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Abstract The backswimmer Buenoa tarsalis (Hemiptera:
Notonectidae) is a naturally occurring predator of immature
stages of mosquitoes. These aquatic predators can suffer
from non-targeted exposure to insecticides that are com-
monly used in aquatic environments to control mosquitoes.
Here, we evaluated whether insecticide formulations con-
taining the bacterium Bacillus thuringiensis var. israelensis
(Bti) or the organophosphate pirimiphos-methyl would
affect the survival and the predatory abilities of B. tarsalis.
First, we conducted survival bioassays to estimate the
median survival time (LT50) of B. tarsalis when exposed to
Bti-based insecticide (at 0.25 and 25 mg a.i./L) and
pirimiphos-methyl (at 1, 10 and 1000 mg a.i./L). The
highest concentrations of the insecticides were equivalent to
the label-recommended field rates. Second, the predatory
abilities of B. tarsalis exposed to insecticides were eval-
uated at three prey densities (3, 6 and 9 mosquito larvae/
100 mL water) just after insecticide exposure or after a 24 h
recovery time. While the survival of B. tarsalis was sig-
nificantly reduced with pirimiphos-methyl concentrations

≥10 mg a.i./L, the Bti-exposed predators exhibited similar
survival as unexposed predators. Interestingly, after a
recovery time of 24 h, B. tarsalis sublethally exposed to
pirimiphos-methyl or Bti-based insecticide consistently
killed more A. aegypti larvae (at the intermediate density)
than unexposed predators. However, for the without-
recovery bioassays, the pirimiphos-methyl-exposed pre-
dators exhibited reduced predatory abilities at the lowest
prey density. Because they do not reduce the survival or the
predatory abilities of B. tarsalis, Bti-based insecticides can
be considered a safe insecticide to use in the presence of
backswimmers.
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Introduction

Vector insects that convey human pathogens are recognized
as a major health problem in tropical countries (WHO
2009). Among these insects, species belonging to the genera
Culex and Aedes are widely distributed in Asia, Africa and
Latin America, but the mosquito Aedes aegypti is especially
notable due to its ability to transmit different types of
arboviruses that include dengue fever, yellow fever, chi-
kungunya and Zika (Moreira et al. 2009; Ndiaye et al. 2016;
Barreto et al. 2016). The recent increase in human birth
defects and deaths caused by mosquito-borne viruses has
been reported as consequence of human movement (Adams
and Kapan 2009), worldwide distribution of the vectors
(Staples et al. 2009), and neglect, in the last decades, of
prevention plans that include public awareness and the
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adoption of controversial methods to control mosquito
populations (Rodríguez et al. 2007; Lima et al. 2011;
Petersen et al. 2016).

In the absence of a vaccine against many diseases, the
most common strategy currently used to reduce populations
of mosquitoes is chemical control (Pridgeon et al. 2008; Liu
2015). Although insecticides have extinguished many dis-
eases transmitted by mosquitoes around the world, the
extensive use of neurotoxic insecticides such as pyrethroids
and organophosphates has been controversial due to
increased insecticide resistance in vector insects in Asia and
Latin America (Rodríguez et al. 2007; Martins et al. 2009;
Lima et al. 2011; Bellinato et al. 2016, Haddi et al. 2017).
Consequently, there is a need for compounds with different
action mechanisms or biological control agents as alter-
native approaches to manage insecticide resistance in
mosquito populations (Quiroz-Martínez and Rodríguez-
Castro 2007; Coelho et al. 2009; Shaalan and Canyon
2009; Kroeger et al. 2013; Swale et al. 2016). Furthermore,
the beneficial interactions between pesticides and naturally
occurring predators have been proposed as potential tools to
enhance the control of aquatic insects (Relyea and Hover-
man 2008; Holmstrup et al. 2010; Janssens and Stoks
2013).

The most important natural enemies of mosquitoes are
fishes and insect predators such as odonates, water bugs and
backswimmers that play an important role in reducing
numbers of mosquitoes (Quiroz-Martínez and Rodríguez-
Castro 2007; Relyea and Hoverman 2008; Shaalan and
Canyon 2009). However, insecticides with broad-spectrum
action can affect these non-target organisms (Schulz 2004;
Relyea and Hoverman 2008; Kuivila et al. 2012; Gutiérrez
et al. 2016a, b). In addition, little information is available on
the sublethal effects of insecticides in these animals because
most studies focus on lethal effects (Marina et al. 2014;
Halstead et al. 2015). Although lethality is important in risk
assessment for any animal species, the sublethal effects on
behaviors such as predatory ability in non-target species is
also important in assessing pesticide risks (Desneux et al.
2007; Rasmussen et al. 2013). Therefore, effective insecti-
cides that control mosquitoes and have low impacts on the
mosquitoes’ natural enemies are required for more rational
control of mosquitoes in aquatic environments.

Commercial larvicides based on the bacterium Bacillus
thuringiensis var. israelensis (Bti) are very commonly used
worldwide to control vector insects (Crickmore 2005; Lacey
2007; Jakob and Poulin 2016) due to their high toxicity to
mosquitoes, and low or lack of toxicity to most aquatic
organisms (Boisvert and Boisvert 2000; Lacey and Merritt
2004; Lagadic et al. 2014, 2016). However, despite being
effective against mosquitoes, there is a lack of information
regarding the lethal and mainly sublethal effects of Bti-
based commercial insecticides in non-target aquatic insects.

Thus, this study was conducted to evaluate whether insec-
ticide formulations (one containing the Bacillus thur-
ingiensis var. israelensis (Bti) and another with
organophosphate pirimiphos-methyl) would affect the sur-
vival and predatory ability of the backswimmer Buenoa
tarsalis (Hemiptera: Notonectidae), an important natural
predator of immature stages of mosquitoes.

Material and methods

Test organisms

Adults of B. tarsalis were collected from artificial ponds at
the fish-farm station of the Department of Animal Biology,
Federal University of Viçosa (UFV, Viçosa, MG, Brazil,
20°45′S, 42°52′W) using a D-net. Second instar larvae (L2)
of A. aegypti (strain PP-Campos, Campos dos Goytacazes,
RJ, Brazil) were obtained from a colony maintained in the
Department of General Biology of the Federal University of
Viçosa. The insects were maintained under controlled
conditions (25 ± 2 °C, 12 h of scotophase) for 48 h before
the experiments. All bioassays were conducted using
mineral water (Hélios, Dona Eusébia—MG, Brazil) as a
medium to dilute the insecticides. The properties of the
water were as follows: HCO3

− 8.32 mg/L, Na+ 2.028 mg/L,
Ca2+ 1.381 mg/L, K+ 1.381 mg/L, NO3

− 1.82 mg/L, Mg2+

0.631 mg/L, Cl− 1.69 mg/L, SO4
2− 0.55 mg/L, F− 0.02 mg/

L, pH 5.61, and conductivity 25.5 µS/cm.

Insecticide efficiency in controlling A. aegypti larvae and
impact in the survivability of B. tarsalis

First, we exposed (for 24 h) groups of A. aegypti larvae to a
Bti-based commercial insecticide (Bt-Horus SC® [12 g a.i./
L], BTHEK Biotecnologia Ltda, Brasília, Brazil) or to a
pirimiphos-methyl commercial formulation (Actellic 500
EC® [500 g a.i./L], Syngenta Ltda, São Paulo, Brazil) in
order to evaluate the efficacy of these products against
mosquitoes. Groups of 25 A. aegypti second instar larvae
(L2) were exposed for 24 h to the insecticides at their
respective label rates for application in water bodies to
control mosquitoes (Bti: 25 mg of a.i./L; pirimiphos-methyl:
1000 mg of a.i./L). The larvae were exposed in a 500-mL
glass beaker containing 300 mL of insecticide solution or
mineral water as a control. Four replicates were used for
every treatment.

For the survival bioassays with B. tarsalis, adult males
and females of the predator were exposed to concentrations
1, 10 and 1000 mg of a.i./L of pirimiphos-methyl and 0.25
and 25 mg of a.i./L of Bti-based insecticide. In the control
treatment, the predators were exposed to mineral water as
described above. These bioassays were conducted in
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mineral water using unaged adult insects that faced starva-
tion condition during all the experimental time. Groups of
10 B. tarsalis were placed in a 500-mL glass beaker con-
taining 300 mL of insecticide solution; the beaker was
covered with fine mesh netting (i.e., organza) to prevent
insect escape. Four replicates of ten insects each were used
for every treatment, and mortality was assessed every 6 h
for 16 days. In each evaluation, the individuals who
remained motionless after repeated mechanical stimuli with
a pipette were considered dead and removed from the
containers to avoid cannibalism.

Predation bioassay

Recently collected adult females of B. tarsalis were accli-
mated under the conditions described above. Then, the
insects were exposed to insecticide solutions (1 mg a.i./L of
pirimiphos-methyl or 25 mg a.i./L of Bti-based insecticide)
or to mineral water (control treatment) for 24 h. The
insecticide concentrations chosen were considered sublethal
because they did not reduce the survival of the insects when
compared with the control in the survival bioassay. Sub-
sequent to insecticide exposure, females were submitted to
predation experiments either immediately (i.e., without
recovery) or were maintained separately in glass containers
with 150 mL of mineral water without insecticides for 24 h
until the onset of the experiment (i.e., with recovery time).
To assess predatory ability in both treatments, second instar
larvae of A. aegypti were offered in three densities (3, 6 or 9
larvae) in mineral water. At least five insects were used in
each combination among prey availability, insecticide type
and insecticide recovery time. The number of preyed larvae
was evaluated every 20 min for 2 h and the densities were
re-established after each evaluation. The total of A. aegypti
larvae preyed by B. tarsalis during these experiments were
also compared among insecticide-exposed and unexposed
predators.

Statistical analysis

The results of the survival bioassays were subjected to
survival analysis performed using the Kaplan–Meier esti-
mator (Log-rank method) with SigmaPlot 12.0 software
(Systat Software, San Jose, California, USA). The median
value for the LT50 estimations were pairwise compared
using the posthoc Holm-Sidak’s test Tukey’s HSD test (P<
0.05). The data obtained in the predation bioassays was
subjected to repeated measure analyses of variance to
determine the effects of insecticides, prey densities and
recovery time. The number of preyed larvae during each 20
min interval was used as the replicate (within-sample var-
iation) to avoid problems of pseudoreplication in time
(Paine 1996 and von Ende 1993). The GLM procedure with

the PROFILE statement was used for this analysis (SAS
Institute 2008). The total of A. aegypti larvae preyed by B.
tarsalis was subjected to analyses of covariance with the
availability (i.e., density level) of A. aegypti larvae as the
independent variable and the in each insecticide recovery
situation as a covariate (PROC GLM procedure).

Results

Survival bioassay

The label rates of Bti and pirimiphos-methyl killed 100% of
A. aegypti larvae after 24 h of exposure, confirming the high
efficiency of both compounds. The analysis of survival
showed significant differences between the survival of B.
tarsalis males exposed to the two higher concentrations of
both pirimiphos-methyl and those exposed to all other
treatments (Log-Rank: χ2= 184.36, df= 7, P < 0.001). The
mean of male survival time for the control (84.0 ± 9.4 h)
was approximately 2.9 and 13.7 times higher than the sur-
vival time of males exposed to pirimiphos-methyl at 10 mg/
L (29.0 ± 4.5 h) and 1000 mg/L (6.1 ± 1.1 h), respectively
(Fig. 1a, b). Similar reductions in longevity were found in
females exposed to the two higher concentrations of
pirimiphos-methyl (Log-Rank: χ2= 166.20, df= 7, P<
0.001), where the mean of survival time in the control
(133.60 ± 11.7 h) was approximately 4.6 and 26.2 times
higher than the survival time of females exposed to 10 mg/L
(29.0 ± 4.5 h) and 1000 mg/L (5.1 ± 1.0 h) (Fig. 1c, d).
Furthermore, it is worth to note that B. tarsalis females
survived longer than B. tarsalis males in all bioassays.
There were no significant differences between the control
and the lowest Bti and pirimiphos-methyl concentrations (P
> 0.05) for either males or females. For this reason, the
lowest Bti and pirimiphos-methyl concentrations were
chosen to test the effects on the predation abilities of B.
tarsalis.

Predation bioassay

As shown in Table 1, the repeated measure analyses of
variance revealed significant effects of insecticide
(F(1,2)= 3.2, P= 0.0445), density of prey (F(1,2)= 288.7,
P< 0.0001), recovery time (F(1,1) = 4.17, P= 0.0423) and
time (F(5,111)= 10.0, P < 0.0001). The interactions of prey
density with insecticide (F(1,4)= 3.0, P= 0.0204) and with
time (F(10,222)= 4.3, P < 0.0001) were also significant
(Table 1).

For the predation bioassays without recovery time
(Fig. 2), exposure to pirimiphos-methyl significantly
decreased the number of larvae preyed by B. tarsalis when
these insects had the lowest prey availability (i.e., 3 larvae/
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100 mL of water) (Fig. 2), but pirimiphos-methyl exposure
did not affect the predatory abilities of B. tarsalis at the
intermediate (i.e., 6 larvae/100 mL of water) or highest (i.e.,
9 larvae/100 mL of water) prey densities (Fig. 2b, c). When
the predators were exposed to the Bti-based insecticide, the
predator’s capacities for preying on mosquito larvae at the
lowest and intermediate densities were not significantly
different from those recorded for unexposed predators (Fig.
2a, b). Surprisingly, at the highest density of prey, the
predatory abilities of B. tarsalis exposed to Bti-based
insecticide were not affected over time (Fig. 2), which could
suggest significant differences from the abilities of the
unexposed and pirimiphos-methyl-exposed predators that
killed significantly fewer mosquito larvae (Fig. 2). How-
ever, the total of A. aegypti larvae preyed by these Bti-
exposed predators were significantly different from the total
of larvae preyed by predators exposed to pirimiphos-methyl
or by unexposed predators (Table 2; Fig. 3).

When B. tarsalis were exposed to insecticides and had a
recovery time of 24 h (Fig. 4), the exposure to pirimiphos-
methyl did not impact their predatory abilities at the lowest
or highest densities of prey (Fig. 4a, c). However, at
intermediate prey availability (i.e., six A. aegypti larvae/100
mL of water), the pirimiphos-methyl-exposed predators ate
significantly more A. aegypti larvae than the unexposed
predators (Fig. 4b). In this experimental scenario, although
the exposure to the Bti-based insecticide did not impact the
predators’ abilities at the lowest prey availability (Fig. 4a),

Fig. 1 Survival analysis of adult
Buenoa tarsalis exposed to
pirimiphos-methyl or to a
Bti–based insecticide. a, c Show
the survival curves for males and
females, respectively. The
estimated mean survival time
(i.e., LT50) for males (b) and
females (d) is also presented. In
b, d, symbols grouped by the
same horizontal line do not
differ according to a Tukey’s
HSD test (P< 0.05) and
represent the average of four
replicates of ten insects

Table 1 Repeated measures analysis of variance for predation of
Buenoa tarsalis exposed to Bti-based insecticide (25 mg a.i./L) or
pirimiphos-methyl (1 mg a.i./L)

Sources of variation df F P

Between samples

Insecticide (I) 2 3.2 0.0445*

Density (D) 2 288.7
<0.001*

Recovery time (RT) 1 4.1 0.0423*

I x D 4 3.0 0.0204*

I x RT 2 1.5 0.23

D x RT 2 1.3 0.28

I x D x RT 4 0.62 0.64

Error 115 – –

dfden/dfnum Wilks’
lambda

Fapprox P

Within samples

Time (T) 5/111 0.68 10.0 <0.0001*

T x I 10/222 0.90 1.2 0.32

T x D 10/222 0.70 4.3 <0.0001*

T x RT 5/111 0.96 1.0 0.44

T x I x D 20/369 0.85 0.9 0.53

T x I x RT 10/222 0.89 1.4 0.20

T x D x RT 10/222 0.96 0.5 0.88

T x I x D x RT 20/369 0.87 0.7 0.79

*Significant at P< 0.05
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such exposure resulted in higher numbers of preyed-upon
larvae at intermediate (Fig. 4b) and the highest density of
larvae (Fig. 4c). However, when the total of A. aegypti
larvae preyed by these Bti-exposed predators were sub-
mitted to analyses of covariance, only the predators that
faced intermediate prey densities exhibited significant pre-
datory abilities (Table 2; Fig. 5).

Discussion

Our findings suggest that the Bti-based insecticide for-
mulations at the recommended rate (25 mg a.i./L) are effi-
cient in controlling A. aegypti and can be used in natural

aquatic environments due to their safety with the natural
predator B. tarsalis. For the first time, this study demon-
strates that the recommended concentrations of a Bti-based
insecticide neither reduced the survival of backswimmers
nor affected their predatory abilities. However, predators
exposed to the organophosphate pirimiphos-methyl above
10 mg/L exhibited reduced survival abilities. Furthermore,
when these predators had no time to recover after sublethal
exposure (1 mg/L) to pirimiphos-methyl and faced low prey
availability, they were less able to prey upon mosquito
larvae when compared to unexposed predators.

Although most studies have demonstrated high selec-
tivity of Bti against many beneficial aquatic organisms
(Boisvert and Boisvert 2000; Lacey and Merritt 2004;
Lagadic et al. 2016), field studies have shown that Bti can
significantly affect non-target insects either by direct toxi-
city (Davis and Peterson 2008; Painter et al. 1996) or
indirectly through starvation (Jakob and Poulin 2016). In
our study, the Bti-based insecticide did not cause reductions
in the survival of males or females of the backswimmer B.
tarsalis exposed to a concentration recommended to control
mosquitoes. However, the exposure of such predators to
pirimiphos-methyl at the recommended rates reduced sig-
nificantly their survival abilities, when compared with the
survival abilities of the unexposed predators. These results
might be a consequence of different mechanisms between
organophosphate- and Bti-based insecticides. While orga-
nophosphate insecticides such as pirimiphos-methyl are
neurotoxic inhibitors of cholinesterases with high toxicity to
various aquatic organisms, including mosquitoes’ predators
(Fukuto 1990; Relyea and Hoverman 2008), the Bti toxins
act on the midgut cell receptors of insects (Melo et al. 2014)
and are considered non-toxic to most aquatic organisms

Fig. 2 Number of Aedes aegypti larvae preyed upon by Buenoa tar-
salis females just after 24 h of exposure to pirimiphos-methyl and a
Bti-based insecticide. The predators’ abilities were assessed at larval
densities of 3 (a), 6 (b) and 9 (c) larvae/100 mL of water. Larval
densities were reestablished after every evaluation. Data are the mean
± SE

Table 2 Analyses of covariance for the total number of Aedes aegypti
larvae preyed by Buenoa tarsalis exposed to Bti-based insecticide (25
mg a.i./L) or pirimiphos-methyl (1 mg a.i./L)

Sources of variation df Total of preyed larvae

F P

Model 11 62.3 <0.0001*

Error 124 – –

Insecticide (I) 2 3.2 0.0434*

Density (D) 1 622.8 <0.0001*

Recovery time (RT) 1 3.5 0.0461*

I x D 2 1.7 0.19

I x RT 2 1.3 0.28

D x RT 1 2.4 0.13

I x D x RT 2 1.0 0.40

The asterisk indicates significant difference at P ≤ 0.05
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(Boisvert and Boisvert 2000; Lacey and Merritt 2004;
Lagadic et al. 2014, 2016).

Sublethal effects of insecticides on the behaviors of
aquatic insects that prey upon mosquito larvae have been
rarely investigated and most studies have focused only on
the acute toxicity of the compounds (Relyea and Hoverman
2008; Marina et al. 2014; Halstead et al. 2015; Gutiérrez
et al. 2016a, b). In the same way, most studies with back-
swimmers exposed to Bti have mainly evaluated the lethal
effects (Purcell 1981; Olejnicek 1986; Aly and Mulla 1987;
Quiroz Martinez et al. 1996), and no information is avail-
able about possible effects of Bti on the behavior of such
insects. Recently, food web alterations mediated by Bti-
based insecticides indirectly affected the abundance of non-
target insect predators (Jakob and Poulin 2016). However,
as recorded with other insecticides, it is reasonable to think
that sublethal exposure to Bti might also directly affect the
predatory abilities of aquatic predators such as dragonflies
(Painter et al. 1996).

Comparatively to the predation of unexposed predators,
the sublethal concentrations of both Bti and pirimiphos-
methyl induced B. tarsalis to prey on more mosquitoes
when the predators had 24 h of recovery after insecticide
exposure, which might be a compensatory response to stress
or physiological costs associated with the insecticide
detoxification process (Kliot and Ghanim 2012). In addi-
tion, Bti did not affect the predatory ability of B. tarsalis
even without any recovery time at all prey densities. As
expected, when the predators had not any time to recover
from sublethal concentrations of pirimiphos-methyl, their
predatory abilities were reduced, demonstrating that neu-
rotoxic compounds can be harmful for non-target insects.
However, it is worth noting that in field conditions, the
sublethally exposed predators may have the chance of
recovery from insecticide exposure, which in
certain situations can cause positive responses, as we
recorded here for predators that faced sublethal exposure to
pirimiphos-methyl or Bti preyed, after a recovery time of 24
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interval just after 24 h of
exposure to pirimiphos-methyl
and a Bti-based insecticide. The
predators’ abilities were assessed
at larval densities of 3 (a), 6 (b)
and 9 (c) larvae/100 mL of
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Fig. 4 Impact of a 24-h recovery time on Buenoa tarsalis females that
were exposed to pirimiphos-methyl and a Bti–based insecticide. The
predators’ abilities were assessed at larval densities of 3 (a), 6 (b) and 9
(c) larvae/100 mL of water. Larval densities were reestablished after
every evaluation. Data are the mean± SE
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h, at intermediate prey availabilities. Our results reinforce
the idea that the Bti effects on non-target insect predators
found in field studies are not due to direct effects of Bti on
the physiology and behavior of these organisms but instead
the indirect effects such as changes in food availability as
demonstrated elsewhere (Jakob and Poulin 2016).

Synergistic interactions between natural stressors and
insecticides (including Bti) have been reported in aquatic
insects, but the effects are investigated mainly in mosqui-
toes (Campero et al. 2007; Relyea and Hoverman 2008;
Holmstrup et al. 2010; Qin et al. 2011; Janssens and Stoks
2013; Beeck et al. 2016). In this sense, our study is the first
to show a direct effect of insecticides on the survival and
behavior of backswimmers B. tarsalis. The Bti-based
commercial insecticides seem to be safer for this natural
predator of mosquitoes and might be a suitable option for
chemical control of mosquitoes in combination with bio-
logical control agents. Compounds such as organopho-
sphates should be acknowledged as a potential threat to
backswimmers and possibly to other non-target insects in as
much as they can directly impair the survival and important
behaviors of these insects.
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