChart.rar)
(Chi 2014). For each treatment were estimated:

The net reproductive rate (Ro):

R0 ¼
X1

x¼0

lxmx ð1Þ

The intrinsic rate of increase (r):

X1

x¼0

e�rðxþ1Þlxmx ¼ 1 ð2Þ

and the mean generation time (T):

T ¼ lnR0=r ð3Þ
The means and standard errors of each biological and

population parameters were estimated by the bootstrap
method, following the procedure of Huang and Chi (2012).
During the bootstrap procedure, the data for each population
parameter were re-sampled 40,000 times. The means for
each treatment were compared by paired bootstrap test,
based on the confidence interval of the differences (Efron
and Tibshirani 1993).

Results

Effect of insecticides on I. zuluagai immature and adult
stages

The toxicity levels of the insecticides assessed differed
according to the development stages of I. zuluagai and the
chemical group of insecticides used in the bioassays.
Exposure of I. zuluagai adults to the insecticides showed
that deltamethrin and lambda-cyhalothrin caused significant
reduction in survival rate of the predator mite. On the other
hand, the spraying of esfenvalerate, imidacloprid or thia-
methoxam did not affect the adult survival, and these
insecticides were similar to the control treatment (Table 1).
However, for larvae, all insecticides reduced the mite sur-
vival rate, indicating that larvae were more susceptible than
adults (Table 1). The highest toxicity levels were found in
larvae treated with deltamethrin and lambda-cyhalothrin,
differing from those exposed to esfenvalerate, imidacloprid
and thiamethoxam (Table 1).

Although different acute toxicity levels were found for
the I. zuluagai larvae, the insecticides did not affect the egg
incubation period, the development time of larvae, proto-
nymphs and deutonymphs, and the duration of the immature
stage of the mite (Table 2). However, all insecticides
reduced the survival of the immature stages. The lowest
survival rates of immatures were observed in mites reared
on deltamethrin and lambda-cyhalothrin residues, followed
by esfenvalerate, imidacloprid and thiamethoxam (Table 2).
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For adults, the results showed that the pyrethroid and neo-
nicotinoid insecticides did not affect the pre-oviposition
(from emergence to first egg) or oviposition periods (from
first egg to last egg) of females (Table 2). However, the
number of eggs laid by females (fecundity) was lower in
females that developed on deltamethrin, esfenvalerate and
lambda-cyhalothrin residues compared to females that
developed in the control treatment. Imidacloprid and thia-
methoxam did not affect the fecundity of females, and these
insecticides were similar to the control treatment (Table 2).
The longevity of females and males treated with the
insecticides was lower than adults maintained on the control
treatment (Table 2).

Duration of the harmful effects of insecticides on I.
zuluagai

Based on the duration of the harmful effects, our results
showed that there was significant interactions between
treatments and time (F= 26.48; d.f.= 15, 96; P< 0.0001),
demonstrating that toxicity levels of insecticides depends of
assessment time. At 1 d after spraying (DAS) all the
insecticides caused a significant reduction in survival rate of
the predator compared to control (F= 55.31; d.f.= 3, 24; P
< 0.0001) (Table 3). However, the higher mortality levels
were observed in treatments with deltamethrin and lambda-
cyhalothrin, differing from those treated with esfenvalerate,
imidacloprid and thiamethoxam insecticides, which caused
mortality ranging of 32.2 to 47.7% (F= 79.70; d.f.= 5, 24;
P< 0.0001). Similar mortality levels were observed in
assessment performed at 3 DAS for the three tested pyre-
throids, but imidacloprid and thiamethoxam had a sig-
nificant reduction in harmful effect, and these compounds
were similar to control (Table 3). At 7 DAS, deltamethrin
and lambda-cyhalothrin reduced slightly the survival rate of
I. zuluagai, whereas esfenvalerate was considered harmless

to the predator (Table 3). However, at 10 DAS all the
insecticides did not cause significant mortality, and these
compounds were similar to control (F= 1.70; d.f.= 5, 24;
P= 0.789). Regarding our findings, deltamethrin and
lambda-cyhalothrin caused a significant reduction in the I.
zuluagai survival rate up to 10 DAS, while esfenvalerate
was harmful up to 7 DAS, and imidacloprid and thia-
methoxam kept their harmful activity up to 3 DAS (Table 3).

Effects of insecticides on life table parameters of I.
zuluagai

The estimation of life-table parameters indicated that the net
reproduction rate (Ro) and intrinsic rate of increase (r) were
lower in mites maintained on deltamethrin and lambda-
cyhalothrin residues than in the other treatments (Table 4).
Among the pyrethroids assessed, esfenvalerate had the
smallest impact on Ro and r, indicating that this insecticide
is less harmful to the predator than deltamethrin and
lambda-cyhalothrin. Although its reduces the Ro and r,
deltamethrin, lambda-cyhalothrin and esfenvalerate did not
affect the mean generation time (T) of the predator (Table
4). On the other hand, imidacloprid and thiamethoxam did
not cause significant effect on the population parameters
(Ro, r and T) of the mite, and these insecticides were similar
to the control treatment (Table 4).

Discussion

Effect of insecticides on I. zuluagai immature and adult
stages

Our results showed that toxicity levels of the five insecti-
cides assessed were dependent on the development stages of
the mite and the chemical group of the insecticides. The

Table 1 Effects of pyrethroid
and neonicotinoid insecticides
on egg viability, larvae and
adults of Iphiseiodes zuluagai

Treatment Concentration used (g a.i. L−1) Mortality (%)a

Larvae Adults

Control – 4.0± 2.21 c 1.0± 1.00 b

Deltamethrin 0.008 58.0± 4.16 a 22.0± 2.91 a

Esfenvalerate 0.019 47.0± 4.23 b 11.0± 2.77 b

Lambda-cyhalothrin 0.010 65.0± 3.42 a 27.0± 3.00 a

Imidacloprid 0.040 33.0± 3.67 b 7.0± 3.02 b

Thiamethoxam 0.025 26.0± 4.00 b 5.0± 2.24 b

F 24.498 14.781

d.f. 5, 54 5, 54

p value <0.0001 <0.0001

a Means (±SE) followed by the same letter in a column do not differ significantly (GLM with quasi-binomial
distribution, followed by post hoc Tukey test; P< 0.05)
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highest acute toxicity levels were observed in I. zuluagai
larvae, whereas adults proved to be less susceptible to these
insecticides. The higher susceptibility of larvae may be
associated not only with the lower degree of sclerotization
of the cuticle (Moraes and Flechtman (2008), which con-
stitutes the first defense barrier against xenobiotic agents
(Alberti and Coons 1999), but also with the lower enzyme
activity responsible for the active ingredients metabolization
(Pasay et al. 2009). However, the effects of these insecti-
cides on the physiological and biochemical processes
should be investigated to understand the variations in
susceptibility levels of the different life stages of the
predator.

Our results also showed that the toxicity levels of the
pyrethroid insecticides were higher than neonicotinoids.
Different toxicity between pyrethroid and neonicotinoid
insecticides were also observed on females of N. fallacis
(Villanueva and Walgenbach 2005) and Anystis baccarum
(Linnaeus) (Laurin and Bostanian 2007). According to these
authors, the esfenvalerate and lambda-cyhalothrin pyre-
throids caused mortality of 40 to 100%, whereas imida-
cloprid and thiamethoxam were considered harmless to the
predators. The high pyrethroid acute toxicity of pyrethroids
in relation to neonicotinoids may be associated to the action
mode of these two insecticide groups. Pyrethroids act
basically by contact due to their high lipophilicity and
affinity with the cuticle chemical composition, inducing fast
nervous cell depolarization of the central and peripheral
nervous systems, causing hyperexcitation, irritability,
feeding activity inhibition, and individual death immedi-
ately after the exposure of individuals to residues of these
insecticides (Hall and Thacker 1993). On the other hand,
neonicotinoids have contact and ingestion actions, but high
toxicity levels have been observed when these insecticides
are ingested by arthropods (Tomizawa and Casida 2003). It
occurs due to the moderate penetration capacity in arthro-
pod integument and high target specificity of these com-
pounds to nicotinic acetylcholine receptors located in post-
synaptic neurons, resulting in an acetylcholine degradation
process delay and individual mortality (Tomizawa and
Casida 2005). In this study, the mites were exposed only to
residual contact, and therefore, it is probable that the I.
zuluagai exposure to residual contact, associated to prey
contaminated consumption, may increase the toxicity levels
of neonicotinoid insecticides to the predator. Pozzebon et al.
(2011) found higher mortality of Phytoseiulus persimilis
Athias-Henriot females that were fed with prey treated with
thiamethoxam than those exposed only to the residual
contact. Therefore, additional studies should be performed
to assess the neonicotinoid toxicity levels in different
exposure ways.

Besides mortality, the pyrethroids reduced the fecundity
of females and longevity of the predator. A decrease in the T
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number of eggs laid by females was also observed in other
phytoseiid species, including Euseius gossipi (El-Badry)
(Abou-Awad and El-Banhawy 1985), N. californicus
(Castagnoli et al. 2005), N. fallacis (Villanueva and Wal-
genbach 2005), P. persimilis (Duso et al. 2008) and G.
occidentalis (Hamby et al. 2013; Beers and Schmidt 2014)
when they were treated with pyrethroid insecticides. Pyre-
throid insecticides affect not only the egg formation process
(Cônsoli et al. 1998), but also reduce the fertility (Hamby
et al. 2013) and the predation rate of females (Provost et al.
2005; Beers and Schmidt 2014), and increased the mobility
of the predator mites (Provost et al. 2003), demonstrating
that these insecticides cause detrimental effects on these
biocontrol agents.

On the other hand, imidacloprid and thiamethoxam
caused low mortality of larvae in the first 24 h after spray-
ing, and they did not affect the duration and survival rate of
the larvae, protonymphs and deutonymphs surviving. Imi-
dacloprid and/or thiamethoxam also reduced slightly the
survival rate of Neoseiulus collegae (De Leon), Phytoseiu-
lus macropilis (Banks), Proprioseiopsis mexicanus (Gar-
man) (Mizell and Sconyers 1992), Neoseiulus womersleyi
Schicha (Park et al. 1996), Neoseiulus victoriensis
(Womersley) (James 1997), Agistemus fleshneri Summers
(Bostanian and Larocque 2001), P. persimilis and N.

californicus (Duso et al. 2008; Argolo et al. 2013), K.
aberrans (Tirello et al. 2013; Duso et al. 2014), Amblyseius
cucumeris (Oudemans) (Kim et al. 2005) and A. baccarum
(Laurin and Bostanian 2007). Although the low acute
toxicity, the exposure of predator mites to these insecticides
for a long time can reduce both the population levels, and
the effectiveness of these biocontrol agents in
agroecosystems.

Imidacloprid and thiamethoxam also reduced slightly the
fecundity and longevity of I. zuluagai females. These
results are similar to the ones observed for G. occidentalis
(Bostanian et al. 2009), N. fallacis (Bostanian et al. 2010)
and I. degenerans (Döker et al. 2014) exposed to imida-
cloprid and/or thiamethoxam residues. These effects should
be due to the reduction in female feeding and mobility
activities (Bostanian et al. 2009; Szczepaniec et al. 2011),
and suppression in vitellin synthesis in the fat bodies and its
transference to the ovaries, which affect the quantity and
quality of the eggs produced (Zeng and Wang 2010).
Additionally, thiamethoxam also reduced the functional
response of P. macropilis (Poletti et al. 2007), while imi-
dacloprid reduced the foraging process of predatory mites
(De Boer et al. 2005; Dukas 2008), demonstrating that these
compounds also affect the communication and feeding
processes of individuals exposed to residues.

Table 4 Estimates of life-table parameters of Iphiseiodes zuluagai reared on residues of pyrethroid and neonicotinoid insecticides

Treatment Concentration used
(g a.i. L−1)

Life-table parametersa

Net reproduction rate (Ro)
(female female−1)

Mean generation time
(T) (d)

Intrinsic rate of increase (r)
(female female−1 d−1)

Control – 8.6± 1.34 a 18.5± 0.45 a 0.12± 0.008 a

Deltamethrin 0.008 3.2± 0.70 c 17.6± 0.54 a 0.07± 0.013 c

Esfenvalerate 0.019 5.2± 0.92 b 18.4± 0.60 a 0.09± 0.010 b

Lambda-cyhalothrin 0.010 2.9± 0.66 c 17.7± 0.72 a 0.06± 0.014 c

Imidacloprid 0.040 7.0± 1.11 ab 18.0± 0.51 a 0.11± 0.009 ab

Thiamethoxam 0.025 7.4± 1.17 ab 18.2± 0.53 a 0.11± 0.008 ab

a Means (±SE) followed by the same letter in a column do not differ significantly by the bootstrap paired test (P< 0.05)

Table 3 Duration of the harmful effects [days after spraying (DAS)] of pyrethroid and neonicotinoid insecticides on Iphiseiodes zuluagai

Treatment Concentration used (g a.i. L−1) Days after spraying (DAS)a

1 3 7 10

Deltamethrin 0.008 58.5± 4.89 Aa 59.5± 5.39 Aa 31.5± 5.02 Ba 8.0± 2.64 Ca

Esfenvalerate 0.019 47.7± 5.59 Ab 35.5± 4.15 Ab 15.0± 3.46 Bb 4.5± 2.33 Ba

Lambda-cyhalothrin 0.010 65.0± 4.32 Aa 71.0± 4.75 Aa 36.5± 3.77 Ba 7.5± 3.70 Ca

Imidacloprid 0.040 36.8± 3.27 Ab 17.2± 3.27 Bc 10.5± 2.90 Bb 5.5± 2.85 Ba

Thiamethoxam 0.025 32.2± 5.10 Ab 15.7± 3.37 Bc 9.0± 3.70 Bb 4.5± 2.94 Ba

Control – 2.5± 1.12 Ac 5.0± 0.79 Ac 6.4± 1.26 Ab 2.5± 1.58 Aa

a Means (±SE) followed by the same letter uppercase in a line, and lowercase in the column do not differ significantly by the Tukey test (P< 0.05)
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Duration of the harmful effects of insecticides

Based on the duration of the harmful effects, our results
showed that esfenvalerate caused mortality of I. zuluagai up
to 7 d after spraying (DAS), whereas deltamethrin and
lambda-cyhalothrin maintained their harmful activity up to
10 DAS. Although these compounds are originally con-
sidered incompatible with IPM programs, these insecticides
can be used during the periods of low mobility and/or
population density of the predator mite. In the main citrus-
producing regions in Brazil, this period is the rainy season
(spring and summer), when climate conditions are less
favorable for development and reproduction of the predator
(Albuquerque and Moraes 2008). In contrast, imidacloprid
and thiamethoxam showed low duration of the harmful
effects (3 DAS) to I. zuluagai, allowing the rapid recolo-
nization of the predator after the spraying of these com-
pounds in citrus orchards. Therefore, our results indicate
that imidacloprid and thiamethoxam are more selective to I.
zuluagai than pyrethroids.

Effect on I. zuluagai population parameters

Our results showed that deltamethrin, esfenvalerate, and
lambda-cyhalothrin reduced the net reproductive rate (Ro),
and intrinsic rate of increase (r) of I. zuluagai. Although
these insecticides reduced the population parameters, the
mean values of r were positive, indicating that the I.
zuluagai population was still able to increase. Higher r
values are important because they represent a greater
reproductive potential of the biological agent (Moscardini
et al. 2013). On the other hand, imidacloprid and thia-
methoxam did not significantly affect the population para-
meters (Ro, r, and T) of the predator, indicating that these
compounds are more compatible with I. zuluagai than
pyrethroids. However, in the field, I. zuluagai could be
exposed to systemic action through the contaminated prey,
pollen, or extra-floral nectars consumptions (Gontijo et al.
2014), that can affect the biological, behavioral and popu-
lation parameters of predator mite. Therefore, field studies
that assess the neonicotinoid effects on these parameters
should be conducted to verify the compatibility of these
insecticides with the predator mite.

Based on the present findings, the overuse of deltame-
thrin, lambda-cyhalothrin and esfenvalerate pyrethroids
may reduce the population levels of I. zuluagai in citrus
orchards and make it unfeasible to use biological control of
mite pests in IPM programs. Therefore, these insecticides
should be used with caution in order to avoid compromising
the predator mite efficacy as a biocontrol agent of phyto-
phagous mites in citrus orchards; whereas imidacloprid and
thiamethoxam neonicotinoids were considered safer to the
predator mite. Despite being considered compatible with I.

zuluagai, the widespread use of neonicotinoid insecticides
has been under scrutiny for their side effects on non-target
organisms, such as bees (Sánchez-Bayo et al. 2016) and
natural enemies (He et al. 2012; Fogel et al. 2013), and for
the very low dose potential stimulatory effects on target
pests (Tan et al. 2012; Pan et al. 2014; Qu et al. 2014),
suggesting that the imidacloprid and thiamethoxam inclu-
sion in IPM programs should be performed with caution.
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