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Abstract Cu/CuxO nanoparticles (NPs) with different

morphologies have been synthesized with glucose as a

reducing agent. The X-ray diffraction and Scanning elec-

tron microscopy imaging show that the Cu/CuxO NPs have

fine crystalline peaks with homogeneous polyhedral,

flower-like, and thumbtack-like morphologies. Their

antimicrobial activities were evaluated on inactivation of

Escherichia coli using a fluorescence-based live/dead

staining method. Dissolution of copper ions from these NPs

was determined. Results demonstrated a significant growth

inhibition for these NPs with different morphologies, and

the flower-like Cu/CuxO NPs were the most effective form,

where more copper ions were dissolved into the culture

media. Surface free energy calculations based on first-

principle density functional theory show that different

crystal facets of the copper NPs have diverse surface

energy, indicating the highest reactivity of the flower-like

NPs, which is consistent with the results from the disso-

lution study and antimicrobial activity test. Together, these

results suggest that the difference between the surface free

energy may be a cause for their morphology-dependent

antimicrobial activity.
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Introduction

Metal nanoparticles (NPs) have received considerable

attention for their unique properties, including optical,

catalytic, electrical, magnetic and biological activities

(Hirsch et al. 2003; Gyawali et al. 2011). It has been

demonstrated that metal NPs exhibit a wide spectrum of

antimicrobial activity against bacteria, fungi and viruses

(Stoimenov et al. 2002). Copper has been a good choice to

work with, because it is less expensive and shares prop-

erties similar to noble metals, such as silver and gold. With

the development of nanotechnology, copper oxide NPs are

among the most widely applied antimicrobial materials for

their high efficacy toward a broad spectrum of microor-

ganisms (Borkow et al. 2010; Liu et al. 2014).

Copper oxide NPs can be prepared using different

methods, such as solution based method assisted with

templates (Hsieh et al. 2003), hydrothermal method (Gao

and Liu 2015), electrochemical methods (Ben Salem et al.

2014), and thermal oxidation method (Li et al. 2013).

Different sized NPs can be obtained by adjusting growth

parameters during synthesis (Chen et al. 2015) or with

post-synthesis separation such as centrifugation and ultra-

sonication (Sun et al. 2009). Recent studies have observed

that differences in particle size can alter antimicrobial

activity against bacterial growth (Azam et al. 2012; Adams

et al. 2014). The antimicrobial activity of the NPs can also

be governed by chemical composition, surface charge,

morphology and experimental conditions (Simon-Deckers

et al. 2009; Nesic et al. 2014; Theja et al. 2014). Studies on

the antimicrobial activity of metallic NPs have reported the

generation of reactive oxygen species (ROS) and their

corresponding ions from NPs, which subsequently result in

oxidative damage to cellular structures (Gunawan et al.

2011; Applerot et al. 2012). Although there are a few
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probable modes of bacteria-nanoparticle interaction, the

mechanisms behind the antimicrobial activity are not yet

fully understood.

This work is aimed to find out how the antimicrobial

activity of copper NPs is related to their morphology.

Three different morphologies of copper NPs were synthe-

sized. Their effects on bacterial growth and dissolution of

copper ions were determined. The first principle calcula-

tions based on density functional theory (DFT) were

applied to provide molecular level insights into morphol-

ogy effects. Results from our study may provide a new

strategy for improving the antimicrobial efficacy of

nanoparticles.

Materials and methods

Cu/CuxO nanoparticle synthesis

and characterization

All chemical reagents were of analytical grade and used as

received. Cu/CuxO NPs with different morphologies were

prepared using glucose as a reducing agent by modification

of a previously reported method (Jin et al. 2011). Polyhe-

dral nanostructures were prepared by mixing CuCl2�2H2O

(20 mg), glucose (50 mg) and polyvinylpyrrolidone (PVP,

20 mg) with 10 mL of water at 50 �C for 3 h. Then 10 mg

of NaOH was added, and the reduction reaction was per-

formed at 90 �C for 2 h. Thumbtack-like nanostructures

were prepared similarly, except that more CuCl2�2H2O

(40 mg) and KBr (20 mg) were added to the water in the

first step. Flower-like nanostructures were prepared by

adding more glucose (100 mg) and using cetyl trimethyl

ammonium bromide (CTAB) instead of PVP in the first

step, and the obtained particles after the reduction reaction

were re-suspended in 10 mL of water amended with KOH

(10 mg), KBr (10 mg) and PVP (10 mg), and then mixed at

50 �C for 2 h. Finally, the particle samples with different

morphology were washed with distilled water and ethanol

for three times. The morphology and size of the NPs were

characterized by scanning electron microscope (SEM)

(Supra 40, Zeiss Co., Germany). Powder X-ray diffraction

(XRD) (X’Pert, PANalytical BV, the Netherlands) was

used to analyze the crystal structure.

Antimicrobial evaluation on E. coli proliferation

E. coli JM109 from a single agar plate colony was cultured

overnight in Lurial-Bertani medium (LB; 5 g yeast extract,

10 g tryptone, 5 g NaCl per liter) at 30 �C with shaking

under dark condition. One mL of the overnight culture was

transferred into 20 mL of fresh LB. For each growth

experiment, 6 mg of dry-state Cu/CuxO NPs was added

into 20 mL of LB with bacterial inoculum and cultured at

30 �C for 6 h with shaking along with an untreated control.

To avoid disturbance of suspended particles on optical

density measurement of cell concentration, a fluorescence-

based assay was used to determine the antimicrobial effects

of Cu/CuxO NPs.

The amount of bacteria cells were estimated based on

the rationale that 4-6-diamidino-2-phenylindole (DAPI)

stains both live and dead bacteria, while propidium iodide

(PI) is able to penetrate only damaged or dead cells. E. coli

cells were stained with PI (20 lg/mL) for 20 min, and

counter-stained with DAPI (10 lg/mL) for 15 min in the

dark. After staining, E. coli cells were centrifuged for dye

removal and resuspended in 20 mL of 50 mM phosphate

buffer. Then 10 lL of the solution was added onto a glass

slide followed by a coverslip, and observed with a confocal

laser scanning micro scopy (CLSM) (FV1000-IX81,

Olympus, Japan). A minimum of 5 fields were examined

for each plate to estimate the number of viable cells. Dis-

solution of copper ions from 300 mg/L of copper NPs in

LB medium was determined with inductively coupled

plasma atomic emission spectroscopy (ICP-AES) (Optima

7300 DV, Perkin Elmer Co., USA). The experiments were

conducted in triplicate. Results were statistically analyzed

by one-way analysis of variance (ANOVA) followed by

Tukey’s test for comparing treatment effects at a = 0.05.

A P value of\0.05 was considered statistically significant.

Theoretical calculations

First-principle DFT calculation were performed based on

the generalized gradient approximation (GGA) with plane-

wave basis sets and ultrasoft pseudopotentials (Vanderbilt

1990), as implemented in the CASTEP module (Segall

et al. 2002) of Materials Studio. The geometries of (111),

(200), and (220) surfaces of Cu2O and Cu were optimized

and the total energies were obtained. The exchange–cor-

relation energy and potential were described self-consis-

tently using the Perdew, Burke, and Ernzerhof (PBE)

functional (Perdew et al. 1996). The Express quality set-

ting, which has been widely used to study semiconductors,

insulators and nonmagnetic metals with good accuracy,

was employed to attain a compromise between speed and

accuracy. Here, the tolerance of the energy was set as

1 9 10-3 eV/cell. This setting is an order of magnitude

faster than the Fine setting, so that the produced results

could be sufficiently accurate for exploratory studies.

Brillouin zone integration was performed with variable

number of k-points generated by Monkhorst–Pack algo-

rithm, depending on the unit cell size and shape (Mon-

khorst and Pack 1976).
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Results and discussion

Structural properties Cu/CuxO NPs

Copper NPs were synthesized using glucose as a reducing

agent, water as a solvent, and four different capping agents,

through a hydrothermal method. The structural features of

the particles were investigated by powder XRD. As shown

in Fig. 1a, c, the diffraction peaks can be indexed as

cuprous oxide phase (JCPDS no. 05-0667) (Liu et al.

2012), while the diffraction peaks in Fig. 1b represent the

crystal facets of metal copper phase (JCPDS no. 85-1326)

(Yin et al. 2005). The higher (111) diffraction intensity of

these copper NPs suggests that the produced NPs have

{111} crystal planes, as reported in other study (Lee et al.

2011).

The morphology and size of the produced particles were

characterized with SEM. Three types of copper NPs were

prepared showing polyhedral, flower- and thumbtack-like

nanostructures with fine crystalline morphologies (Fig. 2).

The sizes of the polyhedral particles were measured to be

around 400 nm. The sizes of the flower- and thumbtack-

like particles were smaller.

Antimicrobial activity of Cu/CuxO NPs and leaching

of copper ions

The antibacterial actions of the produced Cu/CuxO NPs

were evaluated against the growth of model bacteria

Fig. 1 XRD of polyhedral (a), flower-like (b) and thumbtack-like

(c) copper nanoparticles
Fig. 2 SEM image of polyhedral (a), flower-like (b) and thumbtack-

like (c) copper nanoparticles
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E. coli. After 6 h exposure, the biomass of E. coli was

determined using DAPI staining which has been widely

used to quantify the gross cell number (Haglund et al.

2003). At the same time, dead bacterial biomass was

determined using PI (Foladori et al. 2010). Figure 3a–d

show the bacterial biomass in the presence of homoge-

neously dispersed Cu/CuxO NPs at a dosage of 300 mg/L.

Compared with the untreated control, the growth of E. coli

was significantly inhibited following the application of Cu/

CuxO NPs (P\ 0.05). The bacterial biomass was inhibited

by 80–94 % with respect to the untreated control. The

extent of inhibition of bacterial growth observed in this

study was found to be significantly associated with the

shapes of the particles (P\ 0.05), and the flower-like

copper NPs were the most effective morphology. This

morphology-dependent antibacterial activity has been

previously demonstrated in other particles (Wang et al.

2010; Talebian et al. 2013).

Corresponding to the growth inhibition experiment,

dissolution of copper ions in LB medium was carried out

for 6 h. As shown in Fig. 4, leaching of soluble copper

proceeded rapidly within the first hour, with[80 % of the

total soluble copper measured in the culture medium with

different Cu/CuxO NPs exposure. A higher (P[ 0.05)

dissolution of 87 % was observed for the flower-like

nanostructure in the first hour. Equilibrium was reached

after 3 h for all morphologies, with the highest (P[ 0.05)

total soluble Cu concentration at 206 mg/L for the flower-

like nanostructure. Dissolution of metal ions from various

metal oxide NPs have been previously reported (Elzey and

Grassian 2010; Odzak et al. 2014), which affects the

abundance, uptake and toxicity mechanisms of NPs (Misra

et al. 2012).

DFT calculations

Previously studies have support the concept that the mor-

phology of particles is closely associated with the

antibacterial activity (Simon-Deckers et al. 2009; Wang

et al. 2010; Talebian et al. 2013). However, detailed

mechanisms for the morphology-dependent antibacterial

activity of these particles remain to be determined. Studies

show that morphology-dependent catalytic effect can be
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Fig. 3 Fluorescence microscope images of bacterial cells for (a) con-
trol sample and samples exposed to (b) polyhedral, (c) flower-like and
(d) thumbtack-like Cu/CuxO NPs (total cells stained with DAPI, dead

cells stained with PI). (e) Fluorescence-based assay showing the

antimicrobial activity of copper NPs. Data are expressed as

mean ± SD, n = 3. The test confirms decreased viable cells with

Cu/CuxO NPs relative to the control with P\ 0.05
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Fig. 4 Dissolution of Cu with time in LB medium. Data are

expressed as mean ± SD, n = 3. The test shows faster dissolution

of copper ions from the flower-like Cu/CuxO NPs (P\ 0.05)
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attributed to surface active sites of different structural

features (Liu et al. 2008; Gao et al. 2013). Therefore,

surface energy calculations based on DFT theory were

performed for a preliminary investigation of their mecha-

nism of action.

Surface free energy (c) was calculated according to the

following equation:

¼ Eslab � NEbulk

2A

where Ebulk is the energy per unit of Cu or Cu2O, E
slab is the

total energy of the slab, N is the total number of unit Cu or

Cu2O contained in the slab model. According to the above

equation, the value of cCu2O(111) was -94 eV/Å2,

cCu2O(220) = 0.05 eV/Å2,cCu2O(200) = 0.07 eV/Å2. For Cu,

cCu(111) = 238 eV/Å2, cCu(200) = 206 eV/Å2, cCu(221) =
146 eV/Å2. So the surface free energy was in an order

as cCu(111)[ cCu(200)[ cCu(220)[ cCu2O(200)[
cCu2O(220)[ cCu2O(111). Combined with the XRD

analysis, these results show that the main exposed facets

{111} of the flower-like crystrals have a much higher sur-

face energy than the main exposed facets {111} of the

polyhedral and thumbtack-like crystals. Higher surface

energy of the exposed facets might be more efficient in

generating toxic copper ions (Pang et al. 2009), which could

result in higher antibacterial activity of the flower-like

crystals. As for the polyhedral and thumbtack-like crystals,

they share the same exposed facets. The difference in their

antibacterial activity might be attributed to the much smaller

size of the thumbtack-like crystals (Azam et al. 2012).

Several mechanisms have been proposed to explain the

antimicrobial activity of nanostructure materials, such as

generation of reactive oxygen species (ROS), physical

damage, and release of metal ions. The induction of ROS

after exposure to nanomaterials has been demonstrated in

numerous studies, leading to disruption of cell wall, DNA

damage, and subsequently cell death (Choi and Hu 2008;

Rupareli et al. 2008). Physical damage has been shown as

an effective mechanism in bacterial inactivation. Akhavan

and Ghaderi (2010) demonstrated that the bacterial cell

membrane was damaged by interacting with the extremely

sharp edges of the nanowalls. Binding of nano-silica silver

nanocomposite on bacterial cell walls have been shown to

cause loss of cell membrane integrity and efflux of cyto-

plasmic materials (Parandhaman et al. 2015). Release of

soluble ions from nano-sized metal oxide has been pro-

posed as an important mechanism of action (Gunawan

et al. 2011; Misra et al. 2012). Formation of ROS was also

found to be related with crystalline nature of nano-metal

oxides (Perelshtein et al. 2015). Therefore, these mecha-

nisms may not work separately suggesting that more than

one factor would contribute simultaneously to the antimi-

crobial action.

Conclusions

In this study, polyhedral, flower-like and thumbtack-like

Cu/CuxO NPs were synthesized through a hydrothermal

method with glucose as a reducing agent. Structural

property of the copper NPs was examined by XRD and

SEM, showing that the Cu/CuxO NPs have fine crystal

structures. The antibacterial activity of the Cu/CuxO NPs

against E. coli was examined using a fluorescence-based

live/dead staining method. Dissolution of copper ions from

these NPs was determined with ICP-AES. Results show

that the flower-like Cu/CuxO NPs were the most effective

morphology and more copper ions were dissolved into the

culture media. The mechanism of morphology-dependent

antibacterial activity was discussed based on surface

energy calculation for the exposure facets of the produced

nanocrystals.
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