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Abstract The emerging literature on the ecotoxicity of
nanoparticles and nanomaterials is summarised, then the
fundamental physico-chemistry that governs particle
behaviour is explained in an ecotoxicological context.
Techniques for measuring nanoparticles in various bio-
logical and chemical matrices are also outlined. The
emerging ecotoxicological literature shows toxic effects on
fish and invertebrates, often at low mg 1~' concentrations
of nanoparticles. However, data on bacteria, plants, and
terrestrial species are particularly lacking at present. Initial
data suggest that at least some manufactured nanoparticles
may interact with other contaminants, influencing their
ecotoxicity. Particle behaviour is influenced by particle
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size, shape, surface charge, and the presence of other
materials in the environment. Nanoparticles tend to
aggregate in hard water and seawater, and are greatly
influenced by the specific type of organic matter or other
natural particles (colloids) present in freshwater. The state
of dispersion will alter ecotoxicity, but many abiotic fac-
tors that influence this, such as pH, salinity, and the
presence of organic matter remain to be systematically
investigated as part of ecotoxicological studies. Concen-
trations of manufactured nanoparticles have rarely been
measured in the environment to date. Various techniques
are available to characterise nanoparticles for exposure and
dosimetry, although each of these methods has advantages
and disadvantages for the ecotoxicologist. We conclude
with a consideration of implications for environmental risk
assessment of manufactured nanoparticles.

Keywords Nanoparticles - Nanomaterials - Ecotoxicity -
Physico-chemical - Dispersion - Aggregation -
Risk assessment

Introduction

Nanotechnology and the use of nano-scale materials is a
relatively new area of science and technology with the
global market estimated to be worth $10.5 billion in 2006
(http://www.bccresearch.com/nanotechnology/). Nanotech-
nology is the intentional and controlled generation, or
modification of materials at the nanometer (nm) scale.
Although nano-scale materials have been used in the
modern context of materials research for at least a decade
(e.g., Buckminster fullerenes or Cgo, Fagan et al. 1991),
there is now a wider debate about the risks and benefits of
the many manufactured nanomaterials and consumer
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products now appearing on the market (Royal Society
2004; US EPA 2005; Owen and Depledge 2005; Handy
and Shaw 2007; Owen and Handy 2007). The benefits of
nanomaterials are potentially enormous, and are still being
explored. A diverse range of products and applications are
emerging including electronics, optics, textiles, medical
devices, cosmetics, food packaging, water treatment tech-
nology, fuel cells, catalysts, biosensors and agents for
environmental remediation (e.g., Roco 2003; Freitas 2005;
Karnik et al. 2005; Aitken et al. 2006; Brody 2006).
Although environmental concentrations of manufactured
nanoparticles (NPs) have yet to be routinely measured,
there are concerns that NPs will be released from these
products over their life (e.g., by erosion of the materials
with use, or deliberate introduction during remediation of
contaminated environmental media), or that product
applications could generate wastes containing nanomate-
rials (e.g., domestic waste-water containing nanomaterials
from household products). It is also unclear whether or not
sewage treatment works could completely remove NPs
from final effluents. Clearly there is a concern that these
novel materials could be released into the environment, and
that there may be releases from products that are in current
use. However, we are only just starting to explore their
ecotoxicology and environmental chemistry.

Defining nanomaterials in an ecotoxicological context

There are as yet no internationally agreed formal defini-
tions of nanomaterials (NMs) and NPs, but NMs are
usually taken to be material with at least one dimension
between about 1 nm and 100 nm (Roco 2003; SCENIHR
2005; Moore 2006). These could be materials such as
nanofilms (one dimension), nanowires and nanotubes (two
dimensions), or nanoparticles (three dimensions). How-
ever, this definition of materials with a <100 nm dimension
is arbitrary, and for ecotoxicology we should apply a
broader definition that might include materials of a few
hundred nm. A precise size threshold in this definition is
not intended, since it is the novel toxic effects due to small
size that are of interest. However, a pragmatic solution
might be to consider materials with a primary dimension of
<0.5 pm to differentiate nanoscale from micrometer scale.
Whatever pragmatic decision is made about size thresholds
to define NPs, some flexibility is needed. For example it
could be argued that a single solid particle of 0.5 pm
diameter might not be different from the behaviour of a
slightly larger particle in the 1-2 um range. However
aggregates with an overall dimension in the pm range, but
made of primary particles of <100 nm would be regarded
as a NM. Clearly for NPs, the primary particle size should
be considered (e.g., the diameter of a single particle). In
addition, the sizes of aggregates of NPs, which can be
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several hundred nanometers or more, and the distribution
of particle sizes present in the material also need to be
considered. In mammalian toxicology particles sizes (PM,
particulate matter) have been defined as coarse particles
(diameter between 10 um and 2.5 pm, PM;q,5), fine
particles (2.5 pm or less, PM,5), or ultrafine particles
(<0.1 um, PMy ), so NPs could be regarded as ultrafine
particles or smaller.

Why should manufactured nanomaterials be of special
concern to ecotoxicologists?

The environment does contain many natural particles at the
nm scale such as colloids in freshwater (colloids are
materials in the size range 1 um to 1 nm, Lead and Wil-
kinson 2006), volcanic dusts in the atmosphere (Ammann
et al. 1990), and nm scale particles from soil erosion
(Hasegawa et al. 2007). It could be argued that these
materials have been in the environment for millions of
years and organisms must be adapted to living in the
presence of these natural substances. There are also con-
cerns that anthropogenic activity has been incidentally
generating nano-scale pollutants such as air-borne particles
from car exhausts or nanoparticles generated from the
erosion of materials such as car tyres for a long time (see
Handy and Shaw 2007 for discussion). Even so, we still
have much to learn about the fate and behaviour of natural
colloids and their interactions with pollutants (Lead and
Wilkinson 2006). We should also consider that manufac-
tured NPs might represent a special case, since they may be
designed to have particular surface properties and (surface)
chemistries that are less likely to be found in natural par-
ticles. They might therefore present enhanced or novel
physico-chemical or toxicological properties in comparison
to natural NPs.

Manufactured NPs (and natural NPs) often exhibit spe-
cial physico-chemical properties and reactivities due to
their small size and homogeneous composition, structure or
surface characteristics, which are not present at the larger
scale. So, for example, carbon fullerene NPs (Cg( parti-
cles), may have a different toxicity compared to fine (um
sized) graphite particles, even though both particles are
made of carbon (Barlow et al. 2005). In particular NPs
possess a much higher specific surface area (SSA) than
their larger counterparts of the same material, and the
proportion of atoms on the surface versus the interior of the
particle is also much larger for NPs. Together, these factors
can give rise to a higher surface reactivity (e.g., adsorption
and/or catalytic properties) for the same mass of material.
This gives rise to the suggestion that SSA (e.g., m> g~ ' of
material) rather than mass concentration (e.g., mg )
might sometimes be more important to the toxicity of NPs,
and is perhaps a better way to describe the dose—effect of
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nanomaterials when surface reactivity is a key character-
istic (Oberdorster et al. 2007). Of course, the total surface
area available will be a function of SSA multiplied by the
particle mass concentration, so both are likely to be
important in exposure. Also, the importance of shape and
particle surface area in the uptake of NPs across the cell
membranes of many organisms remains to be established in
ecotoxicology. Although, this is an important facet of
respiratory toxicity in mammals (Maynard and Aitken
2007).

There are also unusual chemical and physical properties
at the lower end of the nanoscale (e.g., 1-10 nm) and at the
interface with the atomic scale. In particular, materials in
the region from a few nm to several tenths of a nm exhibit
properties (electronic states, magnetic and optical proper-
ties, catalytic reactivities) that behave differently from both
their atomic/molecular level and from their larger particle
counterparts. For example, quantum confinement effects
have been observed in the electronic states of haematite
leading to enhanced oxidation of Mn, even when norma-
lised to SSA (Madden and Hochella 2005). Size also has
important control over other physical and chemical prop-
erties such as zeta potential and metal binding (Madden
et al. 2006). So there is also a concern that fundamental
every-day assumptions about the chemical reactivity of
molecules and atoms may need to be revisited when con-
sidering the ecotoxicity of NPs. Such quantum effects
could also impart previously unknown toxic effects.

In addition, the variety of physical structures of NMs,
(e.g., different crystal structures of the same material), and
the potential for these structures to contain more than one
substance (e.g., Ag—Ti composites as antibacterial coat-
ings), or to be manufactured with multiple types of surface
ligands, creates a new challenge for ecotoxicity testing.

Aims

The main objective of this review is to describe the known
ecotoxicological effects of NMs and NPs and the key
aspects of physico-chemistry that are known to affect, or
are likely to alter, ecotoxicity. In addition, given the current
lack of routine measurement of manufactured NPs in the
environment (water, air, or soil/sediments) we suggest on
the basis of physico-chemical properties, which environ-
mental compartments might become contaminated with
NMs or NPs. We also outline the challenges the novel
physico-chemistry of NPs present for environmental risk
assessment, which ultimately supports risk management
decisions. The implications for human health from expo-
sure via the environment (for a review, see Handy and
Shaw 2007), occupational exposure to nanomaterials in the
work place (e.g., Aitken et al. 2004), and respiratory

toxicity in mammalian models (e.g., rodents, Warheit et al.
2005; Handy and Shaw 2007) are discussed elsewhere.

Ecotoxicity of nanomaterials

There is a rapidly emerging literature on the ecotoxicity of
NPs and NMs, with most of the studies to date on aquatic
organisms and using only a few types of manufactured NPs
that are commercially available. However, particle toxicity
has been studied for many years in mammals from the
viewpoint of respiratory health and inflammation (Maynard
and Aitken 2007). For example, studies with fine and
ultrafine TiO, particles demonstrate some respiratory tox-
icity and inflammation of the lung in rodents (e.g., Ferin
and Oberdorster 1985; Ferin et al. 1991; Oberdorster et al.
1992). In particular, Oberdorster et al. (1992) showed that
the level of lung inflammation in rats was associated with
particle size, with the smaller ultrafine TiO, causing more
adverse effects. It is therefore worth considering known
toxic effects of manufactured NPs on mammals.

Knowledge from mammalian studies

The literature on mammalian models has recently been
reviewed (Handy and Shaw 2007). Table 1 gives some
examples of the respiratory toxicity of NPs and NMs in
small mammals. Carbon nanotubes (CNTs) can cause sig-
nificant lung damage to mammals when exposed to
intratracheal (i.t) doses. For example, mice exposed to a
dose of 0.5 mg CNT showed 56% mortality within 7 days
of exposure; macrophage granulomas formed beneath the
bronchial epithelium, along with necrosis and inflammation
of interstitial and peribronchial tissues during the 90-day
post-exposure follow-up (Lam et al. 2004). Metal oxides
also produce lung injury during respiratory exposure. Rats
exposed to cadmium oxide NPs for 6 h showed increased
numbers of neutrophils and multifocal alveolar inflamma-
tion. In 50% of the rats exposed to 550 pm m~3, an
elevated blood cadmium level was also measured, sug-
gesting movement of the particles throughout body systems
(Takenaka et al. 2004).

These reports raise a number of concerns from the per-
spective of ecotoxicology. First, the lung is representative
of typical mucous epithelial tissue and it is possible that
similar epithelia in aquatic organisms could also show toxic
effects. The epithelia of concern would include the gills and
gut tissue of fish or invertebrates, as well as specialised
epithelial tissue like the mantle of shellfish or the body
surface of organisms such as earthworms. We have recently
shown epithelial injury to the gill and the intestine in fish
exposed to NPs (Federici et al. 2007; Smith et al. 2007).
Second, the latent effects of acute respiratory exposure and
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the inflammation reactions in rat lung raise concerns about
the long-term health of organisms after even quite short
exposures. However, it could also be argued that the typi-
cally milligram doses used in rodent studies are not likely to
occur routinely in the environment, except during acci-
dental spills of nanomaterials. Finally, mammalian studies
with nanoparticles such as quartz, carbon black and asbestos
highlight the fact that not only particle size, but biosolu-
bility and shape may be important factors that influence
uptake, toxicity and pathology, at least when exposure is via
the airways and lung (Royal Society 2004 and references
therein; Maynard and Aitken 2007).

Lethal toxicity of nanoparticles to wildlife

Data on the ecotoxicity of NPs are shown in Tables 2 and 3.
There are few published lethal dose values on the ecotox-
icity of NPs, although new studies are being published at an
increasing rate. Studies on fish and invertebrates (Lovern
and Klaper 2006; Zhu et al. 2006) suggest that Cg( fuller-
enes are toxic in the milligram per litre range, but the LC50
values obtained are very dependent on the method of
preparation of the material and the addition of dispersants
(Table 3). It is possible that dispersed Cqo NPs are more
toxic than “non-dispersed” material, or that the solvents
used have some effects, or somehow change the toxicity of
the dispersed NPs themselves. Such studies highlight
growing awareness about issues surrounding preparation of
NPs (e.g., whether media should be sonicated or solvent-
dispersed), how these are administered in ecotoxicological
studies, and the associated environmental relevance (e.g.,
whether a solvent-dispersed solution of NPs is an accurate
reflection of how these particles will occur in the
environment).

The general lack of LC50 values for fish may also be for
technical reasons. Maintaining the high mg 1=" concen-
trations needed to achieve acute lethal toxicity is difficult.
At concentrations above 10 mg1~' there is significant
aggregation of many types of NPs, and even with pro-
longed sonication plus the addition of dispersants, it
remains difficult to achieve reproducible solutions (Handy,
personal observations). Interestingly, there are few lethal
toxicity values for in vitro assays using non-mammalian
cells. Work on acute toxicity to fish and invertebrate cell
lines is therefore also required.

Sub-lethal effects of aqueous exposure to nanoparticles
in fish

Several authors have exposed teleost fish to NMs
(Table 2). These include the effects of Cgy fullerenes on
large mouth bass (Micropterus salmoides, Oberdorster
2004), fathead minnow (Pimephales promelas, Oberdorster
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et al. 2006, Zhu et al. 2006), and Japanese medaka
(Oryzias latipes, Oberdorster et al. 2006). The effects of
CNT’s (Smith et al. 2007) and TiO, NPs (Federici et al.
2007) on rainbow trout (Oncorhynchus mykiss) have also
been studied. These studies have identified potential target
organs for NPs. Kashiwada (2006) observed the body
distribution of fluorescently labelled NPs in a transparent
colour morph of the medaka (O. latipes). This experiment
used measurements of fluorescence in the organs of this
“see-through” fish to infer the location of the NPs. The fish
were exposed to mono-dispersed, non-ionised, fluorescent
polystyrene microspheres with a diameter of 39.4 nm at an
aqueous concentration of 10 mg 1~" for 7 days. The gills,
as expected, showed the greatest increase in fluorescence,
shortly followed by the intestine. This suggests that NPs
can at least attach to the gill surface, and may even enter
the epithelial cells. Whether or not polystyrene micro-
spheres behave like other NPs is unclear. However, similar
observations have been made in experiments with trout
where CNTs precipitated on the gill mucus during aqueous
exposure (Smith et al. 2007). However, in the medaka
study the increases in fluorescence in the internal organs
were relatively small and, apart from the gall bladder, there
were no statistically significant increases in fluorescence in
other tissues (brain, liver, kidney or testis; Kashiwada
2006). Of course, this does not mean that the fluorescent
NPs were not absorbed into the blood and circulated to the
internal organs; it could simply be that exposure time
needed to be longer or that excretion rate matched uptake
rate (with no net accumulation). However, caution is
required when interpreting the results of any experiment
with labelled NPs. For example, unequivocal evidence that
the fluorescent label remains attached to the NPs inside the
tissues is often unavailable.

Both the study on medaka (Kashiwada 2006) and the
study on rainbow trout (Smith et al. 2007) demonstrated
the presence of NPs in the gut, despite the fact that the
delivery route was via aqueous exposure. Freshwater fish
do drink a few ml of water kg~' body mass h™' (Eddy
1982) and Smith et al. (2007) argue that this could explain
the appearance of NPs in the gut. This would be especially
important during toxicity, since a stress-induced drinking
response could greatly increase the amount of water that is
imbibed (Smith et al. 2007). Of course marine teleost fish
drink routinely as part of their osmoregulatory strategy
(Eddy 1982) and this raises concerns for exposure of the
gut in marine species.

Other target organs for nanomaterials in fish are inferred
from observations of toxic effects in those organs, rather
than demonstrated localisation of NPs within the organ or
tissue of concern. This is partly because the techniques for
extracting and measuring NPs in tissues are not yet rou-
tinely available. However, we should not exclude the
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Table 3 The effect of nanoparticle preparation method on lethal toxicity estimates

Nanomaterial Preparation method LC50 (48 h) NOEC (48 h) LOEC (48 h) Concentration Author
causing 100%
mortality (48 h)
TiO, Filtered 5.5 NM 2 10 Lovern and Klaper (2006)
Ceo fullerenes Dispersion attempted 7.9 0.2 0.5 NM
by sonication
Cgo fullerenes Dispersion attempted ~ 0.46 0.18 0.26 0.88
with THF
Ceo fullerenes Dispersion attempted >35 NM NM NM Zhu et al. (2006)
by stirring.
Ceo fullerenes Dispersion attempted 0.8 NM NM NM
with THF

THEF, tetrahydrofuran, used to disperse Cg, fullerenes. LCs,, median lethal effect concentration for 50% of organisms after 48 h. Values are
reported in mg 17'. NOEC, no observed effect concentration. LOEC, lowest observable effect concentration. NM, not measured

possibility that toxic effects occur at doses that are difficult
to detect in individual organs (i.e., there is high potency).
For CNT’s at least, the liver appears to be an important
target organ. Smith et al. (2007) demonstrated pathology in
the livers of trout exposed to up to 0.5 mg 1=' CNT for
10 days. Histological changes included altered nuclear
morphology with condensed nuclear bodies that had the
appearance of apoptotic bodies, and cells with diffuse
nuclei in the early stage of cellular necrosis. Biochemical
change is also observed in the liver. Smith et al. (2007)
found a statistically significant fall in thiobarbituric acid
reactive substances (TBARS) in the livers of trout exposed
to CNT. In contrast, Oberdorster (2004) found little effect
in largemouth bass exposed to Cg, for a much shorter time.
Oberdorster et al. (2006) also studied the expression of
mono-oxygenases (CYP family proteins whose role
includes metabolism of foreign compounds) in the liver of
fathead minnows exposed to 0.5 mg 17" Cg fullerenes for
96 h. They found no effects on either hepatic CYP mRNA
levels or the proteins themselves. However, they did report
a statistically significant reduction in PMP70 protein, an
isoenzyme involved in hepatic lipid metabolism (Obe-
rdorster et al. 2006). Interestingly, the reduction in PMP70
may be species or exposure-time dependent, since mea-
surements of PMP70 in medaka exposed to the same
material for a shorter time period (48 h) showed no effect
on protein levels (Oberdorster et al. 2006).

The brain is also a potential target organ, at least for
carbon-based NMs (Oberdorster 2004; Smith et al. 2007).
Oberdorster (2004) first suggested the possibility of brain
injury in fish when a significant elevation in lipid peroxi-
dation was observed in the brains of juvenile largemouth
bass exposed to 0.5 mg 17" Cg fullerenes, although there
was no apparent dose—response relationship. There is some
logic to this concern about the brain given that several
biomedical studies have attempted to exploit the

permeability of the blood-brain barrier (BBB) to natural
lipid micelles and particulates (by endocytosis) to develop
nano-drug delivery techniques for the brain (Cui et al.
2005; Dobson 2001; Kreuter 2005). Smith et al. (2007)
have similarly demonstrated brain pathology in rainbow
trout exposed to 0.5 mg1~' CNT for 10 days. These
pathologies included injury to the cerebral vasculature
(suspected aneurisms) and more minor cellular injuries
such as individual necrotic bodies and small foci of vacu-
olisation in parts of the brain (Smith et al. 2007). However,
brain injury was not a feature of TiO, exposure in rainbow
trout (Federici et al. 2007), and it seems likely that this
brain injury will depend on the nature of the particles, with
other types of NPs targeting different organs.

The Smith et al. (2007) study used a body systems
approach to investigate organ effects, and was able to show
that CNTs are a respiratory toxicant but did not cause
major haematological disturbances. However, there are
many organ systems for which data are not available,
including skeletal muscle and possible locomotion effects,
and effects on spleen, kidney or bone functions. More
ADME (absorption, distribution, metabolism and excre-
tion) data, and a good understanding of the distribution and
localisation of NMs in body systems are needed before a
definitive list of all the target organs for different NMs can
be produced. Nonetheless, available sub-lethal exposure
studies do at least identify some common themes in tox-
icity mechanisms that appear to be similar to those found in
mammalian studies. These mechanisms include oxidative
stress, disturbances to trace element metabolism, and vas-
cular injury, as well as expected injury to the gill during
aqueous exposure (see Smith et al. 2007). For example,
several studies report lipid peroxidation or changes in
TBARS in tissues (Oberdorster, 2004; Zhu et al. 2006;
Smith et al. 2007). Changes in anti-oxidant defences in
tissues are also implicated. Smith et al. (2007) observed a
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compensatory increase in total glutathione in the gill and
intestine during CNT exposure over 10 days, while much
shorter exposures to Cgo fullerenes might deplete tissue
glutathione (Oberddrster 2004). Recently, Zhu et al. (2007)
also implicated oxidative stress in the developmental tox-
icity of Cg particles to zebrafish.

Observations of oxidative stress, and the well known
sensitivity of DNA to oxidising agents, suggest that
genotoxicity may also be a potential mechanism of toxicity
worthy of investigation (e.g., via the COMET assay or
micronucleus induction). Recent studies (e.g., Linse et al.
2007) further suggest that interaction of NPs with proteins
may also be important in sublethal responses. Linse et al.
(2007) used in vitro experiments with buffers containing
soluble proteins and exposure to hydrophobic NPs (CeO,
MWCNTs, polymer-coated quantum dots) to show an
increased rate of protein fibril nucleation (albeit at pH 2,
which is far lower than physiological pH). The mechanism
of nucleation was unclear but the authors speculated that it
might result from particles increasing the probability of
homogeneous nucleation events (by providing locally
higher concentrations of monomers), or that interaction
with particle surfaces could promote protein conforma-
tional changes.

Sub-lethal aqueous toxicity of nanoparticles
to invertebrates

There are a few reports on the effects of NPs to inverte-
brates (Table 2). The use of the waterflea, Daphnia magna,
as a standard ecotoxicology test species is well known, and
it is perhaps no surprise that early studies have focused on
this organism. Several studies have used Daphnia to esti-
mate LC50 values (Table 3). Oberdorster et al. (2006)
have also investigated chronic effects in D. magna and
other invertebrates. D. magna were exposed to up to
5 mg 17" Cg fullerenes over 21 days. At the highest Cq
concentration (5.0 mg 1_1), mortality of 40% was
observed, along with fewer offspring and a delay in mo-
ulting. In the same study, exposure of the freshwater
invertebrate, Hyallela azteca, to 7 mg 1! Ceo fullerenes
for 96 h was reported to have no effect on mobility,
moulting or feeding behaviour (Oberddrster et al. 2006).
More recently, several studies have noted behavioural
effects of NPs in D. magna (Lovern et al. 2007; Roberts
et al. 2007). Lovern et al. (2007) noted changes in loco-
motor behaviour (hopping frequency and appendage
movement) and Roberts et al. (2007) found that D. magna
use the organic lysophosphatidylcholine coating on
SWCNTs as a food source. Published reports on the eco-
toxicity of manufactured NPs to soil invertebrates and
other terrestrial invertebrates appear to be lacking,
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although we are aware of preliminary studies with earth-
worms (e.g., Scott-Fordsmand et al. 2007).

Bacteria, algae and aquatic plants

Similar to the situation for aquatic invertebrates, there are
very few published ecotoxicology studies on environmen-
tally relevant bacteria, algae and plants. Hund-Rinke and
Simon (2006) exposed algae (Desmodesmus subspicatus)
in the growth inhibition test to titanium NPs, and
depending on the method of preparation of the material,
found ECs values ranging from 44 mg 1™' to no effects at
the highest concentration used (50 mg 17'). However, it
has been noted that the surface structure or matrix of plant
cell walls can act as a surface to grow NPs. Scarano and
Morelli (2003) noted that stable nano-crystals form on
marine phytoplankton when exposed to Cd. This raises the
possibility that metal NP exposure in marine algae could
simply arise from the presence of appropriate conditions
for crystal formation at the surface of the organism during
aqueous metal exposures. Plant viruses are also used as
scaffolds for NP construction (Barnhill et al. 2007). These
observations raise the concern that organisms do not nec-
essarily need to be exposed to NMs added directly to the
water, and the possibility that viruses could act as vectors
for the movement or growth of NPs. Plant cells have also
been used as tools during the development of imaging
technology for NMs, and this has generated some inci-
dental information on uptake. Wu et al. (2007) found that
zinc oxide NPs aggregate on the surface of plant cells.
Published studies on the ecotoxicity of NMs to bacterial
species are limited, even though the bacteriocidal proper-
ties of NMs have been reported in the biomedical literature.
For example, it is well known that TiO, NPs and silver NPs
kill bacteria (e.g., Fu et al. 2005; Duran et al. 2007), and
have been used for sterilization of medical devices (Sek-
iguchi et al. 2007). One might therefore expect some of
these materials to be toxic to microbes in the environment.
The bacterium Shewanella algae, has been demonstrated to
deposit platinum NPs, and this is suggested as a biotech-
nology application to recover platinum (Konishi et al.
2007). Perhaps bacteria may be useful in the bioremedia-
tion of NMs. Tong et al. (2007) recently investigated the
effects of Cgy NPs on the bacterial diversity in soil. Using
DNA and fatty acid profiling of the soil, they found little
impact on the microbial community after a 30-day expo-
sure to 1 mg Cgo/g of soil. However, Cgp in suspension
does have effects on bacterial cultures in the laboratory.
Lyon et al. (2005) report minimum inhibitory concentra-
tions of Cgo of 0.5-1.0 and 1.5-3.0 mg 1~ respectively for
Escherichia coli and Bacillus subtilis growth. Interestingly,
the Cg tended to associate more with the Gram-negative
E. coli, suggesting that the surface properties of the
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bacterial cell membrane may be a significant factor in
toxicity. However for Cgq at least, small aggregates are
more toxic to B. subtilis, but the change in toxicity with
particle size is only partially explained by surface area
effects, and interactions with the cell membrane are
implicated (Lyon et al. 2006). ZnO NPs appear to disrupt
the Gram-negative cell membrane structure in E. coli
(Brayner et al. 2006), and it is proposed that NPs with a
positive charge such as cerium oxide could bind the Gram
negative cell membrane by electrostatic attraction (Thill
et al. 2006). Clearly, the intimate relationship between the
physico-chemistry of the medium and membrane biology
of the microbe is emerging as a key factor in NP toxicity to
microorganisms.

Other organisms and routes of exposure

Most of the emerging literature on wildlife has inevitably
tended to be on organisms that are used in aquatic eco-
toxicity testing. There are significant gaps in the literature
for other organisms. For example, there appear to be no
reports on terrestrial plants, amphibians, reptiles, or birds;
although Ek et al. (2004) suggest that long-range transport
of nanoparticulate metals in the air could be a factor in the
bioaccumulation of platinum group metals by raptors.
Furthermore, despite some detailed information on small
mammals in the biomedical literature, there is still a need
to examine relevant small mammals in the wild, such as
voles and shrews. It would also be important to examine
risks to farm animals and the human food chain (Handy
and Shaw 2007).

Most of the ecotoxicology studies to date (Table 2)
have used aqueous exposures. Other routes of exposure
need to be investigated including laboratory-based dietary
exposure to clarify concerns about toxicity via food, as
well as simple food web or mesocosm approaches to allow
ecological interpretation of possible effects. Dietary tox-
icity was identified in trout, where incidental ingestion of
test water (stress-induced drinking) caused pathology in
the gut, and included biochemical evidence of oxidative
stress in the gut epithelium (CNTs, Smith et al. 2007,
TiO, NPs, Federici et al. 2007). There was also evidence
of direct NP precipitation on the gut mucosa in Smith
et al. (2007), and this is perhaps no surprise given that
particles tend to aggregate even in modest saline condi-
tions (Stolpe and Hassellov 2007), such as would be found
in the gut lumen. For similar reasons, the physico-chem-
ical behaviour of NPs (see below) suggests that NPs
would aggregate and adsorp on to many types of surfaces.
This could be adsorption to the surfaces of aquatic sedi-
ments, algal mats, biofilms, soils, and even the exterior
surfaces of organisms (e.g., CNT precipitation on fish
gills, Smith et al. 2007).

Physico-chemical properties of manufactured
nanoparticles and ecotoxicity

Manufactured NMs and NPs are constructed to impart
material-specific physico-chemical properties that are rel-
evant to the type of product application (e.g., oxidising
properties associated with antibacterial nano-products).
Given the diverse range of products and applications, it is
no surprise that generalisations about the chemistry of NMs
and NPs should be made with caution. The diversity of
manufactured NPs is reflected in the ecotoxicological
reports to date (Table 2) which have used several different
types of NPs of varying chemical composition, sizes,
shapes, and ability to disperse in solution. Nonetheless, it is
worth considering some of the fundamentals of particle and
colloid chemistry (Stumm 1993; Elimelech et al. 1995;
Birdi 1997), their behaviours in environmental systems
(Buffle and van Leuween 1992; Grasso et al. 2002; Buffle
and van Leuween 1993; Lead and Wilkinson 2006), and
how this might apply to ecotoxicity. Many issues arise
including the agglomeration or aggregation of NPs, dis-
persion of NPs by interactions with natural organic matter
(NOM) in the water (or by dispersing agents that could be
added in a toxicity test), and the ability of particles to
adsorb onto surfaces. These behaviours will partly be a
function of the surface chemistry of the NPs, the compo-
sition of NPs, the presence of any coatings (“capping
agents”), dissolution of material from the particle surface
into solution (dissolution), and the presence of any readily
soluble substances in the preparation (e.g., metal salts in
CNT preparations, Smith et al. 2007). Nonetheless, we
attempt to summarise the key physico-chemical behaviours
of NPs for the ecotoxicologist below, and describe what
abiotic factors (salinity/ionic strength, pH, hardness, etc.)
have been investigated in ecotoxicity studies so far.

Chemical terminology: dissolved versus colloids

In order to study the ecotoxicology of manufactured NPs to
aquatic organisms the first step is to introduce the particles
to an aquatic medium, i.e., to disperse them. A stable
dispersion of NPs in a liquid is called a colloidal system or
colloidal dispersion. A colloidal dispersion or a sol is one
phase (the solid) homogeneously distributed in another
phase (the water). There is no such thing as a colloidal
solution, and colloids are dispersed rather than dissolved in
a medium. Dispersion has to be strictly separated from the
process of dissolution. The term “colloid” applies to par-
ticle sizes or other suspended material in the 1 nm-1 pum
size range (Lead and Wilkinson 2006). In colloid chemis-
try, a “stabilized” dispersion (kinetically stable when
dispersed i.e., over long time scales, but still thermody-
namically unstable) describes a liquid where the particles
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may collide by Brownian motion or shear flow, but do not
stick together after the collision. This will tend to keep
particles dispersed, and we need to be clear when using the
word “stable” in nanoecotoxicology. For example, an
ecotoxicologist might use the phrase “stable solution™ to
imply consistent properties of a stock solution used for a
toxicity test, whereas the particle chemist uses “stable” to
describe the dispersion of the suspension and its thermo-
dynamic state; in terms of solution behaviour the chemist’s
interpretation it is the exact opposite of the ecotoxicolo-
gist’s interpretation! (see below). In this review we will
therefore only use “stable” to describe the thermodynamic
state of the solution.

Colloidal stability and aggregation

A colloidal dispersion is thermodynamically unstable and
will always tend to aggregate and separate; however, the
process may be slow (hours-days), so that the dispersion
appears to be virtually stable. The processes important for
the separation of a colloidal dispersion are mainly particle
collisions, and attachment resulting in aggregation with
accompanied settling. The particle—particle collisions
originate from three fundamental processes: Brownian
motion of particles leads to perikinetic aggregation, parti-
cles travelling at different velocities in a shear flow
experience orthokinetic (shear) aggregation, and particles
of different size or density undergo differential settling
(Fig. 1). Aggregation may occur as homoaggregation
(particles of the same type aggregating together), or hete-
roaggregation (particles attaching to other particle types
present). In Fig. 1, the collision rate for perikinetic
aggregation and differential settling is lowest for particles
of the same size, hence a monodisperse dispersion will be
more stable than polydisperse dispersions. Also, for small
particles perikinetic aggregation is the dominant mecha-
nism. After the initial interactions there may be more
particle—particle, particle-cluster and cluster—cluster
aggregation processes to consider. Aggregation phenomena
have practical implications, such as the attachment of
particles to the walls of experimental equipment (glass-
ware, fish tanks, or the inner workings of scientific
instruments), and the tendency of NPs to aggregate in
natural waters where other colloid material or micro-
organisms may be present, or on the test organisms them-
selves (Smith et al. 2007).

In a fluid at rest and for particles below 100 nm settling
can usually be neglected over very short time scales
(minutes or hours) since the settling velocity is equal to, or
less than, the Brownian displacement. Hence aggregation
processes such as differential settling or shear flow may be
slow, or irrelevant, as long as no larger particles are pres-
ent. The NPs in the dispersion diffuse by Brownian motion,
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Fig. 1 The three collision mechanisms and associated rate coeffi-
cients for the aggregation of 1 um particles with particles of diameter
d,; Temperature is 12°C, particle density 2.6 g ml~" and shear rate
35 s~!. The cartoons represent the processes of perikinetic, orthoki-
netic, or differential settling respectively. Dotted arrow indicates the
graph relating to each cartoon (process). In this example, perikinetic
processes (e.g., Brownian motion) dominate aggregation rates at very
small particle size, but when particle sizes exceed 1 um orthokinetic
(shear processes) and differential settling become more important

and temperature and the particle number concentration
(e.g., number of particles 17") determine the particle—par-
ticle collision frequency. If the dispersion is fully
destabilized then each collision is successful, hence the
collision efficiency is unity. For spherical particles and
collisions between particles and aggregates that are not too
different in size the resulting perikinetic aggregation can be
described by the Smoluchowski equation:

dNr , 4kpT
T —k,N3 with k, = ey

With N7 the total number concentration (primary
particles and aggregates), k, the rate constant, kg the
Boltzmann constant, 7 the temperature, n the dynamic
viscosity and ¢ the time.

However, this simplification does not take into account
effects which stabilize colliding particles, resulting in a
collision efficiency <1. The stabilization originates from
forces between the particles. The particles affect each other
by attractive and repulsive forces that act on different
length scales (fractions of nanometers to several nanome-
ters). The forces usually accounted for are Borne repulsion,
diffuse double layer potential, and van der Waals attrac-
tion. These forces are treated in the extended DLVO
theory. DLVO theory was developed by Derjaguin and
Landau (1941), and Verwey and Overbeck (1948) (hence
the name DLVO); and balances the attractive and repulsive
forces acting on two closely adjacent particles (Fig. 2).
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Fig. 2 A schematic diagram showing (left panel) the electrical double
layer (EDL) on the surface of a particle, with the different potentials to
be considered and the Debye length 1/x which is the length where the
potential has fallen to a value of 1/e of the Stern potential. An
increased ionic strength (addition of salt ions) will cause additional
charge screening of the surface and effectively compress the EDL. The
Debye length can range between fractions of a nm (seawater) and
nearly 1 pm (ultrapure water). The right hand panel shows a simplified
graph summarising the DLVO interaction energies and the resulting
sum function. The top graph shows a situation where the repulsive
forces (e.g., electrostatic charge repulsion) are working against the
attractive forces (van der Waals) and an activation energy is required
to achieve particle—particle attachment in either the secondary or
primary minimum. The bottom graph shows three possible situations:
fully stabilised system, a system having secondary and primary

However, DLVO theory does not include the effects of
particle shape, charge heterogeneity, and surface rough-
ness, which may also influence the collision efficiency
(Elimelech et al. 1995; Bhattacharjee et al. 1998; Grasso
et al. 2002). It must be emphasized that DLVO theory is
only applicable if there is no interference with such dif-
fusive or attractive forces. If the electrostatic diffuse
double layer (EDL, see Fig. 2) surrounding adjacent par-
ticles overlap, then other factors are involved. This may be
the case for particles of <20 nm at ionic strength of
<1 mM (Kallay and Zalac 2002).

While van der Waals forces between surfaces separated
by a medium can be regarded as material constants and are
always attractive, the EDL consists of the layer of charge at
the surface of a particle and the electric field generated by
the charged surface. This can have a net negative or

minimum and a fully destabilised system where the energy barrier for
attachment in the primary minimum has vanished. Attachment in the
primary or secondary minimum has certain consequences for the
reversibility of attachment: escape from the secondary minimum can
be achieved by slight energy input (e.g., ultrasonic power) or reduction
in ionic strength, escape from primary minimum is often impossible or
can be achieved by charge reversal if attachment was due to opposite
charge of particles. Abbreviations: zeta potential (), electrostatic
potential (1), electrostatic potential at the stern layer (i/s), Euler’s
number (e), Boltzmann constant (k). X is a distance from the surface,
X, is the distance where ions and molecules are mobile and can be
sheared off (shear plane), and potential here is measured as the zeta
potential. The diffusion layer is an unstirred layer of water adjacent to
the surface, and the bulk solution is the free moving water (e.g.,
seawater, freshwater)

positive charge, depending on the surface ligands of the
particle. These forces are generally repulsive (i.e., like
charges of two identical particles will repel each other). If
the repulsive forces are strong enough the colloidal dis-
persion can be virtually stable. The repulsive forces are
electrostatic (equal net charge), and act on fairly large
length scales involving the outer layer of the particle, hence
the term electrostatic double layer (EDL). However, now
consider the effect of adding salt ions (e.g., NaCl) to the
medium. Clearly, opposite charges will attract, and some of
these salt ions will accumulate in the EDL and screen some
of the surface charge of the NPs. This will reduce the EDL
thickness and the length scale that repulsive (stabilizing)
forces act on. Of course the salt does not have to be NaCl.
Di- and trivalent ions are especially effective at charge
shielding, and can act even more effective as soon as they
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are specifically sorbed to the particle’s surface. The net
surface charge of the particles is difficult to measure
directly, and zeta potential () is often measured. However,
zeta potentials are only the potential at the shear plane
which divides the ions and molecules fixed to the surface
from those that can freely move with the liquid relative to
the bulk aqueous phase (Fig. 2; van Leeuwen and Galceran
2004). So, strictly speaking, zeta potentials are not mea-
surements of the surface charge of the particle itself, but a
voltage reflecting the effects of surface charge and flow
dynamics near the surface.

The addition of salts to the media (thus increasing
ionic strength) will compress the EDL. Two particles can
now approach each other more closely and start to be
affected by attractive forces that are acting on shorter
length scales (e.g.,van der Waals forces, hydrophobic
interaction forces or electrostatic attraction due to surface
charge heterogeneity). Such attractive forces can mean
that a collision leads to an attachment (first step of
aggregation) of the two particles. In addition to the
importance of ionic strength for influencing aggregation
behaviour, in natural waters it is well known that highly
negatively charged natural acids (e.g., humic and fulvic
acids) will bind to natural mineral NPs (positively
charged). This may lead to a reduction in surface charge
of the particles (positive charged particles, low concen-
tration of humics), a net neutral surface charge
(intermediate concentration of humics), or even provide
them with a net negative surface charge by charge
reversal that stabilizes the colloidal dispersions (elevated
concentration of humics). However, the outcome of
interactions with humics and particles cannot be easily
predicted, but may be analyzed experimentally, e.g., by
acid-base titrations and measurement of zeta potential.
This chemistry clearly has implications for ecotoxicity
experiments. For example, NP dispersion will depend on
the type and amount of natural organic matter in the
water (Hyung et al. 2007; Giasuddin et al. 2007), and
the salt content. It is likely that manufactured NPs will
quickly aggregate in natural seawater, even at low
salinity.

Particles can also be sterically stabilized by surface
orientation, or binding of surfactant molecules, or poly-
mers, which physically hinder two particles from
approaching each other. Steric stabilization can stabilize
colloidal dispersions even at higher levels of ionic strength
when DLVO theory would predict strong aggregation. This
means that we might use chemical agents to disperse NPs,
as long as the appropriate “solvent controls” are included
in any ecotoxicology experiment (e.g., Smith et al. 2007
used sodium dodecyl sulphate, SDS, detergent to disperse
CNT). It is also probable that the presence of solvents and
dispersants in waste-water going to sewage treatment
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works are likely to influence the behaviour of NPs during
treatment. For example, dispersants in the influent water
could lead to a slower rate of NP aggregation than pre-
dicted by particle size, dissolved organic matter, or salinity.
This influence would presumably also change during
sewage treatment as dispersants are degraded (e.g., by
microbes in the clinker beds).

It is also possible to achieve the opposite effect (aggre-
gation) by adding multi-charged polymer reagents to the
media. The opposite destabilizing process will be polymer
bridging by a multi-charged polymer that binds to several
particles while the polymer forms a bridge between them.
This process is utilized in sewage and water treatment
facilities, and also occurs in nature where charged poly-
saccharides (such as exudates from algae) promote
aggregation. It is well known that organic substances from
surface waters may promote aggregation while soil-derived
organic matter tends to stabilize natural NPs (Wilkinson
et al. 1997). Multiple charged cations and anions (Ca**,
SO,*7) may show the same effect of promoted aggregation.

Variable charge and surface charge

Another important consideration for the stability of col-
loidal dispersions is the variability of charge with the pH of
the surrounding medium. Some NPs show a net negative
charge over wide pH ranges (e.g., clay minerals where
charge is often only slightly pH dependent). Other parti-
cles, for example, many oxides and carbonates show a
positive charge at low to circumneutral pH, or, as with iron
oxides, have their point of zero charge (PZC) in the pH
region of natural waters (pH 6 to 8). The PZC will also be
affected by other factors such as surface sorbed organic
matter, but not by ionic strength (Hendershot and Lavku-
lich 1979). As long as the latter particle types (neutral
charged) do not interact with natural organic matter or
show specific adsorption of charge (e.g., carbonate ions),
they will have low stability and will quickly aggregate.
Charge heterogeneity is also an important consideration;
clay minerals may show aggregation even at net negative
charge due to charge heterogeneity, in which the edges of
the particles are positively charged while the faces are
negative (edge-face or card house aggregates). Clearly,
surface charge screening on particles can be altered by H*
concentration in a predictable manner. In practice, mea-
suring the zeta potential as a function of pH can give
reasonably good predictions of colloidal stability. If this
approach is combined with titration of other naturally
occurring substances in the medium (humic acids, car-
bonate, mono- and divalent cations), then the stability may
be estimated for relatively complex media (e.g., natural
waters).
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Dispersion of nanoparticles

The production of colloidal dispersions is an area of intense
activity in the field of colloid chemistry and clay science
(Seta and Karathanasis 1996; Carrado et al. 2006; Lagaly
2006). The dispersion of a solid is often achieved by the
removal of substances which promote aggregation or by
the addition of surface active agents. This may not be
desirable from an ecotoxicological perspective, because
modifying a natural water to remove NOM or carbonates
so that manufactured NPs will disperse could be regarded
as removing ecological realism from the experiment.
Alternatively, adding materials such as detergents or sol-
vents to the test medium might result in surface
modification of the NPs (e.g., surfactant adsorption to the
particles); with implications for ecological realism and
interference with the very toxicological properties eco-
toxicologists are trying to investigate.

Most of the manufactured NPs used in ecotoxicological
studies so far have been particle systems not designed to be
in pure aqueous solutions (e.g., fullerenes, carbon nano-
tubes, carbon black) and it has been very obvious that
dispersing these particles is virtually impossible in pure
water by physical means alone (e.g., Smith et al. 2007).
Some of the NPs (e.g., metal oxides or sulfides) would be
slightly more dispersible due to hydroxylation, or at least
hydration, but most of the systems also have strong
attractive forces. This suggests a stark choice for the eco-
toxicological experimenter: disperse the NPs and risk the
criticisms outlined above, or accept that they may aggre-
gate during the experiment. The chemistry suggests that
NPs will aggregate in many types of natural waters (e.g.,
hard freshwater and seawater), and it may sometimes be
argued that it is more ecologically relevant to use the
natural aggregated NPs for experiments. Clearly, careful
consideration of the solution chemistry of the water/envi-
ronmental sample, and the possible methods of dispersion
for the specific NP being investigated is needed (see Crane
and Handy 2007 for a detailed practical discussion).

Ecotoxicologists have essentially used three basic
approaches to achieve dispersion of NPs (Table 2); sol-
vents or surfactants, sonication, or prolonged stirring. It is
worth considering these approaches in the context of the
fundamental physico-chemistry discussions above. First,
consider solvents. Solvents such as tetrahydrofuran (THF)
which has been used to disperse Cgo fullerenes (e.g.,
Oberdorster 2004), act as a co-solvent rather than as a
surfactant. THF provides a “solubilization” of the fullerene
molecules in the water-THF mixture by making the sol-
vent-water mixture less polar. This inevitably changes the
behaviour of the NPs in the water. Furthermore as Smith
et al. (2007) suggest, the choice of dispersant is problem-
atic since some of the best dispersants from the viewpoint

of chemistry (e.g., amides and furans (Ham et al. 2005))
are also likely to be toxic to organisms. For example,
although THF has been used in ecotoxicity studies (e.g.,
Oberdorster 2004), there are concerns about its toxic
effects, or effects of contaminants in the THF solvent
(Henry et al. 2007). Zhu et al. (2006) exposed two popu-
lations of D. magna to Cgy fullerenes, one dispersed in
THF, the other stirred into water for a minimum of
2 months. The 48h LC50 values were 0.8 mg 1~ and
>35 mg 17" for THF and water-stirred particles respec-
tively. These findings suggest that the toxicity of Cgq
particles was increased by the THF. Fortner et al. (2005)
argues that this could be due to residual THF being trapped
in the centre of C¢, aggregates, or some other unpredicted
effect of THF on particle shape or size. A compromise is
possible in which a less powerful dispersant is used that
will still give reasonably good dispersion, but with less risk
of solvent toxicity to the test organism. This approach was
used by Smith et al. (2007) who used the detergent SDS to
disperse carbon nanotubes. In any case, it is likely to be
essential to measure the relevant physical-chemical prop-
erties at the start and end of any ecotoxicity experiment to
ensure minimal during the experiment. This is time con-
suming, but gives further confidence in experimental
results and will help with data interpretation.

There are also some fundamental conceptual problems
with the use of prolonged stirring or sonication to disperse
NPs. Stirring or sonication simply provides energy that
may break up aggregates, and will enable initial dispersion,
but if the solution chemistry does not provide colloidal
stabilization the NPs will eventually aggregate again. If
prolonged stirring increases the dispersability it means that
there must have been a spontaneous surface modification
(e.g., hydroxylation of surface groups), and the stirring
itself would not be the driving force for the dispersion. One
might argue that prolonged stirring could modify the NPs
so that any ecotoxicological test using NPs dispersed by
this method may not be representative of the original
material. These arguments must of course, be balanced
against the practical issue of getting the NPs into a liquid
phase to enable handling of the material during a toxicity
test.

Evidence that physico-chemistry alters the ecotoxicity
of nanoparticles

As a research community, we are able to describe some of
the fundamental physico-chemical behaviour of colloids
and other particles, and we recognise that generally the
ecotoxicology of chemicals (and particles) is altered by
abiotic factors such as pH, salinity, water hardness, tem-
perature, and the presence of dissolved organic matter in
the water etc. However, this is an area where research is
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particularly lacking for manufactured NPs. To date, there
have been few systematic ecotoxicological studies to
investigate how changes in abiotic factors such as pH,
hardness, ionic strength, or the presence of organic ligands
in the water influence ecotoxicity. Many basic questions
remained to be answered. For example, for metals, do the
same rules about the protective effects of increased water
hardness or altered pH on some organisms apply to metals
in nanoparticulate form? We might argue that they should
if the functional material on the surface of the metal par-
ticle is a metal ion. Alternatively, elevation of hardness
would be expected to increase aggregation due to specific
sorption and/or compression of the EDL (Fig. 2), but we do
not know if these effects decrease or increase toxicity yet.
The ecotoxicity of NPs in seawater compared to freshwater
is also unclear. Experimental evidence from colloid
chemistry in saline conditions suggests that even small
increases in salinity above that of freshwater (e.g., 2.5 parts
per thousand, ppt) can dramatically decrease colloid con-
centrations by aggregation and precipitation processes
(Stolpe and Hassellév 2007). For many estuarine organ-
isms such a small salinity change alone would have little
biological effect, but this chemistry study predicts the rapid
loss of colloid from the freshwater as soon as it enters the
estuarine zone. This implies that toxicity tests in freshwater
are not likely to be informative of toxicity in sea water, and
further implies that sediment dwelling and particle filtering
organisms in estuarine and marine ecosystems are likely to
be important receptors for hazard assessment. Furthermore,
the mechanisms of toxicity could be fundamentally dif-
ferent because organisms in freshwater and seawater will
experience different physico-chemical forms of the same
NP because of salinity effects on aggregation. At least one
study has included some salinity experiments. Kashiwada
(2006) exposed medaka eggs to fluorescent NPs (30 mg 17")
at a variety of different salinities. An increase in toxicity
was seen with increasing salinity, along with a greater
tendency for the particles to form aggregates. At a salinity
of approximately 18.5 ppt the greatest fluorescence in the
tissue (accumulation) was reached and 100% of the eggs
were dead within 24 h. At higher salinities approaching
that of normal seawater, accumulation decreased but the
egg mortality rate remained high.

Does particle size and shape alter ecotoxicity?

Another possibility is that it is not just the colloid chem-
istry of the particles, but their size or shape that influences
toxic effects (an idea well established in mammalian
respiratory toxicity, Maynard and Aitken 2007). Clearly, a
central question is whether or not small size alone is the
cause of toxic effects? There are almost no ecotoxicolog-
ical data that have systematically investigated particle-size
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effects, although as discussed above size will affect various
physico-chemical properties. Such studies are important as
they inform the need for additional hazard assessments for
materials in nano form as compared to bulk form. Kash-
iwada (2006) showed a particle-size effect on the
accumulation of fluorescent NPs in the Japanese medaka,
with the smaller particles accumulating more quickly.
Alternatively, studies on mammalian immune cells show
no difference in toxicity of ultrafine carbon dust compared
to much smaller carbon NPs (Barlow et al. 2005). There
are also reports of differences in the acute toxicity of dis-
persed NPs compared to larger aggregates of the same
material in invertebrates (Lovern and Klaper 2006;
Table 3). There are not enough data to reach a consensus
on this issue in ecotoxicology, but this does suggest that we
ought to measure particle size, shape, and surface area
during experiments (see below).

Does particle surface area alter ecotoxicity?

The fundamental concerns are that NPs are very small, and
therefore present a very large surface area relative to the
particle volume, or that the surface of manufactured NPs
may be reactive. There is at least some speculation that the
ability of NPs to generate reactive oxygen species (ROS) at
the surface of the NPs, when adjacent to cell membranes,
might initiate inflammation reactions or immune responses
(Barlow et al. 2005). Oxidative stress has been reported in
the tissues of aquatic organisms during NP exposure (CNT,
Smith et al. 2007; TiO, Federici et al. 2007). For TiO, NPs
at least, the catalytic properties of the particle surface
(Watanabe et al. 1999; Hirano et al. 2005) might reflect
toxic effects (see discussion in Federic et al. 2007).

A particular concern for metal-based NPs in relation to
small size and large surface area is the dissolution of sol-
uble metal ions from the surface of the particle, and
perhaps the eventual complete dissolution of the particle so
that only metals in solution remain. Even with solubility of
a few percent, a 1 mg 17" solution of a metal oxide NP
might generate pg1~' concentrations of metal ions in
solution, and so there are concerns that some NPs will act
as delivery vehicles for free metal ions. Clearly, free metal
ion concentrations can be monitored during experiments,
but it would be useful to know the solubility of the NP in
advance. Solubility can be measured with reasonable
accuracy by a combination of a size fractionation method
(dialysis, ultracentrifugation, ultrafiltration, or field flow
fractionation) followed by total metal analysis by ICP-MS
or GF-AAS (e.g., Lyvén et al. 2003). However, these
combined approaches are not routine, and become techni-
cally difficult below 10 nm (separation is less exact). In
addition, contamination or sorptive loss of the metals can
become important at low nanomolar concentrations.
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Does particle surface charge alter ecotoxicity?

The idea that surfaces will exchange or adsorb pollutants
is not new and this has been investigated in the context
of colloids (Guo et al. 2002; Wilkinson and Buffle 2004;
Lamelas et al. 2005). For the ecotoxicology community,
adsorption phenomena have been applied to metal
binding on fish gills (for a review see Handy and Eddy
2004) which is controlled by physical factors such as the
net charge of the surface (e.g., polyanions on cell
membranes), the ionic mobility of counter ions in the
external medium (partly defined by charge density and
the hydrated ionic radius of the ion), and competition
with other ions in the medium such as H" (Handy and
Eddy 1991). Such experiments have led to potentially
predictive equilibrium toxicological models such as the
biotic ligand model (Paquin et al. 2002), and bioavail-
ability models based on dynamic concepts (van Leeuwen
et al. 2005). Some of these ideas can also be applied to
NPs.

Some NMs have a net negative surface charge (e.g.,
fullerenes, CNTs) and will therefore bind cationic pollu-
tants such as metals. Charge also largely determines the
rate and extent of aggregation, as predicted by DLVO
theory (see above). There is evidence that NPs do interact
with trace metals, and surface charge may be fundamen-
tally involved in these effects. Li et al. (2003) have shown
that multi-walled CNTs (MWCNTSs) have mg g~ ' levels of
Pb, Cd and Cu. Although this level of either metals or
CNTs is unlikely in the environment, it shows a great
capacity for metal interactions with NMs. In addition iron
oxide particles strongly bind trace metals such as Cu and
greater binding is observed at smaller particle sizes
(Madden et al. 2006). Thus the presence of NPs can
enhance the toxicity or bioaccumulation of other contam-
inants. For example, carp exposed to cadmium (Cd) in the
presence of TiO, NPs showed much greater Cd accumu-
lation than in the presence of Cd alone (Zhang et al. 2007).
Fish exposed to Cd alone had a Cd concentration of
9.07 ug g~ dry weight compared to 23.3 ug g~ ' in the
Cd + TiO, treatment. Some interactions may not relate to
surface charge, but the absence of charge or the hydro-
phobicity of the surface. Moore et al. (1997) exposed
mussels (Mytilus edulis) to nano-size particles of sucrose
polyester alongside the polyaromatic hydrocarbon (PAH),
anthracene. The uptake of anthracene was increased by
160%, and cellular toxicity by 122%, in the presence of
NPs. One explanation is that the surface of the NP is
involved in the delivery of the PAH. Clearly, the interac-
tions of the surface of manufactured NPs with existing
chemicals is worthy of further investigation, and may
be as important as the intrinsic toxicity of the NPs
themselves.

Concentrations of manufactured nanoparticles
and nanomaterials in the environment

Handy and Shaw (2007) recently reviewed environmental
exposure to manufactured NPs in the context of human
health. They identified several anthropogenic sources
including air pollution, the use of NMs in agriculture and
farming products with consequent issues for the contami-
nation of the food chain, as well as applications in water
treatment or water-related technology that imply some
potential exposure for aquatic systems. Environmental
remediation is one specific application where there will be
deliberate introduction of significant levels of manufac-
tured NMs to soils and groundwaters (Tratnyek and
Johnson 2006). In addition, there is a risk of diffuse pol-
lution during the product life cycle of NMs, and concerns
about disposal by landfill and incineration (Handy and
Shaw 2007). However, even though we can logically pre-
dict potential sources of NP pollution, there appear to be no
measurements of concentrations of manufactured NPs in
field-collected samples. There are certainly no routine
environmental monitoring programs for manufactured NPs.
Nonetheless, simple models based on estimated product
usage and NP concentration in the products could be used
as a starting point to predict worse case scenarios (Boxall
et al. 2007).

One counter argument to worries about manufactured
NPs is that natural NPs have been in the environment for
millions of years from weathering processes and natural
geochemical cycles, but as we point out in the introduction,
it is the novel chemistry of manufactured NPs that are also
a concern. Natural NPs are not necessarily harmless (e.g.,
respiratory toxicity from volcanic dusts, Forbes et al.
2003). One challenge is therefore to measure both naturally
occurring and manufactured NPs in the environment, and
to differentiate between the toxicity of these.

The question also arises of whether effluents and waste-
waters containing NMs can be cleaned up. The above
physico-chemistry suggests that most NPs are likely to
aggregate, given the high concentrations and types of
organic matter and solids at sewage treatment works. So,
existing sewage treatment methods might be effective.
Alternatively, some manufactured NPs do have bacterio-
cidal properties (e.g., nano silver) and we do not know
what the possible effects will be on the micro-organisms
involved in secondary waste treatment. However, these
concerns do need to be balanced by the potential benefits of
nanotechnology. In the case of sewage treatment, the
addition of TiO, NPs in the presence of UV light (photo-
catalysis) can remove 70% of total organic carbon from
waste-water (Le-Clech et al. 2006).

One final source of exposure is accidental releases and
spillages of manufactured NPs directly into the environment.
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This is a risk with any manufactured material, not just NMs.
There is little information on the persistence of manufactured
NMs in environmentally relevant matrices, and there are
some concerns that the standard octanol-water partition
coefficients (K,) tests may not work with NPs (Crane and
Handy 2007) and therefore may not be useful for predicting
bioaccumulation potential or chronic effects. As discussed
above, NMs mixed with river water containing NOM remain
in suspension over long time periods (Giasuddin et al. 2007,
Hyung et al. 2007), although chemical interactions between
the two may change the behaviour of both natural and
manufactured materials. In addition, changes in pH, ionic
strength and Ca concentration may promote aggregation.
From the viewpoint of a spill into a river, we might therefore
expect the material to stay initially in the aqueous phase, but
to aggregate and settle out as it moves down stream. In either
case, the material is still present in the environment and will
persist. Presumably the only way these NMs will be removed
from the environment is through solubilisation or diagenetic
processes. Thus both these processes are of considerable
importance in our understanding of environmental concen-
trations. However, for persistent NMs we might expect
sediments, sludges and soils to be sinks for these materials,
and so soil and benthic organisms should be a particular
focus of ecotoxicology research.

Challenges for measuring manufactured NPs
in the environment

The detection of NMs in the environment is complicated by
three issues:- (i) low concentrations of NMs seem likely in
the environment (ng 17! or low ng 171, Boxall et al. 2007),
(ii) relatively high concentration of natural NPs (e.g., col-
loids) or organic carbon (mg 17') may make the detection
of manufactured carbon-based NPs very difficult, (iii)
similar arguments apply to metal-based NPs and back-
ground levels of trace metals in the environment, in the
dissolved or colloidal forms. This latter point rules out the
bulk measurement of total metal NPs (e.g., by ICP-MS
alone) directly in environmental samples as a means of
quantifying NPs; fractionation prior to ICP-MS is needed
(e.g., Lyvén etal. 2003). However, there are many
approaches to measuring NPs in the laboratory (see below)
and it is a question of applying these techniques to extract
NPs from environmental matrices, and then to separate the
NPs in the extract using existing size-separation tech-
niques. Therefore a priority research issue is the extraction
of NMs from soil and sediments, or other complex matri-
ces. However, these challenges are no more difficult than
extracting other complex contaminants (e.g., organic pol-
lutants from soil matrices). We believe it is possible to
develop physical and chemical measurement methods for
field collected samples, to validate them, and then to apply
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them to monitoring programs. Most likely these method-
ologies will involve size fractionation, total element or
isotope analysis, along with suitable labelling (fluorescent
or isotopic) and ancillary measurements. This viewpoint is
consistent with the view of Maynard et al. (2007), who
primarily focused on atmospheric particle pollution and
human health.

Practical issues of measuring and characterising NPs
for the ecotoxicologist

Clearly, for many ecotoxicologists, particle chemistry and
the practical methods needed to measure NPs may be new
techniques that have not been applied in ecotoxicological
studies. We therefore attempt to summarise some of the
methods for measuring and characterising NPs here, and
focus on some of the common methods where the equip-
ment might be reasonably found in a typical materials
science or physical chemistry laboratory in academia or
industry. These methods are summarised in Tables 4 and 5.
Some of these techniques require considerable training and
experience, so it is inevitable that many ecotoxicologists
will need to collaborate with materials scientists and
chemists to collect characterisation data.

Measuring particle concentration and chemical
composition

Concentrations can be based on mass, SSA or number.
Ecotoxicologists are used to working with mass concen-
tration (e.g., mg 17') and there are several approaches for
determining particle concentration. Most of the simple
techniques listed in Table 4 such as gravimetric methods,
turbidity, or spectrophotometry of the samples can detect
mg 17! concentrations of material and the equipment nee-
ded is familiar and available in most laboratories. These
approaches might be useful for a lethal dose test where
high concentrations are used. However, such approaches
generally cannot detect jig 17! concentrations or less, and
might be of limited use for chronic studies, or for some
field-collected samples where concentrations of NPs may
be low. In addition, choice of standards to relate instrument
signal to concentration is problematic in these complex
systems. More sensitive methods, such as laser induced
breakdown detection (LIBD) might be employed for the
latter, but this is a more specialist technique and the
equipment is not routinely available in most laboratories.
LIBD, like all laser techniques is more difficult to perform
with non-spherical particles or porous organic material that
might alter the behaviour of the laser light on the surface of
the material, but it would work well with, for example,
hard metal oxide spheres. For metal-based manufactured
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NPs, existing methods of trace element detection can be
employed such as ICP-MS, ICP-OES, and GFAAS (or
flame AAS at high concentrations) that have been used for
many years in metal toxicity studies (e.g., Handy and
Depledge 1999). However, some caution is also needed.
Routine protocols for trace metals should also be validated
with the metal NP of interest. For example, there is some
evidence that ICP-MS for TiO, NPs behaves differently
from Ti metal solutions (Federici et al. 2007) and there are
concerns that NPs may not fully atomise in the furnace of
the instruments. Of course, ICP-MS and similar traditional
metal analysis techniques can be used to overview the
elemental composition of a liquid sample. However, for
natural waters or field-collected samples this will also
include the background metal levels, and it is not always
possible to differentiate the metal composition of the
manufactured NP from this background.

An alternative approach is to look at the elemental
composition of individual NPs using electron microscopy
techniques. These can be coupled to methods for analysing
element concentrations and speciation within a single
particle such as X-ray diffraction and reflection methods
(e.g., energy dispersive X-ray transmission electron
microscopy, TEM-EDX methods). These have been used
by geochemists and biologists to look at naturally occur-
ring metal granules and NPs (e.g., Wu et al. 2002). These
techniques offer spatial resolution at the nm level, and for
metals, it is possible to detect the main components in a
particle (e.g., heavy metals and major anions like phos-
phorus). The main limitation for the ecotoxicologist is that
some skill in electron microscopy is needed, but these
facilities are available at many universities.

Particle number (i.e., number of particles/unit volume),
perhaps reflecting the cumulative toxic effect associated
with shape or surface area of each particle, may be as
critical as the measured mass concentration in particle
toxicity (Oberdorster et al. 2007). Particle number can be
determined by visual counting methods such as light or
electron microscopy (EM). Light microscopy has a pm
resolution, and will detect large aggregates, or polymerised
strands of NMs (e.g., Lam et al. 2004), but cannot detect
individual NPs. EM techniques offer nm scale resolution,
making it possible to count individual particles and detect
shape. Whether scanning, transmission, or atomic force
microscopy (AFM) is used, all these techniques suffer
some draw backs. Firstly, the NPs need to be transferred
from their dispersed state to a dried or vacuum state on a
support grid in order to be placed in the microscope. The
drying inevitably will alter the colloid behaviour of the
material, and there is no way of being certain that aggre-
gates present on an EM grid are truly representative of the
sample, or whether they are just an artefact of preparation.
Secondly, EM techniques use very small volumes, and

many grids from repeat sub-samples of the dispersion
would need to be counted in order to give a statistically
robust measure of particle number per litre of dispersion.
Other techniques that count particle number in the whole
suspension may therefore be more practicable. Nonetheless
microscopy techniques are very valuable to visualize and
determine the shape of particles, but the inherent limita-
tions above should be kept in mind and characterization
should preferably not solely be based on microscopy.

Measuring particle shape, size, and surface area

Measurement of particle shape, size and surface area (in
addition to particle numbers) could be used merely to
confirm the structure of the material being used for
experiments, but equally there are suggestions that particle
surface area may be a better metric than concentration to
describe the dose-response relationship (Oberdorster et al.
2007). In addition, there are well known examples in the
respiratory toxicology literature where particle size and
shape have been critical to uptake and toxicity (e.g., the
uptake of asbestos fibres into lung epithelial cells, Bonner
2007).

There are several optical methods that may be used to
determine information about particle shape, size distribu-
tion, and sometimes, additional information on the number
of particles in the dispersion can be obtained (Table 5).
Given that the dispersion of NPs is sensitive to the
aggregation chemistry outlined above, techniques that give
minimal perturbation and without any additional sample
preparation are preferred. This is partly why probing
methods using electromagnetic radiation (e.g., light, X-rays
or neutrons) are preferred, and the scattering patterns can
be related to physical or even structural properties of the
particles. Of these approaches, the only method that is
readily available in many laboratories is dynamic light
scattering (DLS) where the fluctuations in the scattered
light from single NPs can be mathematically related to the
diffusion coefficient (and hydrodynamic diameter) of the
particles. DLS is relatively simple to perform, but has two
important limitations. Firstly, it is not suitable to determine
very broad size distributions (e.g., combinations of nano
and fine particles), but it would work well for typical
samples of manufactured NPs. For example, where the
average particle size is expected to be 50 nm, there may be
a range of sizes £ 30 nm about the mean. Secondly, DLS
is an intensity-based technique and the determined size is
biased towards larger components of the samples (due to
the non-linear relationship of light scattering intensity as a
function of size, Holthoff et al. 1996). Therefore even a
very small fraction of dust or other micrometer sized
particles will distort or even cover the signal from the
NPs. It should be emphasised that at constant number
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concentration the intensity of the scattered light scales with
d® when the particles are much smaller than the laser
wavelength and still with d* if particles are similar or larger
than the wavelength. Hence with some 1 pm particles in
the sample even a high number of 10 nm particles will not
even show up in the measurement. Additionally it has to be
pointed out that the intensity weighted distribution func-
tions from DLS cannot be transformed into volume, surface
or number distributions without exact knowledge of parti-
cle shape, structure and refractive index; and multi-angle
measurements should always be performed for such con-
versions (Filella et al. 1997). Nonetheless, DLS when
applied carefully can be used to clarify particle sizes in test
materials, and is useful for monitoring changes in aggre-
gation behaviour during experiments. DLS could also be
used to characterize fractions collected from other size
separation techniques.

Another minimum perturbation method for determining
the size distribution of NPs is Field-Flow Fractionation
(FFF) that is a chromatography-like size-fractionating
method without a stationary phase. FFF separates the NPs
according to their particle size (diffusion coefficient) only
by means of hydrodynamic forces present as the particles
flow gently down an open channel (e.g., Taylor and Sim-
kiss 2004). Some kind of detector is required to monitor the
size distributions emerging from the channel. Some of
these techniques are also used for concentrations mea-
surements (e.g., as in Table 4), including UV absorbance,
ICP-MS etc. Therefore, the detection method needs con-
sidering in addition to the FFF itself.

BET analysis (originally reported by Brunauer et al.
1938) is perhaps the most readily available method for
determining particle surface area, and in addition, net
surface charge (related to zeta potentials) may be useful for
describing the possible chemical or biological reactivity of
the particle surface. Surface area, or rather specific surface
area (SSA, e.g., mz/g of material), can be measured by
calculation using transmission EM measurements of the
particle dimensions. However, EM is labour intensive, and
cannot easily take into account the complex surface shape
or porosity that may influence surface area measurements.
BET analysis may therefore have some advantages over
EM techniques (Table 5), but the SSA measured by BET in
a dry sample may not coincide with the apparent surface
area in aqueous dispersion, especially for aggregating
particles (Waychunas et al. 2005). It is therefore better to
use a combination of BET, EM, and other techniques for
both accuracy and confidence in the data collected. There
will also need to be an ecotoxicological interpretation of
any surface area measurements in relation to the aggrega-
tion chemistry of the NPs. We may need to consider
“apparent” surface area (surface area lost due to particle—
particle contact in an aggregate, which may be dominant or

negligible depending on the aggregate type) and whether
the measurement method would reflect this. Also we may
need to consider the issue of the “bioreactive” surface
area, similar to the issues in soil matrix ecotoxicology
(Reid et al. 2000), and how much of the surface area is
actually accessible to the organism. Alternatively, from a
chemistry perspective, the “active” surface area may be
defined as that fraction of the total SSA which contains
potentially biologically active material such as metal ions.
Measurement of the latter parameters is not well defined,
but nonetheless these are important concepts for the eco-
toxicologist to consider when interpreting surface area
data. A word of caution must also be inserted here. Both
TEM and BET analyses are performed under ultra high
vacuum conditions (UHV) which means that the sample is
completely dehydrated prior to measurement. We should
be mindful that in ecotoxicological experiments we will be
looking at surface area effects in the solution phase and the
behaviour of the particle surface (unstirred layers, charge
shielding etc) will be different to the behaviour of the dry
nanopowder. Importantly, because of the physico-chemis-
try outlined above, the bioreactive surface area is likely to
be less than the measured total SSA. In addition, because of
these complexities the SSA measured in the “solution
phase” may not be the same as the dry powder, even when
using an identical measurement technique.

Considerations for hazard and risk assessment

Our review highlights some of the challenges facing eco-
toxicologists, (academic, industrial and regulatory) and risk
assessors as they attempt to assess the hazards and environ-
mental risks of manufactured NMs. A critical issue is to
ensure that the paradigm shift from (e.g., dissolved) chemical
ecotoxicology to manufactured NP ecotoxicology is an
informed one, building on information already known about
naturally occurring and anthropogenic particle properties,
behaviour and toxicity. There is clearly an overarching need
to bring the physical, chemical and biological communities
together in this regard. This is of particular importance both
at the early stage of design of ecotoxicological experiments
and in their execution. It also highlights the need to take this
interdisciplinary approach when undertaking problem for-
mulation (e.g., endpoint selection) within environmental risk
assessment (Owen and Handy 2007). Nanoecotoxicology
will inevitably develop into a rigorous discipline as these
science communities come together and exchange knowl-
edge, helping to develop better source—pathway—receptor
linkages as part of problem formulation within environ-
mental risk assessment.

This review highlights the fact that a primary consid-
eration for hazard and risk assessment is the need to
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understand both the properties of the starting nanomaterial
and the physico-chemical nature of the test and potential
receptor systems before commencing an ecotoxicological
study. Although the temptation to launch into an ecotoxi-
cological test is great, the above review shows that an
understanding of intrinsic characteristics of the starting
material (e.g., particle size and ligand chemistry) and an
understanding of how the material will behave in the study
medium (e.g., by measuring zeta potential as a function of
media pH to assess likely colloid stability; titration of
humic substances in the media, etc.) are fundamental to
understanding the likely fate, behaviour, uptake and eco-
toxicity of the material under environmental conditions.
This knowledge must be used to inform the design of the
study. An evaluation of intrinsic properties is in fact
already recognised as an important component of envi-
ronmental risk assessment for chemicals. Development of a
consensus is important on a base set of properties to be
assessed for the starting NM characterisation, and mea-
surements of NM and relevant abiotic parameters to be
made during organism exposure: some of these issues are
currently being explored by the Organisation for Economic
Cooperation and Development (OECD), which has estab-
lished a Working Party on Manufactured NMs (WPMN) to
assess, among other things, the fitness for purpose of test
guideline methods (including ecohazard) (http://www.
oecd.org/env/nanosafety).

At the moment it is too early to say with any certainty
whether the endpoints currently employed within regula-
tory chemicals ecohazard tests (e.g., survival, growth, and
reproduction) need to be amended for NMs (Crane and
Handy 2007). These authors reviewed the use of regulatory
ecotoxicity tests with NPs, concluding that there appears to
be a majority view that the general approach for under-
taking a risk assessment and the general framework for
applying existing regulatory ecotoxicity tests should be
acceptable for NPs (Crane and Handy 2007). However,
they point out that some modifications of sample prepara-
tion and handling will be needed to accommodate the
physico-chemistry of NPs. They also suggest that careful
consideration should be given to the use of dispersed ver-
sus non-dispersed NPs, and whether or not the use of any
reference materials should be part the experimental design
for regulatory tests. If reference materials are used, then we
must consider if these are intended as positive or negative
controls, and how similar the reference material is in size,
shape and chemical reactivity to the test material. Many of
the reference materials used as positive controls in mam-
malian toxicology (e.g., carbon black, silica particles) may
not be toxic to aquatic species and remain to be experi-
mentally proven as useful controls for ecotoxicology
(Crane and Handy 2007; Federici et al. 2007). These stu-
dies and our review both show that the exposure aspects of
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ecohazard assessment (e.g., dosimetry-measurement and
characterisation in test media and exposed organisms;
associated abiotic factors that influence behaviour) and
how such exposure data are then reported in studies (e.g.,
surface area, particle number or mass concentration) are
critical areas where collaboration involving the materials
science, particle chemistry and ecotoxicological commu-
nities could be highly profitable in terms of developing
consensus and good practice. In the same way that standard
ecotoxicological tests for dissolved chemicals advocate the
reporting of actual rather than nominal concentration data,
nanoecotoxicology will need to rise to a similar challenge
for manufactured NPs in terms of measuring and reporting
exposure data. Hand in hand with this is the need for
routine techniques to be available to the ecotoxicologist for
measurement and characterisation of NMs, some of which
have been reviewed above. A further significant issue to be
addressed is the need for standard reference materials for
bench marking mammalian toxicological tests (Aitken et
al. 2007), and how these bench marks should be applied in
ecotoxicology. Federici et al. (2007) argues that some of
the reference materials used for mammalian respiratory
toxicity are not appropriate for aquatic species, and we may
need to develop our own reference materials for
ecotoxicology.

Is the complexity and diversity of NMs overwhelming
for the regulator?

The chemical classification of NMs can fall into broad
categories such as, (i) carbon based structures including
carbon nanotubes and carbon fullerenes; (ii) metal-con-
taining NPs such as metal oxides or metal particles; or (iii)
quantum dots. Alternatively, manufactured NMs could be
classified by material type (coatings, composite materials
etc; see Handy and Shaw 2007 for discussion). Regardless
of how these materials are classified for regulatory pur-
poses, even within a single chemical there will be immense
diversity in crystal structures, sizes, morphologies, SSAs,
and surface charges. Consequently, there is likely to be
diversity in chemical reactivity and ecotoxicity. In addi-
tion, even with batches of the same material there can be
differences in particle size distributions or the level of
metal contaminants in the material.

This complexity presents a real challenge to the rational
development of toxicity testing strategies and the risk
assessment of these new materials (Owen and Handy 2007).
Nevertheless, it is only quantitatively, and not qualitatively,
different from the situation for other pollutants. For instance,
in the area of metal bioavailability and toxicity, much pro-
gress has been made in combining metal speciation and
bioavailability/toxicity into a single coherent framework,
initially based on chemical thermodynamics (Slaveykova
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and Wilkinson 2005; Paquin et al. 2002) and more recently
based on biological, physical and chemical dynamic con-
cepts (van Leeuwen et al. 2005; Croteau and Luoma 2007).
Consideration of individual metals and toxicity to particular
biological species can be performed within this framework.
The point is that a mechanistic approach involving under-
standing of the chemistry and mechanisms of biological
effect has enabled this complexity to be unravelled. We need
to do the same with NMs. Although we have outlined the
fundamental physico-chemical features of particles here, and
report recent observations on toxic effects of NMs, a
mechanistic understanding of the toxic effects remains to be
established. If ecotoxicologists study the mechanisms
involved and can relate these in a predictable way to physico-
chemistry and abiotic factors measured in the environment; it
will be easier for risk assessors to relate environmental
quality with toxic effects within a regulatory framework.

The complexity of behaviour of NPs in environmental
systems described above may drive ecotoxicologists to adopt
a mixtures approach to ecohazard assessment from the out-
set: it appears almost impossible to undertake an assessment
of NP ecohazard (and indeed exposure) without some
understanding of mixture effects and the abiotic (and biotic)
controls on NP behaviour in natural systems. A better
understanding of mixture ecotoxicity may be one of the
enduring benefits of research into manufactured NPs.
Another may be that while in the longer term it may transpire
that environmental exposure to manufactured NPs, is with
some exceptions, rather small, the ongoing research could
provide huge insights into the fate, behaviour and toxicity of
incidentally-formed NPs in the environment (e.g., plastic
particles) where exposure may be far greater, and a better
understanding of how these interact with chemicals to
influence their bioavailability and toxicity.

Conclusions, recommendations, and knowledge gaps

Overall, the ecotoxicology literature on NPs and NMs is
only just beginning, but toxic effects have been identified
in a range of fish and invertebrates that raise sufficient
concern that NPs in the environment could have adverse
effects on wildlife, if present at high enough levels. There
are several significant knowledge gaps in the ecotoxico-
logy. For example, information is generally lacking on
bacteria, plants, and higher vertebrate species. We there-
fore recommend research on these taxa if credible source-
pathway-receptor linkages can be demonstrated which
would lead to exposure concentrations of NPs likely to
cause harm. Furthermore, the studies reported so far are
also largely observational, and often use high mg 17" doses
to ensure biological effect (proof of principle experiments).
This is perhaps no surprise, and before we can evolve

credible hypotheses on mechanisms of ecotoxicity some
period of observation and data collection is needed. Clearly
we are still in this data collection phase regarding biolog-
ical effects, and information on effects at much lower
concentrations and over longer timescales will be needed
as information on environmental exposure emerges.

The ecotoxicity of NMs and NPs requires a multi-dis-
ciplinary approach, and ecotoxicologists need to
understand the main issues in particle chemistry in order to
interpret ecotoxicological data correctly. These include the
effects of particle size, shape and surface area, and the
interactions of the particles with other material in the water
or environmental matrix. Our knowledge of the effects of
abiotic factors on the ecotoxicity of NPs is poor, and work
on salinity, pH, water hardness, the presence of NOM or
other colloid materials need to be investigated. All the
above parameters need to be monitored in ecotoxicology
experiments with NPs. There are also some less intuitive
concerns. NPs and NMs may be able to adsorb other
chemicals, and there is a risk that NMs will be delivery
vehicles for other toxic substances, or that there may be
synergistic toxic effects when NPs are present in mixtures
of other chemicals.

Finally, the situation regarding environmental monitor-
ing is problematic. Physico-chemical methods to detect
manufactured NPs in the environment need to be devel-
oped in order to facilitate chemical monitoring. Also, there
are no biomarkers for NPs that could be used as part of a
biological monitoring program. Although existing regula-
tory toxicity tests may work (with modifications) for NPs,
the risk analysis would remain incomplete without mea-
surement of real concentrations of NPs in the environment.
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