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Abstract Sludge deposition in the environment is carried

out in several countries. It encompasses the dispersion of

treated or untreated sludge in forests, marsh lands, open

waters as well as estuarine systems resulting in the gradual

accumulation of toxins and persistent organic compounds

in the environment. Studies on the life cycle of compounds

from sludge deposition and the consequences of deposition

are few. Most reports focus rather on treatment-methods

and approaches, legislative aspects as well as analytical

evaluations of the chemical profiles of sludge. This paper

reviews recent as well as some older studies on sludge

deposition in forests and other ecosystems. From the lit-

erature covered it can be concluded that sludge deposition

induces two detrimental effects on the environment: (1)

raising of the levels of persistent toxins in soil, vegetation

and wild life and (2) slow and long-termed biodiversity-

reduction through the fertilizing nutrient pollution operat-

ing on the vegetation. Since recent studies show that

eutrophication of the environment is a major threat to

global biodiversity supplying additional nutrients through

sludge-based fertilization seems imprudent. Toxins that

accumulate in the vegetation are transferred to feeding

herbivores and their predators, resulting in a reduced long-

term survival chance of exposed species. We briefly review

current legislation for sludge deposition and suggest

alternative routes to handling this difficult class of waste.
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Introduction

Industrialization and modernization have resulted in a

series of complications to the global ecosystem, as the

increasing production of waste combined with polluting

anthropogenic activities represents a direct threat to bio-

diversity. Wastewater sludge is a an important part of this

problem, as it is difficult to transform and contains a long

range of new and emerging pollutants (Manzetti et al.

2014), persistent compounds (Amir et al. 2005; Baker et al.

1980; Birkett and Lester 2002) and poorly degradable

components, which are difficult to remove (Arthurson

2008). A series of alternative methods of wastewater

sludge treatment exist, however most result in the eventual

deposition of treated or untreated sludge in the environ-

ment. Forests and marsh-lands have been used for depo-

sition in both Europe and the USA for decades (Forster

et al. 1977; Theis et al. 1978; Tullander 1975; Vesilind

1979). The consequences attributed to sludge deposition in

the environment include groundwater contamination

(Brockway and Urie 1983; Schaider et al. 2014), ecotoxic

effects (Speir et al. 2003) and risk of spreading pathogens

(Arthurson 2008). The practice has caught legislative

attention in recent years with respect to the effects of

wastewater on sensitive aquatic environments (Manzetti

and Stenersen 2010). Here we provide a thorough review of

the life-cycle, the environmental transformation path, and

the consequences of deposition of sludge in the environ-

ment. The review encompasses a survey of the available

information of effects of sludge toxins on the environment,

with an emphasis on vegetation and animals. We also
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consider effects on biodiversity in overstory and understory

biota. Given the lack of proper alternatives to sludge

deposition, a proposed technology for reducing and mini-

mizing dispersion of sludge contaminants in the environ-

ment is included.

Contents of wastewater sludge

Wastewater sludge derives from treating wastewater

effluents from urban as well as rural communities, and

represents the final, dry format of processed wastewater

(Eckenfelder and Musterman 1998). This fraction contains

a variety of pollutants (Buisson et al. 1984), viruses and

microbial populations (Arthurson 2008; Hurst and Gerba

1989; Martins et al. 2004), endocrine disruptors (Nakada

et al. 2006), persistent organic compounds such as poly-

chlorinated biphenyls (PCBs) and polycyclic aromatic

hydrocarbons (PAHs) (Table 1), and more importantly,

inorganic pollutants such as heavy metals (Cd, Pb, Mn, Cu,

Zn and Ni) (Amir et al. 2005; Ščančar et al. 2000) at

various concentrations (Table 2). Lazarri and co-workers

have shown that occurrence of organic toxins and heavy

metals is correlated, that is PAHs associate with mercury,

while PCBs associate with lead, cadmium and copper

(Lazzari et al. 2000). Sludge deposition induces contami-

nation of groundwater (Speir et al. 2003), accumulation of

toxins in vegetation (McLaughlin and Singh 1999; Welch

and Norvell 1999), dispersion of fine particulate matter in

the environment (Seames et al. 2002) and adverse health-

effects on humans and animals (Senesil et al. 1999). It has

been pointed out that the transformation and migration

patterns of pollutants are important factors in ecotoxicity

assessments (Manzetti and Ghisi 2014; Manzetti and

Stenersen 2010; Manzetti et al. 2014). New and emerging

classes of pollutants, such as persistent organic compounds,

endocrine disruptors and drug-metabolites deriving from

industrial activity and consumer-products are increasingly

being related to health-adverse effects on humans and

animals, also in the forms of metabolites (Manzetti and

Ghisi 2014; Manzetti et al. 2014). Many of such com-

pounds are present in sewage sludge and, as a consequence

of spreading these, long-term effects on the environment

are induced including disruption of endocrine processes

(Kolpin et al. 2002; Lind et al. 2010; Siglin et al. 2000;

Zoeller et al. 2005), adverse effects on nerve system

function (Tilson et al. 1990; Wormley et al. 2004), animal

and plant growth and development problems (Faustman

Table 1 Measurements of ecotoxicological content of activated and dry sludge from different areas

Compound Activated

sludge (lg/
g)

Location Dry sludge

(lg/g)
Location

PAHs 117.7 Paris, France (Blanchard et al. 2007) 7.52 Thessaloniki, Greece (Mantis et al.

2005)

8310.2 Beijing, China (Dai et al. 2007) 5.429 Jerez de la Frontera, Spain (Villar et al.

2006)

130 UK (Stevens et al. 2002)

PCBs 220 UK (Stevens et al. 2002) 1.31 Thessaloniki, Greece (Mantis et al.

2005)

620 Thessaloniki, Greece (Katsoyiannis and

Samara 2005)

0.04 Catalonia, Spain (Eljarrat et al. 2003)

2.44 Paris, France (Blanchard et al. 2007)

Heavy metals 1626.3 Thessaloniki, Greece (Mantis et al. 2005) 185.5 Beijing, China (Wang et al. 2006)

2814.5 Beijing, China (Dai et al. 2007) 32.7 Sevilla, Spain (Álvarez et al. 2002)

Dioxins 83 UK (Stevens et al. 2002) 2.6 9 10-4 Stockholm, Sweden (Broman et al.

1990)

Pharmaceuticals,

pesticides

42 UK (Stevens et al. 2002) 0.796 Barcelona, Spain (Radjenović et al.

2009)

Table 2 Levels of heavy metals in soils after deposition of sludge

Heavy metal Contamination level

Zn2? 58 (mg/kg) (Brockway 1983)

100–600 (mg/kg) (McBride 2003)

Cd2? 1 (mg/kg) (Brockway 1983)

2.5–34 (mg/kg) (McBride 2003)

Cr6? 7200 kg/ha (James and Bartlett 1983)

Cr3? 2100 kg/ha (James and Bartlett 1983)

Cu2? 11–179 (mg/kg) (Sanders and Adams 1987)

Mn2? 221–551 (mg/kg) (Sanders and Adams 1987)

Ni2? 5–109 (mg/kg) (Sanders and Adams 1987)
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et al. 2000; Gomara et al. 2007; Reichrtová et al. 1999),

complications with digestive and nutrient-assimilating

processes and reproductive functions (Mendola et al. 2008;

Newbold et al. 2009; Wigle et al. 2008) as well as cancer in

animals and humans (Arlt et al. 2001; Weyer et al. 2001).

Dispersion of contaminants from sludge

Sludge deposition supplies organic and inorganic pollutants

to the soil and vegetation (Brockway 1983; Chaney et al.

1977; Godbold et al. 1988; Hirsch et al. 1993) resulting in

the introduction of bio-available forms of heavy metals and

persistent organic compounds (POC) to wildlife, which is

triggered by the contaminants reaching and accumulating

in the stems and foliage of vegetation. Transfer of toxins

from sludge to the vegetation induces a slow and long-term

contamination of the local and regional food chain

(Brockway and Urie 1983; Crête et al. 1987; Glooschenko

et al. 1988; Gustafson et al. 2000; Labrecque et al. 1995;

Ortiz and Alcaniz 2006) (Fig. 1). The practice of sludge

deposition in forests has been discussed since the early

1970s (Chaney et al. 1977; Lindsay 1973; Oliver and

Cosgrove 1974; Tullander 1975) and received particular

attention when solubilized cadmium was found in soils at

concentrations of more than 1 mg/kg while zinc levels

were found to exceed 58 mg/kg following deposition of

sludge in the soil (Brockway 1983). Cadmium from sludge

accumulates in the stem and foliage of plants (Kelly et al.

1979; Lepp and Eardley 1978; Petit and Van de Geijn

1978; Welch and Norvell 1999), while heavy metals (Cu,

Pb, Ni) are immobilized and absorbed in soil humus and in

the upper layers of the soil by colloids and anions

(Brockway 1983). Soil anions and soil colloids play a role

in the uptake of nutrients and chemical compounds in

plants (Seyfferth et al. 2008). Complexation between heavy

metals and soil anions can also result in changes in the rate

of uptake of nutrients in vegetative species (Dhillon and

Dhillon 2000). Interestingly, in the study of sludge depo-

sition in Michigan State, high levels of heavy elements in

the soil were found fourteen months after municipal sludge

had been applied (Brockway 1983), delineating the high

rate of dispersion from applied sludge to soil. For refer-

ence, Table 2 summarizes the levels of heavy metals

detected in soils after deposition of sludge from several

studies.

Soil chemistry changes from sludge deposition

Deposition of sewage sludge in forests results in a decrease

of the soil pH (Brockway 1983), which afflicts the existing

species and ecosystems (Pärtel et al. 2004). Small reduc-

tions in pH stimulate the growth of acid-tolerant microbial,

fungal and herbal species which compete for local nutrients

and furthermore reduce the viability of the plantae that

thrive at neutral and more basic pH (Augusto et al. 2002).

This path from changed pH to altered biodiversity to

Fig. 1 Schematic illustration of the life cycle of heavy metals from

deposited sludge in forest environments. From left to right, the growth

cycle of plants and trees promotes a gradual accumulation of heavy

metals in leaves and stems, where leaves represent the highest

concentrations of heavy metals, after the roots (Seregin and Ivanov

2001). The nutrition source for animals in highly exposed areas can

therefore contain considerable amounts of immobilized heavy metals.

Red and yellow texts indicate bio-assimilated and immobilized heavy

metal ions (in complex with enzymes and proteins and miscellaneous

organic compounds). Complexation to anionic soil-acids and com-

pounds is reported (Brockway 1983)
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reduced nutrient availability represents a modification of

the affected ecosystem, which produces and contains key-

nutrients to feeding animals (Blum 2008). A lower soil pH

also leads to increased solubilisation of heavy metals

(Boekhold et al. 1993) contributing to an increased transfer

efficiency of the heavy metals to plants, roots and general

understory vegetation (Kirkham 2006). The importance of

pH was corroborated in a study on the effect of soil com-

position on bioavailability of heavy metals which was

found to be reduced at basic pH (Cesar et al. 2012), as mere

solubilization of aggregates of heavy metals with soil

compounds at lower pH increases bioavailability.

An increased transfer efficiency of contaminants in

understory vegetation has also been reported for PCBs,

PAHs and carbon-containing persistent compounds

(Hyvärinen and Nygrén 1993; Pankakoski et al. 1993;

Rombach et al. 2003), which furthermore alter the chemi-

cal composition of the understory soil.

Sludge contains also other pollutants, such as high levels

of 4-nonylphenol (Giger et al. 1984), pesticides (Singh

et al. 2004) and up to 332 anthropogenic persistent organic

compounds (European Commission 2001), all of which are

known to accumulate in humans (Calafat et al. 2005;

Manzetti et al. 2014) and to have detrimental effects on the

environment, animals and plant species (Gray and Metcalfe

1997; Igbedioh 1991; Laws et al. 2000). A sludge-fate

study from India found a fertilizing effect of sludge

deposition on plant growth due to nitrogen, phosphorous

and potassium content, however this was offset by the

negative impact on soil and water quality, on health of the

local population, agriculture and the environmental in

general (Singh et al. 2004). Other environments respond to

sludge deposition via soil-chemistry changes. Marsh sites

and wet-lands absorb significant quantities of heavy metals,

predominantly cadmium, followed by zinc and copper.

Cd2? and Zn2? in particular accumulate in roots of plants

(Morris 1991; Otte et al. 1991). Marsh environments and

other wet-land ecosystems are prone to retain heavy metals

for extended periods (Gambrell 1994) and the binding

affinity of metals to enzymes in marsh plants is generally

known to respect the following order: Pb2?[Cu2?[ -

Cd2?[Zn2?. Marsh environments are particularly sensi-

tive to contamination, precisely because of the abundance

of water, which solubilizes and disperses contaminants

(Kalbitz and Wennrich 1998), making them more

bioavailable to the local organisms. Studies on the effects

of cadmium and lead contamination in wetlands show that

half of the heavy metals from landfill leachates are retained

in the wetland (Debusk et al. 1996). Sludge deposition in

wetlands, either at artificial sites or natural sites, has also

been used as an approach to deposit heavy metals and

insoluble waste below the vegetation to deeper soil levels

(Scholz 2006). The runoff from wetlands usually connects

to other ecosystems, and because solubilized material is

easily carried with the run-offs, dispersion into the envi-

ronment can result from sludge disposal in most cases. The

water flow between the upstream and downstream sites in

wetlands in turn affects the transformation of toxins, their

bio-assimilation and their sedimentation (Lin et al. 2002).

The local distribution patterns of chemo-deposition from

effluent sources represent a fertilizing potential, where high

concentrations of organic matter contribute to the growth

of microbial and fungal colonies and rapid destruction of

local biodiversity. Similar effects have been observed as a

result of the release of untreated wastewater in sub-Saharan

Africa (Nyenje et al. 2010). In conclusion, sludge disper-

sion affects the chemical proportions of the soil, in par-

ticular the ionic compounds, potentially resulting in

detrimental long-term effects.

Environmental impact

Effects on plants through enzyme-inhibition

Cadmium concentrations in the soil over 0.1 mg/kg from

sludge or other sources cause reduction in shoot-elonga-

tion, reduced root and shoot dry weights, inhibited growth

of spruce trees and also the reduction of crop yields by

causing damage to the root tissue (Godbold and Hütter-

mann 1985; Kelly et al. 1979; Turner 1973). Upon intox-

ication in vegetation, heavy metals localize in the plants in

the roots[ leaves[ stems[ inflorescences[ seeds, at

respective decreasing levels (Brockway 1983; Seregin and

Ivanov 2001). The dominant mechanism of toxicity due to

heavy metals in plants is through enzyme inhibition (van

Assche and Clijsters 1990). Heavy metal ions are ranked in

the following order of inhibition potency (M); Ag?, Hg?,

Cu2? (10-7–10-5)[Cd2? (10-6–3 9 10-5)[Zn2?

(10-5–10-4)[ Pb2? (10-5–2 9 10-4)[Ni2? (10-5–

6 9 10-4)[Co2? (2 9 10-4–3 9 10-4) (Seregin and

Ivanov 2001). The most important mechanism of inhibition

from heavy metals, in particular Cd2?, Pb2? and Cr6? is

due to SH-groups from cysteine residues chelating the ions

(Fig. 2), inducing a locking-effect on the protein-fold

hampering the dynamics involved in protein function (Hall

2002).

Toxicity occurs also when cellular metabolites and

vitamins chelate to heavy metals, particularly between

Zn2?/Cu2? and nitrogen-containing metabolites. Zn2? and

Cu2? have almost full valence 3d- and 4p-orbitals in their

electronic configuration and readily bind lone pairs from

nitrogen atoms covalently. Cd2? and Pb2? in particular

have the additional property of displacing Zn2? from bio-

logical configurations (e.g. active sites in enzymes)

resulting in the deactivation of zinc-dependent enzymes
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(Seregin and Ivanov 2001), which play important roles in

cell-cycle signalling and in cell-switch mechanisms (Ege-

blad and Werb 2002; Kleiner and Stetler-Stevenson 1999).

In biological forms, Zn2? is typically covalently bound to

histidine residues in proteins, however in ionic form, Zn2?

is a strong d-orbital donor for electron rich atoms and can

therefore induces uncoordinated covalent bond formation

in proteins and smaller biological compounds resulting in a

chelation and disruption of their functions. This toxic

mechanism may result in the inhibition of the nutrient

absorption of plants, inducing detrimental effects on

reproduction and causing metabolism failure (Cheng

2003). Heavy metals like Zn2? also induce oxidation stress

on glutathione (Ramakrishna and Rao 2013; Wang et al.

2013) leading to impaired growth in e.g. common mullein

(Morina et al. 2010). Such effects were found to be

aggravated when in addition Cd2? ions were present in a

study on maize (Kleckerova et al. 2011).

Heavy metals in soils and ground, at a concentration of

10-2 M of Cd2?, reduce the germinating ratio of barley

plants by over 50 % (Cheng 2003), and contamination by

heavy metals affects several types of plants negatively,

including wheat, maize, pumpkin, cucumber and, garlic—

by reducing generic root vitality and photosynthesis at both

medium and high concentrations (0.2–10 mg/kg) (Cheng

2003). Cadmium intoxication leads additionally to disrup-

tion of plant membranes and induces tumorous growth of

plant mitochondria, making chloroplasts unable to syn-

thesize chlorophyll (Cheng 2003). Cr6? and Ni2? ions,

which are commonly found in wastewater sludge (Knas-

müller et al. 1998) have a high anti-proliferating effect on

plants resulting from a reduction in chlorophyll concen-

trations and disruption of protein function in the cells

respiratory mechanisms (Cheng 2003). Soil contamination

by Cr6? and Ni2? induces mutagenic effects in plants

leading to DNA damage affecting natural genetic poly-

morphism and genetic biodiversity (Knasmüller et al.

1998). Additionally, plants in general are reported to

respond to heavy metal contamination by reduction of

nutrient absorption, resulting in the inability to uptake

nitrogen- and carbon compounds for energy metabolism

(Cheng 2003). DNA damage and abnormal gene-expres-

sion patterns in plants have also been attributed to Pb2? and

Cd2?, affecting in particular the genes coding for alcohol-

dehydrogenase resulting in the disruption of RNA and

enzyme activities (Cheng 2003). Similar findings have

been reported for mercury and other heavy metals in plants

(Duan and Wang 1995). Finally, heavy metals negatively

affect the genetic diversity of the nitrogen-fixating bac-

terium Rhizobium leguminosarum bv. trifolii (Hirsch et al.

1993) that in turn is responsible for nitrogen fixation in e.g.

clover (Janczarek et al. 2010). The primary effect of heavy

metals on plants is therefore biochemical inhibition and

induced cell death due to the chelation effects on the

plants’ life-sustaining enzyme systems.

The relationship between heavy metals and biodiversity

deserves scrutiny in an assessment of the effects of sludge

deposition in the environment as well. This connection has

not been studied in great depth, in part due to the com-

plexity. One study (Kandeler et al. 1996) shows that the

biodiversity in soils at the microbial and enzymatic level is

directly diminished after heavy-metal contamination,

however inhibiting effects are reported only for functional

diversity, and not species-biodiversity. A more recent study

reports that a mixture of contaminants in treated sludge,

including heavy metals and phosphor organic flame retar-

dants, negatively affects the species composition among

macroinvertebrates in German river systems (Stalter et al.

Fig. 2 Chelation of a cadmium

ion by the cadmium-sensor

protein from M. Tubercolosis

(Banci et al. 2007). The

structure of the binding site

shows three cysteine residues

(in stick representation) that

chelate one cadmium ion (dark

yellow sphere), a binding

mechanism similar to the

chelation mechanism of heavy

metals during enzyme

inhibition. Image generated

with Pymol (DeLano 2002)
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2013). Toes et al. report in a study of bacterial ribosomal

RNA that on heavy-metal polluted site the species com-

position was affected, with Cd and Cu-tolerant microbial

species becoming more abundant in comparison to an

unpolluted site (Toes et al. 2008). Efforts are underway to

determine more systematically to what extent sites are

polluted, e.g. by investigating soil nematodes (Zhao and

Neher 2013), and also to monitor the effectiveness of

sludge treatment (Bafana et al. 2015).

There is also a series of studies reporting on the activity

and functions of heavy-metal tolerant plant species, such as

the short-rotation willow coppice (Baum et al. 2009;

Dimitriou et al. 2006), which proliferate under high levels

of heavy metals in soils. These studies offer no systematic

comparison with other species or for that sake, with native

species from the affected local environments, however they

do report on the existence and the characteristics of these

species particularly adapted to heavy-metal polluted soils.

Proliferation of heavy-metal resistant fungi in cadmium-

contaminated soils has also been reported (Weissenhorn

et al. 1993) and yet other studies describe differentiation

between fungi species of tolerance towards cadmium and

lead (Garg and Aggarwal 2011), which all together indicate

a selective proliferation of tolerant biotas in heavy-metal

contaminated soils, thereby indeed modulating biodiversity

towards a predominant thriving of heavy-metal tolerant-

species. Interestingly, a further study (Schützendübel and

Polle 2002) suggests that the role of fungi and microbial

populations in the uptake of nutrients in plants - by the

interaction with their roots is a critical point affecting

biodiversity of plants directly, where heavy-metal tolerant

microbial species with alternative rates of nitrogen fixation

can affect the nutrient availability for the native vegetation,

changing their proliferation potential. The same study

(Schützendübel and Polle 2002) reports that different

heavy metals chelate nutrients in the soil with varying

efficacy, which is in agreement with quantum chemical

studies performed by our lab which suggest that lead and

chromium bind stronger to for instance vitamin B, than

copper, iron or zinc, inducing stable bonds to the vitamin

(data not shown).

An ecosystem exposed to heavy metals is prone to direct

toxicity effects by biochemical inhibition, but also to a

selective development of the local biodiversity dependent

on the relative abundance of heavy-metal tolerant and

intolerant plant-, fungal and microbial species (Toes et al.

2008; Zhao and Neher 2013). The field of research relating

biodiversity to sludge-deposition-induced heavy metal

contamination is in direct need of further studies to confirm

these connections, as several industrialized countries such

as the United Kingdom have heavily polluted soils by

sludge deposited heavy metals, with up to 150 mg heavy

metals per kg soil (Alloway and Jackson 1991).

Effects on wild life and animals

Sludge deposition provides a source of toxins in addition to

the other natural contaminations of the environment. Many

forest ecosystems have been contaminated by heavy metals

deriving from several sources, including deposited sludge

(Amir et al. 2005; Arthurson 2008; Brockway 1983; Cha-

ney et al. 1977; Lazzari et al. 2000; Lindsay 1973; McBride

1995; McBride et al. 1997; Muchuweti et al. 2006; Ortiz

and Alcaniz 2006; Ščančar et al. 2000; Seames et al. 2002;

Speir et al. 2003; Street et al. 1977; Tullander 1975). These

examples of contamination of wild life by persistent inor-

ganic compounds have been shown to affect reindeer,

moose, wild boar, squirrel and bear, which graze on trees

and vegetation. Intoxication by heavy metals is detected

primarily in the kidney and liver of these animals. The

most affected species among boreal forests are moose and

bear, for which cadmium levels of 4.78 and 6.08 ppm/wet

weight kidneys, respectively, have been reported (Medve-

dev 1999). Among animals tested, reindeer have the

highest level of cadmium in muscle tissue while wild boar,

bear and moose display the same characteristics of accu-

mulating cadmium in the kidney, liver and lungs (Med-

vedev 1999). Lead is, in a similar fashion to cadmium,

accumulated in the liver, kidneys and lungs and has been

found at high concentrations in moose, reindeer and

squirrel (Medvedev 1999) (Table 3). Although the report

by Medvedev is not directly related to sludge disposition it

is instructive because it illustrates that heavy metals are

readily taken up through food into higher animals. Further

studies from contaminated boreal forests show also high

cadmium levels in caribou and muskoxen, with concen-

trations of 1.9–4.4 ppm for liver and 9.6–33.8 ppm wet

weight for kidney (Gamberg and Scheuhammer 1994).

Parallel studies on moose from Finland show that some of

the metals are transferred from cow to foetus (Hyvärinen

and Nygrén 1993). Other species from boreal forests such

as wolves have been found to have a high concentrations of

PCBs in the liver (Gamberg and Braune 1999) (Table 3).

Based on the high levels of toxins in wastewater sludge,

deposition of treated and untreated sludge at moderate to

high levels represents therefore a considerable risk for the

overall viability of forest ecosystem, via the cycle of bio-

transformation of the heavy metals and persistent organic

compounds (Fig. 1).

Inhibitory and stimulating effects of sludge

deposition

Fertilizing compounds from sewage sludge, run-off debris

and solubilized matter affect the biodiversity of exposed

ecosystems starting from microbiological organisms and

gradually affect higher order species (Hooper et al. 2012;
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Martin-Laurent et al. 2001). A reduction of genetic biodi-

versity in soil samples exposed to sludge deposition has

been demonstrated using soil phylotypes, which are DNA-

segments that indicate genetic diversity between familiar

species (Fig. 3). These studies show a strongly diminished

biodiversity of phylotypes at sludge-exposed sites (Martin-

Laurent et al. 2001). Modifications of specific DNA-fin-

gerprints in the existing phylotypes (unexpected DNA

mutations) result after sludge deposition (Martin-Laurent

et al. 2001), indicating a clear effect from the genetic level.

This decreased and altered biodiversity may be caused by

heavy metal contaminants which induce a reduction in

genetic polymorphism in soils (Gao et al. 2010). The

reduction of genetic variation in the DNA-pools induces

changes in the microbiological populations that in turn

affect the ability of the flora and fauna to transform

nutrients, as both understory and overstory vegetation are

critically dependent on microbial and fungal populations

[e.g. for nitrogen fixation (Janczarek et al. 2010)]. This can

result in a long-term impact on the biodiversity of exposed

ecosystems including forests and loss of biodiversity in

itself will in the long run reduce the productivity of the

ecosystems (Hooper et al. 2012).

Eutrophication is a critical and additional effect result-

ing from sludge deposition, which affects the populations

and diversity of organisms in the exposed soil (Andres

1999; Parisi et al. 2005). Particular species absorb and

metabolize the excessive nutrients supplied by the sludge,

while others do not adapt or are outcompeted. The exces-

sive nutrients in the form of sulphates, nitrates and carbon

Table 3 Levels of heavy metals detected in animals

Animal Heavy metal Organ Levels

Moose Cd, Cu, Zn Kidney, Liver 4.78 ppm/w.w., 2.67–232 lg/g, 2.44–128 lg/g
(Medvedev 1999)

Cu Liver *50 lg/g (Hyvärinen and Nygrén 1993)

Brown bear Cd Kidney 6.08 ppm/w.w (Medvedev 1999)

Caribou Cd Liver 1.9–4.4 ppm/w.w (Gamberg and Scheuhammer 1994)

Muskoxen Cd, Cu Liver 9.6–33.8 ppm/w.w (Gamberg and Scheuhammer 1994)

179–300 lg/g (Rombach et al. 2003)

Mole Cd Liver

Kidney

4.48–13.76 lg/g (Pankakoski et al. 1993)

5.31–80.98 lg/g (Pankakoski et al. 1993)

Mole Pb Liver

Kidney

2.05–2.28 lg/g (Pankakoski et al. 1993)

2.09–2.21 lg/g (Pankakoski et al. 1993)

Mole Hg Liver,

Kidney

0.21–0.24 lg/g (Pankakoski et al. 1993)

0.54–0.63 lg/g (Pankakoski et al. 1993)

Fig. 3 Phylotype-fingerprinting

from soil DNA pools. The

process starts from extracted

DNA from soil samples, and

after PCR and restriction,

enzymatic digestions reveal

biodiversity from the DNA level

through the variation of genetic

polymorphism
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compounds alter the nutrient cycle in the local ecosystem

(Brockway and Urie 1983) and lead to increased concen-

trations of sulphate and ammonium salts in the soil, which

in turn affect the nutrient basis for the whole ecosystem, as

observed, for instance, in the Northern United States

(Driscoll et al. 2003). This chain of events is known as

nutrient pollution (Woodward et al. 2012) and has been

observed all over the world during the last decades.

Nutrient pollution is caused by a range of sources of fer-

tilizing compounds such as air-pollution, water pollution

and other sources of anthropogenic origin, including sludge

disposal, agricultural and industrial activity (Bobbink et al.

1998; Cheung et al. 2003; Driscoll et al. 2003; Lovett et al.

2009; Nyenje et al. 2010; Ocean Studies Board 2000;

Vitousek et al. 2009). The excess quantities of nutrients

deriving from pollution or through deposition in the envi-

ronment results in the chronic accumulation of sulphate

and ammonium in plants and soils, causing long-term

changes in the soil and water chemistry, ultimately altering

biodiversity (Fig. 4) (Lovett et al. 2009). The fertilizing

effects of deposited sludge lead to different ratios of S and

N levels in the soil (Brockway 1983; Brockway and Urie

1983), which directly affects nutrient availability for the

species originally inhabiting the ecosystem (Brockway

1983; Brockway and Urie 1983; Ocean Studies Board

2000; Puckett 1995; Woodward et al. 2012). In Willow

plantations on land used for agriculture previously, depo-

sition of sludge may increase biodiversity by the estab-

lishment of new species (Fig. 4), which in such cases can

be considered a positive result (Baum et al. 2009; Dim-

itriou et al. 2006; Mirck et al. 2005; Perttu 1998). In natural

environments on the other hand it is known that a sys-

tematic change in the nutrient composition leads to the

gradual extinction of native species that do not thrive in an

environment with changed levels of N and S (Hooper et al.

2012; Mooney and Cleland 2001). Eventually the biodi-

versity of the affected ecosystems is reduced, which is a

problem since the first species to disappear are often the

rare ones that support vulnerable ecosystem functions

(Mouillot et al. 2013). Many of these ecosystems are

valuable native habitats for wild life, as well as efficient in

absorbing greenhouse gases (Rousk et al. 2013; Sathaye

et al. 1995) especially when undisturbed (Clemmensen

et al. 2013). Furthermore, intact ecosystems with high

biodiversity provide resilience against infections and dis-

eases for humans, animals and plants (Keesing et al. 2010).

Fig. 4 Paths and periods of

transfer of sludge-toxins to the

environment. Duration given in

weeks, months or years based

on literature reviewed.

Emerging pollutants denotes

antibiotics, pharmaceuticals,

hormone-analogues, traffic and

industrial pollutants (Manzetti

et al. 2014)
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The foundation for the local biodiversity is sustained by the

fungal population in the understory vegetation (Janczarek

et al. 2010) that has been shown to be sensitive to heavy

metals from sludge deposition (Hirsch et al. 1993). The

response of fungi to changes in N and S levels leads to a

chronic change in nutrient availability for the higher order

species in the affected ecosystem (Lauber et al. 2008).

Effects from sludge on forest

Sludge dispersion in forests affects plants and trees, via

supplying contaminants through the soil matrix, and

through direct fertilization of the soil. Fertilization affects

the growth and diversity of plants and trees, as particularly

elucidated by (Mosquera-Losada et al. 2009, 2012;

Rigueiro-Rodriguez et al. 2012). In these studies, Rigueiro-

Rodriguez have mapped the effects from dry sludge fer-

tilization with emphasis on birch and pine trees, mapping

the growth patterns of the trees over a period of 10 years.

The abundance and diversity of the understory vegetation

was affected negatively by both sludge- and mineral fer-

tilization (Mosquera-Losada et al. 2009, 2012; Rigueiro-

Rodriguez et al. 2012). Fertilization with sludge resulted

also in decreased pH levels in the soil, due to higher rate of

cation soil extraction. Both birch and pine plantations

showed increased soil acidification after sludge fertiliza-

tion, with a higher effect on the fast growing pines. The

affected growth rate of pine trees in turn led to reduced

biodiversity in areas rich in Pinus Radiata. Plant biodi-

versity was also reduced by combining dry sludge fertil-

ization and mineral fertilization, where a decrease in the

plant diversity, with respect to the non-fertilised (NF)

systems was identified by Rigueiro-Rodriguez and col-

leagues (Rigueiro-Rodriguez et al. 2012). These effects

favoured the growth of the sown species, where the taller

plants due to stronger growth out-compete the shorter

species like Leguminae (clovers) further reducing biodi-

versity. Such biodiversity-altering effects have been

reported in another study (Rychtecká et al. 2014).

The effects on overstory from dry sludge fertilization

indicate that understory is influenced directly by the com-

position of the overstory (Rigueiro-Rodriguez et al. 2012).

Fertilization of the overstory leads to changes in the

understory and affects the vegetation through modifications

of resource availability: light, water and soil (Barbier et al.

2008). The availability of light is a major stimulating factor

on forest vegetation growth and/or richness (Barbier et al.

2008) and light availability is modulated by the overstory

species composition, their leaf sizes, leaf area, canopy form

and leaf mass (Coomes and Grubb 2000). As described

above, the availability of nutrients becomes directly

affected and reduced as the sown species and the sludge-

fertilization affects particular species more than others,

leading to a reduction in nutrient availability for the native

species. This effect is propagated by changes in soil pH,

which has been attributed by an additional study on sludge

deposition effects on tree growth (López-Dı́az et al. 2007).

In this study, the pH in the soil was affected significantly

by liming and fertilization during the 2 years of the

experiments. Liming increased soil pH during the total

period, especially when sewage sludge was also applied,

due to its higher pH with respect to the soil. The overall

growth of tree height and volume increased after fertil-

ization by sludge, contrary to the other results mentioned

above (López-Dı́az et al. 2007). This different pattern of

growth of pine trees was attributed to differences in soil

properties, average rainfall during the periods of study and

initial pH values in the soil. Boreal forests, which are

important subjects for studies of the effects from sludge

deposition, are less exposed to heat than the southern

European forests studied by Rigueiro-Rodriguez and col-

leagues (Ferreiro-Dominguez et al. 2011; López-Dı́az et al.

2007; Mosquera-Losada et al. 2012; Rigueiro-Rodriguez

et al. 2012; Rosa Mosquera-Losada et al. 2010) and may

therefore differ considerably in their response to sludge

deposition. Currently, no long-term studies on boreal for-

ests from sludge deposition have been published and as the

practice of sludge-deposition is still being discussed in

Sweden more studies are needed.

Here we have summed up a series of studies and paths of

interaction which indicate that artificial fertilization of

forests by sludge deposition therefore leads to biodiversity

loss starting from the simplest species, however no sys-

tematic study evaluating plant and forestal species, biodi-

versity and proliferation in sludge exposed sites has been

conducted by the biological and botanical community. As

sludge deposition is a continuous activity in several

industrialized nations, and biodiversity in under threat, a

set of studies confirming the direct effects of sludge

deposition in the environment on biodiversity are required.

Additionally, sludge deposition affects and reduces biodi-

versity in forest ecosystems by diminishing the local resi-

lience to change (Bengtsson et al. 2000) including

infectious diseases, which in addition may facilitate the

spreading of invasive species (Crowl et al. 2008). The

proliferation of invasive species leads to the reduced

overall immune-defence of an ecosystem (Mooney and

Cleland 2001), as invasive species change the ecosystem’s

natural nutrient cycles. This is observed when invasive

species, which thrive in fertilized (formerly) pristine

environments, induce a loss of primary control of the

nutrient acquisition of the roots of other plants, and the

invasive plants with luxury consumption deprive the

environment for minerals from the soil (Chapin III 1980).

These effects, deriving from fertilization and sludge

deposition (Andres 1999; Andrés and Domene 2005;
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Domene et al. 2007), contribute to a disruption of the eco-

balance and to extinction of native species (Balvanera et al.

2006; Cardinale et al. 2011; Hooper et al. 2012). Studies on

vegetation in the Alaskan tundra report that the sequence

and dosage of nitrogen, phosphor and carbon species, when

disrupted by man-induced fertilization, results in the dis-

turbance of the natural balance of nutrient-processing in the

vegetation (Shaver and Chapin 1980) favouring some

species over others (Bret-Harte et al. 2001).

Remediation and alternatives

Remediation practices

Modern technologies for remediation of sludge have been

developed and these are, to some extent, being applied in

wastewater treatment plants (Crain et al. 2000; Fernández-

Luqueño et al. 2008; Jakobsen et al. 2004; Jiang 2007;

Wong et al. 2002). There are limitations in these tech-

nologies however (Bala Subramanian et al. 2010) and the

fraction containing heavy metals and insoluble organic

parts is often deposited in fragile ecosystems (Arthurson

2008; Tullander 1975). Deposition is in some cases cou-

pled to the cultivation of toxin-absorbing plants, such as

short-rotation willow coppice, for the reduction of the

detrimental effects (Baum et al. 2009; Dimitriou et al.

2006; Mirck et al. 2005). However, the number of such

cases is limited and after decades of sludge deposition in

the USA (Forster et al. 1977; Theis et al. 1978; Vesilind

1979), Sweden (Tullander 1975) and other European

countries (Bridle 1982), concerns have arisen about the

long-term effect of sludge deposition on soils and fertile

grounds in forests floors, vegetation areas and plantation

systems (Blanchard et al. 2007; Pempkowiak and Obarska-

Pempkowiak 2002). Affected ecosystems include pine and

birch plantations (Brockway 1983; Chaney et al. 1977;

Chubin and Street 1981; Lindsay 1973; Street et al. 1977),

agricultural crops (Duarte-Davidson and Jones 1996;

McBride 1995; Nicholson et al. 2003), and other habitats,

where dispersed sludge results in the accumulation of

toxins in the food chain and in the environment in general

(Manzetti and Ghisi 2014; McLaughlin and Singh 1999;

Seames et al. 2002; Welch and Norvell 1999). This may

cause long-term environmental problems for modern

society and impact health (Arthurson 2008; Auriol et al.

2006; Manzetti and Ghisi 2014; Ternes et al. 2004).

Legislative aspects

Alternatives to sludge deposition have been discussed,

including incineration, composting, land-filling and other

forms of transformation, as prompted by the European

Commission (European Commission 2001). This has not

led to concrete changes in the current practice of sludge

deposition in the environment or in agriculture, however.

The practice raises a series of questions that need to be

considered given that sludge represents a continuous sup-

ply of chemically and biochemically interfering com-

pounds to the environment (Hickey and Kittrick 1984)

(Fig. 4), with direct consequences for human health if used

in agriculture (Muchuweti et al. 2006). This practice should

therefore be classified as an unsustainable form of waste

disposal (Arthurson 2008), and technologies like electro-

chemical metal-extraction, precipitation and more exten-

sive treatments of sludge need to be considered for all

forms of sludge deriving from wastewater treatment plants.

This is also seen in an earlier assessments of the practice of

dispersing sludge in the environment, which indicates that

EU authorities tend to favour a gradual abolition of the

practice and to subject the sludge to incineration for energy

recovery over the eventual application on confined land,

wherever possible (Davis 1996). As mentioned previously

dispersed municipal sludge in forests leaves entities of

sludge which are not merged with the soil more than a year

after application (Brockway 1983). This introduces a series

of questions on the generic environmental ‘‘hygiene’’ and

prioritization by legislative entities. Sludge dispersion in

forests has been associated with the movement of nitrate

species that reached groundwater (Brockway and Urie

1983) and has led to a proposition to enhance the legisla-

tive measures to prevent adverse effects on soil microbial

communities in order to protect soil fertility (McGrath

et al. 1995), as the role of microbial cultures in nitrogen

fixation and soil chemistry processes is crucial for

ecosystem development, maintenance and biodiversity

(Wertz et al. 2006). Current legislation and regulations may

be ineffective for reducing the ecological damage repre-

sented by sludge deposition in forests. A recent survey of

the deposition of sewage sludge and composted sludge

shows that after some 40 years the maximum allowed

amounts for deposition have been surpassed at the exposed

sites for sludge deposition, and that a doubling of the

international toxicity equivalent (I-TEQ) budget for poly-

chlorinated dibenzodioxins and dibenzofurans and a

threefold increase for dioxin-like PCBs in soils have been

granted in Germany in order to dispose of the growing

amounts of municipal sludge (Umlauf et al. 2011). The

toxins deriving from deposited sludge have also been

shown to affect cultivated agricultural products (Chaney

et al. 1978; Fent 1996). A review of legislations from 2001,

2002 and 2005 (European Commission 2001, 2002, 2005)

shows that the current regulations do neither consider

biodiversity-reducing effects from sludge deposition, nor

the contamination of the forest and disruption of wild life

nutrient cycles. To maintain and restore vital ecosystems is
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a prerequisite for humanity to thrive and indeed the

reduction of biodiversity is one the largest threats to society

(Rockstrom et al. 2009). It would therefore seem prudent

to require that a long-termed legislative approach is

introduced to separate sludge from the environment and to

prevent further introduction of toxins (Manzetti et al.

2014).

Alternative approaches to sludge transformation

An alternative to sludge deposition in the environment is

the organized confinement of short-rotation mono-planta-

tions; an extension of a practice applied particularly in

Sweden (Dimitriou et al. 2006; Ebbs et al. 1997; Lepp and

Madejón 2007). ‘‘Sludge-processing certificates’’ could be

granted to farmers for cultivating monocultures for trans-

formation of treated sludge at sites that are isolated from

nearby forests and wild life habitats, as well as ground-

water systems. Such certificates could be implemented to

subsidize farmers to process allotted amounts of treated

sludge per year, with follow-ups in the form of yearly soil-

sample analyses to determine the fate and transformation of

heavy metals and persistent organic compounds (Fig. 5).

The granting of sludge-certificates should be limited to

plantations that are situated at minimum distances from

agricultural sites for food production, or confined by arti-

ficial boundaries of sand, such that diffusion and migration

of persistent compounds away from the specialized plan-

tations is prevented. Periodic breaks of 5-10 years could be

imposed to pause the sludge-transforming activity, so that

the local soils are to an extent allowed to further transform

the doses of toxic compounds deposited from the sludge-

transformation activity before continuation. Extraction via

a sink structure with a toxin tank below the field could

further facilitate the confinement of these toxins (Fig. 5).

Sludge-certificates could also be an alternative way of

supporting the critically important agricultural sector. An

agreement on sludge-certificates could in other words

protect forests and other ecosystems that are exposed to

toxins and biodiversity-disrupting fertilization effects

deriving from deposited sludge. As a result, wildlife would

be protected from exposure to contaminated vegetation,

waters and soils.

Conclusions

The fate of the global ecosystem ultimately depends on the

climate, preservation of natural habitats and ecosystems

and, as covered in this review, a proper transformation of

waste and end products. A generic rewriting of the legis-

lation to prevent sludge deposition in forests and other

sensitive ecosystems is needed in order to meet the

extensive challenges that the international community is

facing. The practice of sludge deposition in the environ-

ment has curiously been defended, for instance in Sweden,

for giving short-term gains in removing sludge from its

sources at wastewater plants (Perttu 1998), and trans-

forming these with specialized plantations (Baum et al.

2009; Dimitriou et al. 2006; Mirck et al. 2005; Perttu

1998). However, the short-term gains do not represent a

true removal of toxins from the environment but rather a

transformation from one phase to another, where the col-

loidal forms from sludge are biologically converted to bio-

assimilated forms, which remain in the soil as bioavailable

contaminants.

Fig. 5 A proposed rationale for

sustainable sludge-

transformation. Specialized

farms are paid to cultivate short-

rotation plantations that absorb

and transform sludge. Sand

barriers are applied to confine

the activity to the plantation,

and protect water and

neighbouring ecosystems. An

artificial sink is constructed to

accumulate persistent toxins in a

toxin tank, which can be

collected yearly for industrial

recycling and extraction of

metals
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Sludge deposition in the environment is a practice of waste

handlingwith long-term impact on soilmicrobial populations,

vegetation and animal proliferation ultimately affecting

ecosystem viability. It represents a supply of toxins and fer-

tilization to forests, marshlands and other sensitive environ-

ments.Although fewmeasures are taken to prevent deposition

of sludge in the environment procedures to remove heavy

metals from sludge, through the use of plantations and

remediating crops that specifically bind heavy metals from

sludge at high concentrations, have been applied. This

approach, which leads to the bio-fixation of heavy metals in

plants and in soil, does not result in the complete removal of

persistent toxins and heavy metals. The fertilization effects

from sludge as well as the direct contamination of wild life

habitats resulting in intoxication of food chains should be

targeted by new legislation governing sludge handling. This

should particularly take into account the effects caused by

pollutants during the transfer from species to species, such as

intoxication of foetuses (Hyvärinen and Nygrén 1993),

reduction in reproductive potential (Ferm and Layton 1981)

and other long-term effects on biodiversity and animal pro-

liferation (Duarte-Davidson and Jones 1996).
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