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Abstract In large man-made reservoirs such as those

resulting from hydroelectric dam construction, bacteria

transform the relatively harmless inorganic mercury natu-

rally present in soil and the submerged plant matter into toxic

methylmercury. Methylmercury then enters food webs and

can accumulate in organisms at higher trophic levels. Bats

feeding on insects emerging from aquatic systems can show

accumulation of mercury consumed through their insect

prey. In this study, we investigated whether the concentra-

tion of mercury in the fur of insectivorous bat species was

significantly higher than that in the fur of frugivorous bat

species, sampled near hydroelectric reservoirs in Peninsular

Malaysia. Bats were sampled at Temenggor Lake and Kenyir

Lake and fur samples from the most abundant genera of the

two feeding guilds—insectivorous (Hipposideros and Rhi-

nolophus) and frugivorous (Cynopterus and Megaerops)

were collected for mercury analysis. We found signifi-

cantly higher concentrations of total mercury in the fur of

insectivorous bats. Mercury concentrations also differed

significantly between insectivorous bats sampled at the two

sites, with bats from Kenyir Lake, the younger reservoir,

showing higher mercury concentrations, and between the

insectivorous genera, with Hipposideros bats showing

higher mercury concentrations. Ten bats (H. cf. larvatus)

sampled at Kenyir Lake had mercury concentrations

approaching or exceeding 10 mg/kg, which is the threshold

at which detrimental effects occur in humans, bats and

mice.

Keywords Mercury � Hipposideros � Rhinolophus �
Megaerops � Cynopterus � Hydroelectric reservoirs

Introduction

Mercury (Hg) contamination has become a well-known

global issue (Pacyna et al. 2006; Selin et al. 2007) as the

burning of coal, creation of hydroelectric dams, metal

mining and municipal waste incineration have increased

and augmented the amount of inorganic mercury entering

the atmosphere and water sources (Chan et al. 2003).

Extensive deforestation and agricultural land use also

release mercury from soils creating point sources of local,

acute contamination (Barbosa et al. 2003). Lake-sediment

records suggest locations distant from point source con-

tamination can also receive significant inputs of anthro-

pogenically released mercury due to transcontinental and

global distribution of highly volatile, atmospheric mercury

(Fitzgerald et al. 1998; Chan et al. 2003).

In aquatic systems, relatively harmless inorganic mercuric

(Hg2?) or mercurous (Hg?) forms of mercury are naturally

present in the substrate, but can be transformed by sulphate-

reducing and iron-reducing bacteria to methylmercury
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(MeHg) (Chan et al. 2003; Poulain and Barkay 2013). Sig-

nificant amounts of mercury can be introduced into aquatic

food webs during the flooding of forests (Barbosa et al. 2003),

such as during the construction of hydroelectric dams (Bodaly

et al. 1984; Stokes and Wren 1987; Ikingura and Akagi 2003).

When a reservoir is created, submerged vegetation and

organic material start to slowly decompose (Rodgers et al.

1995), leading to a rise in the dissolution rate of organic car-

bon, increased release of mercury bound to organic material

and higher net mercury methylation rates (Chan et al. 2003). A

deeper water column and increased decomposition creates

anoxic conditions which are ideal for mercury methylation

(Hylander et al. 2006). A study of reservoirs up to 67 years old

suggested that it may take 20–30 years before mercury con-

centrations return to pre-dam levels (Hylander et al. 2006).

Methylmercury has been shown to be a potent neuro-

toxin in humans (Mergler et al. 2007) and other mammals

including bats and otters (Basu et al. 2005; Nam et al.

2012). Central nervous system damage caused by methyl-

mercury toxicity in mammals includes motor and sensory

deficits and behavioral impairment (Wolfe et al. 1998).

Increased levels of methylmercury in vertebrates have been

shown to impair reproductive system function (Wada et al.

2010; Nam et al. 2012). Methylmercury is readily trans-

ferred across the placenta and can concentrate selectively

in the fetal brain, causing developmental alterations lead-

ing to fetal death (Wolfe et al. 1998). Infants can also be

exposed to methylmercury during lactation (Mergler et al.

2007).

Mercury biomagnifies as it moves up the food chain,

with high trophic level species, such as top predators

showing higher concentrations of mercury in their tissues

than primary consumers, which absorb mercury (Barbosa

et al. 2003; Stewart et al. 2008). Insects that have aquatic

larval stages could act as biovectors, exporting methyl-

mercury from aquatic systems upon emergence (Benoit

et al. 2013; Mogren et al. 2013). The biomass of aquatic

insects can reach 190 kg/ha per day in productive lake

systems (Mogren et al. 2013).

Most studies of environmental mercury contamination

have been conducted in temperate regions (e.g. Baxter

1977; Tweedy et al. 2013), have measured total mercury in

fish (e.g. Barbosa et al. 2003), aquatic insects (e.g. Hall

et al. 1998; Benoit et al. 2013); or fish-eating birds and

mammals (see Chan et al. 2003 and references therein). In

Malaysia, studies have examined mercury levels in fish and

seafood (e.g. Bloom 1992; Agusa et al. 2005; Hajeb et al.

2009) and in humans living in coastal communities, or in

fishing communities near lakes (e.g. Sivalingam and Sani

1980; Hajeb et al. 2008).

Sixty reservoirs have been created as the result of

hydroelectric damming over the past 80 years in Malaysia

(ICOLD 2014). Twelve more dams, slated for construction

by 2020, have been planned for Malaysian Borneo alone

(Herbertson 2013; Thin 2013). Despite the increasing

concern regarding mercury contamination in this global

biodiversity hotspot, no studies currently exist of methyl-

mercury accumulation in non-human mammals.

One mammalian group showing potential as a model for

the study of mercury contamination and bioaccumulation

through trophic levels is bats (Chiroptera) (Nam et al.

2012; Yates et al. 2014). Bat assemblages occupy high and

low trophic levels, are species rich and abundant, and

represent several distinct feeding guilds including frugiv-

orous and insectivorous species (Rojas et al. 2013).

Insectivorous bats eat 20–50 % of their pre-feeding body

mass in insects every night (Brunet-Rossinni and Austad

2004) including insects with an aquatic larval life stage

(e.g. Megaloptera, Trichoptera, certain Diptera, certain

Coleoptera, Neuroptera, Ephemeroptera, Odonata) and/or

insects without an aquatic larval life stage (e.g. most

Lepidoptera, certain Coleoptera) (Bogdanowicz et al. 1999;

Fukui et al. 2006). The limited studies of the diet of

insectivorous bat species found in Malaysia (Hipposideros,

Rhinolophus) suggest 1–4 % of the insects consumed have

an aquatic larval stage (Thabah et al. 2006; Jiang et al.

2008). If mercury is present in aquatic insect prey, there

should be accumulation of mercury in the tissues of

insectivorous bats. Hair and blood mercury concentration

are closely correlated (Yates et al. 2014) and both are

accepted as valid biomarkers of methylmercury exposure

(US EPA 2001). Hair generally has a 250–300-fold higher

mercury concentration than blood (Mergler et al. 2007;

Wada et al. 2010) and mercury fixed in the hair at the time

of collection is stable and can give a longitudinal history of

blood mercury levels (US EPA 2001). To our knowledge

no studies have compared mercury concentration in

insectivorous and frugivorous bat species and there is only

a single unpublished report of Hg concentrations in bats

from Malaysia (Yates et al. 2011).

The overall objective of this study was to investigate

whether the concentration of total mercury in the fur of

insectivorous bat species was significantly higher than that

in the fur of frugivorous bat species sampled near reser-

voirs created by hydroelectric damming in Peninsular

Malaysia.

Materials and methods

Study area

Bats were sampled on the shores of two major hydroelec-

tric reservoirs in Peninsular Malaysia: Temenggor Lake,

Perak (N05�310, E101�260) and Kenyir Lake, Terengganu

(N05�080, E102�460) (Fig. 1) between 16 and 25 July 2013.
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Temenggor Lake was created in 1979 and is the second

largest man-made lake in Malaysia, covering 15,200 ha

(Lin 2006) with an average depth of 127 m and average

width of 537 m (Davidson et al. 1995). The reservoir is

filled by two major river systems in the north, two in the

east and one in the west (Norizam and Ali 2000). The lake

is used as a supply for domestic water consumption (Khalik

and Abdullah 2012) and is also fished by the local

aboriginal community. We sampled bats along the eastern

edge of Temenggor Lake (Fig. 1a). Kenyir Lake was cre-

ated in 1986 and is the largest man-made lake in Malaysia

covering 36,900 ha with an average depth of 37 m and a

maximum depth of 145 m (Kamaruddin et al. 2011). The

lake receives water from two main rivers (Rouf et al.

2010). We sampled bats along the northeastern edge of

Kenyir Lake (Fig. 1b).

Capture, sample collection and handling

Bats were captured using 4 four-bank harp traps positioned

across flight paths (trails, logging skids or streams) and ten

mist nets set near the lake edge. Traps were set at 19:00

until 07:30 and were checked at 30 min intervals with

sampling continuing until morning unless it rained. A small

wing punch was collected from each captured bat into a

1.5 ml microcentrifuge tube following AMNH (2013). Hair

samples were taken from each captured bat by snipping a

small amount of hair (0.02 g) from the upper part of the

body using stainless steel scissors. Hair was stored in a

1.5 ml microcentrifuge tube. Scissors and forceps were

cleaned with alcohol and sterile tissues between bats to

avoid cross-contamination. If a bat with a wing punch was

captured it was treated as a re-capture (Faure et al. 2009)

and not subjected to another wing punch or further hair

sampling. Sex and lifestage of the captured bats were

recorded. Bats were identified in the field using morpho-

logical guides (Kingston et al. 2006; Francis 2008), but

given the prevalence of cryptic bat species in Malaysia

(Sing et al. 2013; Wilson et al. 2014) species identification

was confirmed using DNA barcoding (Francis et al. 2010),

following standard methods used in previous studies (see

Sing et al. 2013; Wilson et al. 2014).

Mercury analysis

Hair samples from adults of the most abundant genera of

the two feeding guilds—insectivorous (Hipposideros,

Rhinolophus) and frugivorous (Cynopterus, Megaerops)

were selected for analysis of total mercury. We measured

total mercury concentration in fur which is a standard

approach, and is directly proportional to the concentration

of methlymercury in the fur (Yates et al. 2014). Total

mercury concentration was measured using a Milestone

Direct Mercury Analyzer (DMA-80) following US EPA

Method 7473 (US EPA 2007). The total mercury detection

limit is 0.001 mg/kg.

Quality control included the use of standard reference

materials DORM-3 (percentage recovery = 89.2–101.1 %)

Fig. 1 Study sites in Peninsular

Malaysia where bat fur was

sampled for mercury analysis

(2013): a Temenggor Lake and

b Kenyir Lake
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and DOLT-4 (percentage recovery = 96.1–106.2 %), run-

ning method blanks, sample blanks, and sample duplicates

(percentage recovery = 83.5–103.6 %), initially and then

every 20 samples. The percentage recovery of spiked

material was 92.7 %.

Statistical analysis

Mercury concentration was compared between bats of

different genera and species (with singleton species omit-

ted from the test) using one-way ANOVA with a post hoc

Tukey HSD test; and between feeding guilds (frugivorous

vs. insectivorous), sites (Temenggor Lake vs. Kenyir Lake)

and sexes using two-way ANOVA with a post hoc Tukey

HSD test. All statistical analyses were performed using

JMP 11.1.1 (SAS Institute Inc.).

Results

Forty-one samples (nine frugivorous bats and 32 insectiv-

orous bats) from Temenggor Lake and 87 samples (22

frugivorous bats and 65 insectivorous bats) from Kenyir

Lake were analysed for mercury concentration, comprising

12 species (two genera) of insectivorous bats and three

species (two genera) of frugivorous bats. Note that bat

species in Malaysia are often ‘‘dark taxa’’, species which

have been recognized and recorded previously but which

have not yet been formally described (Sing et al. 2013;

Wilson et al. 2014), so a few of the species are referred to

using non-Linnaean species names.

Insectivorous genera (5.13 ± 3.10 SD mg/kg) had sig-

nificantly higher concentrations of mercury than frugivo-

rous genera (0.02 ± 0.01 SD mg/kg) (F (3,124) = 48.64,

p \ 00001). The post hoc Tukey HSD test indicated that

the genera Hipposideros (6.26 ± 2.98 SD mg/kg) and

Rhinolophus (3.14 ± 2.22 SD mg/kg) had significantly

higher concentrations of mercury than the two genera,

Megaerops (0.023 ± 0.009 SD mg/kg) and Cynopterus

(0.013 ± 0.006 SD mg/kg) (Fig. 2).

Hipposideros cf. larvatus (7.136 ± 2.546 SD mg/kg) and

Rhinolophus chiewkweeae (7.393 ± 1.793 SD mg/kg) both

had significantly higher mercury concentrations than the

other insectivorous species (with singleton species omitted).

There were no significant differences in mercury concen-

tration among the frugivorous bat species ((F (7,113) =

40.29, p \ 0.0001); Table 1).

Mercury concentrations in insectivorous bats at Kenyir

were significantly higher than insectivorous bats at Tem-

enggor (F (1,124) = 10.41, p = 0.0016). Grouped sepa-

rately by site, mercury concentrations in insectivorous bats

were significantly higher than frugivorous bats at both

sites. The interaction between guild and site was significant

(F (1,124) = 10.50, p = 0.0015) (Fig. 3).

Comparison of mercury concentrations between sex was

not significant (F (1,124) = 0.0006, p = 0.9810). On

average, females exhibited slightly lower mercury con-

centrations (3.412 ± 3.669 SD mg/kg) than males

(4.347 ± 3.261 SD mg/kg) (Fig. 4).

Discussion

We found that mercury concentration was significantly

higher in the hair of insectivorous bats than mercury con-

centration in the hair of frugivorous bats sampled at two

hydroelectric lakes in Peninsular Malaysia. This suggests

that insectivorous bats could be accumulating methylmer-

cury through their diet. The diet of insectivorous bats

includes emergent aquatic insects (Fukui et al. 2006) that

are, plausibly, contaminated with mercury from the lakes

(Tremblay and Lucotte 1997; Tweedy et al. 2013). Other

studies have demonstrated that aquatic insects can act as

biovectors transferring sedimentary mercury from lakes

into terrestrial predators on the shoreline (Haro et al. 2013;

Tweedy et al. 2013). Interestingly, Reidinger (1972) argued

that mercury contamination in bats probably occurred from

their free water drinking source rather than through their

insect prey, however, this idea has largely been abandoned

(Yates et al. 2014).

Of the two insectivorous genera analyzed for mercury

concentration, Hipposideros made up the largest proportion

Fig. 2 Mean mercury concentration (mg/kg) in fur from bats of

different feeding guilds (Frugivorous or Insectivorous) grouped by

genus with standard deviation bars. Different letters above the bars

indicate significant differences between the means based on post hoc

Tukey HSD test. Black circles are outliers
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of analyzed samples (37 %) and showed significantly

higher mercury concentrations than the Rhinolophus bats.

This could be due to a larger proportion of aquatic insects

in the Hipposideros diet; however, records on the diet of

bat species in Malaysia are limited. One study conducted in

various secondary forests in Malaysia reported that 17 % of

the diet of H. larvatus s.l. consisted of Coleoptera with the

rest comprising unidentifiable insect fragments (Muda

1991). Thabah et al. (2006) reported that the diet of

H. larvatus s.l. collected from 11 sites in the Indo-Malayan

region (India, China, Myanmar, Malaysia) comprised more

than 80 % coleopterans. Alternatively, the diet of Rhinol-

ophus affinis from a cave in Jiangxi Province, China con-

tained more than 50 % of Lepidoptera (Jiang et al. 2008).

While the diet of insectivorous bats is likely to be oppor-

tunistic, relying on the presence and density of prey species

in the bats particular foraging area, this could suggest a

Fig. 3 Mean mercury concentration (mg/kg) in fur from bats of

different feeding guilds (Frugivorous or Insectivorous) grouped by

study site (Temenggor Lake or Kenyir Lake) with standard deviation

bars. Different letters above the bars indicate significant differences

between the means based on post hoc Tukey HSD test. Black circles

are outliers

Fig. 4 Mean mercury concentration (mg/kg) in fur from bats of

different feeding guilds (Frugivorous or Insectivorous) grouped by

sex with standard deviation bars. Different letters above the bars

indicate significant differences between the means based on post hoc

Tukey HSD test. Black circles are outliers

Table 1 Total mercury

concentrations in fur (mg/kg)

for bat species sampled near

Temenggor Lake and Kenyir

Lake, Peninsular Malaysia

a Species that share common

letters do not differ

significantly. Singleton species

were omitted from the post hoc

Tukey HSD test

Guild Genus Species n Mean/

value

Standard

deviation

Statistical

significancea

Frugivorous Cynopterus C. horsfieldii 10 0.012 0.004 a

C. JLE sp. A 7 0.015 0.007 a

Megaerops M. ecaudatus 14 0.023 0.009 a

Insectivorous Hipposideros H. cf. bicolor 11 2.293 0.856 a, b

H. cf. larvatus 47 7.136 2.546 d

H. cervinus 1 8.988

H. diadema 1 3.789

H. doriae 1 5.135

H. dyacorum 1 9.525

Rhinolophus R. affinis 23 2.686 1.985 b

R. chiewkweeae 2 7.393 1.793 c, d

R. trifoliatus 7 3.969 1.987 b, c

R. acuminatus 1 0.627

R. lepidus 1 1.760

R. luctus 1 3.132

1168 K. Syaripuddin et al.

123



larger proportion of aquatic insect species in the diet of

Hipposideros compared to Rhinolophus bats, and may

explain the increased exposure to mercury contamination

of Hipposideros bats in our study areas. It is also a possi-

bility that Hipposideros bats could be foraging more fre-

quently and cover a larger area including over water

bodies, but no studies have documented this yet. The use of

next generation DNA sequencing (NGS) to establish the

taxonomic identity of prey fragments—‘‘DNA metabar-

coding’’—in feces could help resolve this question (Raz-

gour et al. 2011). Both the frugivorous bat genera sampled,

Cynopterus and Megaerops, showed significantly lower

concentrations of mercury (*99 % lower than the insec-

tivorous genera). We would expect the frugivorous bats to

exhibit low concentrations of mercury because their diet

likely contains little mercury. Plant roots absorb small

amounts of mercury from soils and the mercury is not

directly translocated from root tissues to the tissues at the

top of plants (Patra and Sharma 2000) where the bats are

feeding.

The comparison between the mercury concentrations in

insectivorous bats collected at the two lakes showed a

significantly higher concentration of mercury in bats sam-

pled at Kenyir Lake. There was no known point source or

intense agricultural activities near our study area at the

lake. Kenyir Lake is shallower than Temenggor Lake,

based on average depth, allowing rapid erosion of soils

which increases bioavailability of mercury-rich particles to

filter feeding invertebrates (Lucotte et al. 1999). Limita-

tions on methylmercury production in Temenggor Lake

might include low total mercury concentrations in the

flooded soils and sediments and rapid oxidation and decay

of organic matter leading to low total organic carbon in the

reservoir (Ikingura and Akagi 2003). Our study area in

Temenggor Lake can be considered pristine without human

encroachment except for small-scale fishing and collecting

of forest resources by aborigines. Ikingura and Akagi

(2003) reported it was a common phenomenon for fish

mercury concentration to be negatively correlated with age

of reservoirs even with a difference of only 5 years.

Therefore, the age of the reservoirs could potentially be a

partial explanation for the differences in mercury concen-

tration in bats from the two lakes in our study, as Kenyir

Lake is 7 years younger than Temenggor Lake.

We found no significant variation in mercury concen-

tration among sexes within each feeding guild. Similarly,

no significant difference in mercury concentration between

sexes was observed for both adult and juvenile bats from

Oneida Lake, New York, USA (Yates et al. 2014) and

Southwest England (Walker et al. 2007). Mercury con-

tamination would not be expected to vary significantly

between males and females of the same species as they live

in colonies and most likely have a very similar diet.

Comparing mercury concentration in bats on a global

scale, mean mercury concentrations in the fur of Myotis

lucifugus, M. septentrionalis, M. leibii and M. grisescens

from non point source sites in Quebec exceeded the

threshold for mercury concentration in hair (10 mg/kg)

(Hickey et al. 2001) at which detrimental effects occur in

humans (Murata et al. 1999) and neurobehavioral disorders

occurred in rodents (Burton et al. 1977). Mercury con-

centrations in fur from bats at point source sites in North

America have been reported as 28–132 mg/kg (Wada et al.

2010; Nam et al. 2012; Yates et al. 2014) 5–30 times higher

than the values for insectivorous bats in the present study.

However our values are similar to the mean mercury

concentration in fur from bats at 69 non-point source sites

in North America (6.44 mg/kg) (Yates et al. 2014).

This is the first study comparing mercury concentrations

in frugivorous and insectivorous bats at hydroelectric res-

ervoirs. Fur from ten bats (H. cf. larvatus) sampled at

Kenyir Lake had mercury concentrations approaching or

exceeding 10 mg/kg which is the threshold at which

harmful effects occur in mammals (Murata et al. 1999;

Burton et al. 1977). Insectivorous bats consuming large

numbers of prey emerging from new reservoirs could be

exposed to increased, and potentially harmful, levels of

mercury as has been shown previously in insectivorous

songbirds (Gerrard and St. Louis 2001). A reduction in bat

populations due to neurological problems as a result of

mercury toxicity could have serious consequences for the

local ecosystem: insectivorous bats are important for con-

trolling insect populations and for nutrient recycling (Jones

et al. 2009). Malaysia has created 60 reservoirs as a con-

sequence of hydroelectric damming since 1920; however,

the ecological consequences of hydroelectric damming

have never received serious consideration. Likewise, many

other countries have embraced hydroelectricity as a

renewable energy resource resulting in the creation of

thousands of reservoirs around the world (Barros et al.

2011).
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