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Abstract The effects of selected polycyclic aromatic

hydrocarbons on the marine calanoid copepod Acartia

tonsa were tested in laboratory short-term toxicity tests in

order to facilitate risk assessment of those compounds to

the marine pelagic environment. Photo-induced toxicity of

pyrene was also investigated under naturally relevant UV

light regimes. Lethal and sublethal effects on egg produc-

tion rate, hatching and potential recruitment rate were

evaluated after 48 h exposure to fluoranthene, phenan-

threne and pyrene. The 48 h-median lethal concentrations

(LC50) reducing survival by 50% were 594, 2,366 and

>640 nM for fluoranthene, phenanthrene and pyrene,

respectively, whilst lower concentrations induced different

sublethal effects. Median effective concentrations (EC50)

affecting the egg production rate and the recruitment rate

were 433 and 385 (fluoranthene), 1,245 and 1,012 (phen-

anthrene) and 306 and 295 nM (pyrene), respectively. An

increase in toxicity of pyrene was detected after incubation

under UV light, resulting in LC50 values of 201 nM (24 h)

and 138 nM (48 h) and EC50 values of 79 nM (egg pro-

duction rate) and 41 nM (recruitment rate). Finally, a

comparison between effective concentrations and worst-

case environmental concentrations reported in literature

indicated that pyrene may pose a threat to A. tonsa from

exposure in the field, and that the risk of adverse effects is

high for fluoranthene.
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Introduction

Polycyclic aromatic hydrocarbons (PAHs) are persistent

planar molecules consisting of two or more six-membered

(benzene) rings directly linked together, common in

aquatic ecosystems (Kennish 1992; Walker et al. 2001).

Major sources of PAHs are anthropogenic like industrial

effluents, petroleum spillage or the refining and combustion

of fossil fuels (Albers 1995; Walker et al. 2001), and

global PAHs discharges into the aquatic environment from

all sources, both natural and anthropogenic, have been

estimated at 80,000–230,000 tonnes per year (Kennish

1992; Wright and Welbourn 2002).

Polycyclic aromatic hydrocarbons constitute the most

toxic components of oil for the marine biota with geno-

toxic, carcinogenic, or reproductive effects, and may be

bioaccumulated in marine organisms (Corner et al. 1976;

Kennish 1992; Albers 1995; Manahan 2001; Pane et al.

2005). While lowest molecular weight PAHs are the most

toxic, they are generally unimportant because of their

volatility and accordingly short half-life in water (Walker

et al. 2001). Intermediate molecular weight aromatics (two

to four ring PAHs) are more persistent and their solubility

in water is high enough to cause toxicity to pelagic

organisms. On the other hand, higher molecular weight

PAHs are well known carcinogenics, but they do not pose a

short-term risk to pelagic organisms because of their ex-

tremely low solubility in water (Albers 1995).

The present study focused on the toxicity of interme-

diate molecular weight PAHs to marine mesozooplankton.

Although the toxicity of intermediate molecular weight
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PAHs has been reported for a variety of freshwater

organisms, few studies have addressed their effects on

marine zooplankton organisms. For example, phenanthrene

was reported to cause toxic effects in the range

1–5,000 lg l–1 (6–28,000 nM) (Steevens et al. 1999), flu-

oranthene was found toxic to marine invertebrates between

64 and 3,300 lg l–1 (320–16,000 nM) (Pelletier et al.

1997; Spehar et al. 1999), and pyrene has been reported to

exert toxicity in the range 25–12,000 lg l–1 (120–

59,000 nM) (Pelletier et al. 1997; Lyons et al. 2002).

Polycyclic aromatic hydrocarbons water concentrations

in offshore sites are usually below those values reported in

literature to be acutely toxic. However, higher concentra-

tions have been found in polluted coastal and estuarine

areas. For instance, Law et al. (1997) reported 1–2 lg l–1

for fluorene, phenanthrene, fluoranthene or pyrene, and

7 lg l–1 for naphthalene in polluted coastal areas around

England and Wales. Maskaoui et al. (2002) and Zhou and

Maskaoui (2003) registered 1–2 lg l–1 for naphthalene and

phenanthrene, 2–3 lg l–1 for fluoranthene and pyrene and

6.6 lg l–1 for fluorene in polluted estuaries from the east

coast of China. Furthermore, growing evidence suggests

that ultraviolet (UV) light may enhance the toxicity of

certain PAHs (Arfsten et al. 1996; Peachey 2005). Thus,

anthracene, fluoranthene and pyrene are two to three orders

of magnitude more toxic to marine invertebrates in the

presence of UV light than under fluorescent light (Pelletier

et al. 1997; Spehar et al. 1999; Lyons et al. 2002).

The choice of a biological response to be measured in

toxicity tests depends on a compromise between sensitivity

and feasibility (His et al. 1999). Lethal responses may be

simple from a methodological point of view, but their

sensitivity is lower than that of sublethal endpoints. Thus,

to evaluate the risk of chemical pollutants on marine eco-

systems it is necessary to consider both lethal and sublethal

effects of those compounds on sensitive organisms. Eco-

logically relevant sublethal effects of toxicants such as

petroleum hydrocarbons (Berdugo et al. 1977; Cowles and

Remillard 1983), metals (Hutchinson et al. 1994), sedi-

ment-associated PAHs (Lotufo 1997), and surfactants

(Christoffersen et al. 2003) on the reproduction of marine

copepods, have been reported at lower levels than those

affecting survival, and the use of reproductive endpoints in

toxicity testing has been encouraged.

Copepods constitute roughly 80% of the total marine

zooplankton biomass worldwide and Acartia tonsa is one

of the most common neritic copepods with a wide distri-

bution within coastal plankton communities. A. tonsa feeds

omnivorously on phytoplankton and pelagic protozoans,

serves as food for fish larvae and represent an ecologically

important species playing a significant role in the pelagic

food web of the world ocean (Reeve and Walter 1977).

This species has been the focus of intense studies of zoo-

plankton energetics and much is known about egg pro-

duction, egg hatching and larval development of A. tonsa

and how these variables are influenced by environmental

factors such as temperature, salinity, food concentration

and food quality (Kiørboe et al. 1985; Berggreen et al.

1988; Durbin et al. 1990; Kleppel and Burkart 1995; Be-

siktepe and Dam 2002; Jones et al. 2002; Hazzard and

Kleppel 2003; Calliari et al. 2006). A. tonsa is a free

spawner and releases eggs directly into the water so egg

production rates and success of egg hatching (which usu-

ally occurs within 24 h after spawning), are easily mea-

surable parameters. Moreover, A. tonsa is relatively easy to

culture in laboratory and has been proved to be a sensitive

organism to a wide range of toxic compounds (e.g. Kusk

and Petersen 1997; Andersen et al. 1999; Medina et al.

2002; Christoffersen et al. 2003; Medina and Barata 2004).

This copepod is therefore a suitable test organism for

hazard identification of chemicals in the marine environ-

ment and is included in standardised toxicity test protocols

(ISO 1999; OECD 2004; Medina and Barata 2004).

In the present study, we carried out a laboratory study on

the effects of three individual PAHs, phenanthrene (Phe),

fluoranthene (Fluo) and pyrene (Py), on mortality rate and

sublethal responses such as egg production rate, egg

hatching success and potential recruitment rate of A. tonsa,

in order to contribute to the evaluation of the risk to the

marine environment of those compounds.

Materials and methods

Experimental solutions

Stock solutions were made by dissolving analytical grade

fluoranthene (Fluo), phenanthrene (Phe) and pyrene (Py)

(Aldrich Steinheim) in acetone. The experimental con-

centrations were obtained by diluting the stock solutions in

0.3 lm filtered natural seawater (FSW). During this dilu-

tion, equal amounts of acetone (less than 200 ll l–1), found

not to be toxic to A. tonsa in preliminary tests, were added

to each experimental beaker with PAHs solutions. All

glassware was acid-washed (HNO3 10% vol.) and rinsed

with acetone and distilled water before the experiments.

Experimental concentrations were chosen on the basis of

preliminary trials and on data from the literature. Two

separate experiments were conducted for Fluo and Phe (a

range-finding trial and a definitive test) and one experiment

for Py. The dosing concentrations in the range-finding trials

were 10, 50, 250 and 1,250 nM for Fluo and 2.4, 24, 240

and 2,400 nM for Phe, whereas tested concentrations in

definitive trials were 200, 400 and 800 nM for Fluo and

200, 600 and 1,800 nM for Phe. Py tested concentrations

were 40, 80, 160, 320 and 640. In addition an experiment

466 J. Bellas, P. Thor

123



was carried out with Py (2.5, 25, 250 nM) under UV light.

UV light was provided by a QPanel 313 (QPanel Co.) and

UV light regimes, measured with a spectroradiometer (OL-

754, Optronic Laboratories, Inc.), were 0.08 W m–2 (UVA)

and 0.119 W m–2 (UVB). Tested concentrations for each

compound were below their water-saturation levels

(Nagpal 1993).

Biological material

Acartia tonsa obtained from a culture at the Danish Institute

for Fisheries Research were maintained in laboratory at the

Kristineberg Marine Research Station (Sweden) under

indirect natural light conditions in FSW at 18�C and 30 psu

salinity. Copepods were fed the cryptophyte Rhodomonas

baltica ad libitum. R. baltica were cultured continuously in

FSW on f/2 medium (Guillard and Ryther 1962) at a

12 h:12 h light:dark cycle, 18�C and 30 psu salinity.

Experimental procedure

Prior to all experiments, female adult copepods were ac-

climatised for 48 h to the experimental food concentration

of 2.7 · 104 cells ml–1 R. baltica corresponding to

1,000 lg C l–1 (Mullin et al. 1966). To ensure fertilisation

of the female copepods, males were added during the ac-

climatisation. For the experiments, groups of five adult

fertilised females were collected under a dissecting

microscope and transferred to 320 ml Pyrex� glass bottles

containing 2.7 · 104 cells ml–1 R. baltica and the PAH

solutions. Experimental treatments consisted of four con-

trols (FSW, no PAH) and four replicates of each PAH

concentration. The bottles were sealed with airtight Teflon-

lined screw caps and were incubated in darkness for 48 h

on a rotating plankton wheel (0.5 rpm). After 24 h, the

experimental solutions were renewed and the eggs pro-

duced by the copepods were removed by sieving copepods

onto a 200 lm nylon mesh. The number of dead females

was recorded. At the end of the 48 h incubation period the

copepods and eggs produced were collected on a 60 lm

mesh. The number of eggs produced in each bottle was

counted under a dissecting microscope and the number of

dead females recorded. Subsequently, all eggs were col-

lected and kept in Petri dishes containing 15 ml of exper-

imental solutions for 24 h. Unhatched eggs and nauplii

were then counted to calculate egg hatching success. The

potential recruitment rate was estimated as egg production

rate · egg hatching success.

Statistical analyses

Statistical analyses were conducted using the SPSS� ver-

sion 12.0 statistical software. Differences in egg production

rates, hatching success, recruitment rate and survival

among treatments were tested for significance by means of

one-factor analysis of variance (ANOVA). When differ-

ences among groups were significant the Dunnett’s test was

employed to compare the control group and each of the

experimental groups for calculation of the Lowest Ob-

served Effect Concentrations (LOEC). The EC10 and EC50

and their 95% confidence intervals (95CI) were calculated

according to the Probit method after normalising data to the

control response mean percentage using Abbot’s formula

(Emmens 1948). Data of the two experiments for Fluo and

Phe were pooled together after control normalisation for

EC10 and EC50 calculations. For analysis, hatching success

and survival data were first arcsine-transformed to achieve

normality (Hayes Jr 1991). Statistical tests were performed

according to Sokal and Rohlf (1995) and Newman (1995).

Results

Effects on the egg production rate, hatching success and

recruitment rate

Acartia tonsa females exposed to PAHs showed signifi-

cantly lower egg production rates than controls after 48 h

exposure (Table 1, Fig. 1). Fluo caused a reduction in egg

production rates from 25 to 3 eggs female–1 day–1 at

800 nM, whilst the EC10 and EC50 were 227 and 433 nM,

respectively (Table 2). Phe was less toxic with EC10 and

EC50 values of 613 and 1,245 nM. Here, the reduction in

egg production rate from 25 to 5 eggs female–1 day–1 was

induced at concentrations above 1,800 nM. Py showed the

highest toxicity, with an EC10 of 107 nM, and reduced the

egg production rate from 50 to 20 eggs female–1 day–1 at

320 nM. The calculated EC50 was 306 nM (Table 2). The

toxicity of Py on the egg production rate was thrice ele-

vated under UV light, with EC10 and EC50 values of 33 and

79 nM, respectively. No significant effects of UV light

exposure on the egg production rate were detected.

Significant effects were also observed on egg hatching

success after 24 h exposure to PAHs (except for Py + UV),

although, in general, a small decrease of this biological

response was observed (Table 1, Fig. 2). Fluo reduced egg

hatching by 60% at 1,250 nM, and yielded EC10 and EC50

values of 202 and 793 nM (Table 2). Significant effects of

Phe on egg hatching were detected only at 2,400 nM whilst

the EC10 was 926 nM. On the other hand Py caused a 20%

reduction in hatching success at 320 nM and the EC10 was

221 nM. No effects of Py on hatching success were reg-

istered when incubations were conducted under UV light at

the experimental concentrations. However, statistical dif-

ferences were observed when comparing controls with UV

light exposed controls (p < 0.001, F = 35.1).
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Recruitment rate was in general the most sensitive

response variable. Fluo showed toxicity on the recruitment

rate at concentrations above 400 nM (Table 1) and EC10

and EC50 values were 222 and 385 nM (Table 2). Phe was

less toxic, reducing the recruitment rate from 19 to

3 ind day–1 at 1,800 (Fig. 3), and showing EC10 and EC50

values of 385 and 1,012 nM. Py reduced recruitment rate

significantly by 33 ind day–1 at 320 nM, with EC10 and

EC50 values of 134 and 295 nM (Tables 1 and 2, Fig. 3).

Under UV light, the EC10 and EC50 values decreased to 8.2

and 41 nM, respectively. Also, significant differences were

detected between controls and UV light exposed controls

(p < 0.05, F = 14.0).

Effects on survival

Polycyclic aromatic hydrocarbons exposure also signifi-

cantly decreased survival (Table 1) but survival consti-

tuted, in general, a much less sensitive response parameter.

Fluo caused 47% mortality at 800 nM after 24 h exposure,

and the EC10 and EC50 values were 463 and 824 nM

(24 h), and 426 and 594 nM (48 h), respectively. Phe

caused a 47 and 52% increase in mortality after 24 and

48 h exposure to 2,400 nM (Fig. 4). The EC10 and EC50

values were 1,800 and 2,436 nM (24 h) and 1,772 and

2,366 nM (48 h) (Table 2). Py caused a decrease of 26% in

survival at 640 nM after 48 h exposure (Fig. 4), whilst

calculated EC10 was 209 nM (Table 2). No significant

differences in survival were observed at 24 h exposure.

Effects on survival were detected after 24 and 48 h expo-

sure to Py under UV light at 250 nM (Table 1), with EC10

and EC50 values of 98 and 201 nM (24 h), and 77 and

138 nM (48 h), respectively (Table 2). No significant ef-

fects of UV light exposure on survival were observed.

Discussion

Little information is available in literature about the tox-

icity of PAHs to marine pelagic invertebrates in general,

Table 1 Results of one-way

ANOVA and Dunnett’s test for

A. tonsa toxicity tests

LOEC Lowest Observed Effect

Concentration

n.s. statistically not significant,

n.d. insufficient data to calculate

a value

*p \ 0.05, **p \ 0.01,

***p \ 0.001
a Numbers indicate different

experiments

Experimenta F df. p LOEC (nM)

EPR Fluoranthene 1 85.7 4 0.000*** 1,250

Fluoranthene 2 19.4 3 0.000*** 800

Phenanthrene 1 27.3 4 0.000*** 2,400

Phenanthrene 2 29.4 3 0.000*** 1,800

Pyrene 35.2 5 0.000*** 320

Pyrene + UV 47.4 3 0.000*** 250

Hatching Fluoranthene 1 2.9 4 0.046* 1,250

Fluoranthene 2 1.4 3 0.29 (n.s.) –

Phenanthrene 1 4.9 4 0.017* 2,400

Phenanthrene 2 1.2 3 0.34 (n.s.) –

Pyrene 3.7 5 0.017* 320

Pyrene + UV 0.35 3 0.79 (n.s.) –

Recruitment Fluoranthene 1 41.1 4 0.000*** 1,250

Fluoranthene 2 14.0 3 0.000*** 400

Phenanthrene 1 20.9 4 0.000*** 2,400

Phenanthrene 2 17.7 3 0.000*** 1,800

Pyrene 32.6 5 0.000*** 320

Pyrene + UV 18.4 3 0.000*** 250

Survival 24 h Fluoranthene 2 8.9 3 0.003** 800

Phenanthrene 1 6.4 4 0.003** 2,400

Phenanthrene 2 1.2 3 0.35 (n.s.) –

Pyrene nd nd nd –

Pyrene + UV 22.9 3 0.000*** 250

Surival 48 h Fluoranthene 1 177.9 4 0.000*** 1,250

Fluoranthene 2 37.6 3 0.000*** 800

Phenanthrene 1 11.6 4 0.000*** 2,400

Phenanthrene 2 1.0 3 0.42 (n.s.) –

Pyrene 2.2 5 0.095 (n.s.) 640

Pyrene + UV 66.8 3 0.000*** 250
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and to copepods in particular. Ott et al. (1978) studied the

toxicity of naphthalene and three methylated derivatives to

the calanoid copepod Eurytemora affinis and registered

LC50 between 2,000 and 30,000 nM after 24 h exposure.

Also, they found significant effects of naphthalenes on life

duration of E. affinis after chronic exposure (duration of

their adult life) to concentrations of those PAHs of about

60–80 nM. Barata and co-workers registered Fluo LC10

and LC50 values of 313 and 500 nM for Tisbe battagliai,

and 2,930, 970 and 760 nM (LC50) of Phe, Fluo and Py

were reported for Oithona davisae (Barata et al. 2002,

2005). Narcotic effects, showed by the lack of motility,

were also registered at lower concentrations than those

causing death in O. davisae (Barata et al. 2005). Calculated

EC50 of Phe, Fluo and Py for the narcotisation were 3,580,

660 and 530 nM, respectively. Thus, the acute 48-h LC50

values found for PAHs in the present study agree with

values reported for copepods in the literature. But mortality

may not be the most sensible response parameter for tox-

icity tests in zooplankton. The measurement of egg pro-

duction rates of adult female copepods has been proposed

as an alternative method for estimating pelagic secondary

production, since it constitutes a measure of potential

population recruitment rate (Poulet et al. 1995). Moreover,
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Fig. 1 Egg production rates

(EPR) of A. tonsa females

exposed to Fluo (A), Phe (B),

Py (C) and Py + UV (D) for

48 h. Error bars represent the

standard deviation for each

treatment (n = 4).

***Significant differences at

p < 0.001

Table 2 E(L)C10 and E(L)C50 (nM) for fluoranthene, phenanthrene, pyrene, and pyrene + UV

Fluoranthene Phenanthrene Pyrene Pyrene + UV

E(L)C10 (nM)

EPR 227 (163–280) 613 (211–916) 107 (70–139) 33 (26–56)

Hatching 202 (n.c.) 926 (191–1,630) 221 (n.c.) >250

Recruitment 222 (174–261) 385 (164–585) 134 (84–175) 8.2 (1.4–18)

Survival 24 h 463 (206–597) 1,800 (n.c.) >640 98 (n.c.)

Survival 48 h 426 (332–493) 1,772 (196–2,035) 209 (n.c.) 77 (n.c.)

E(L)C50 (nM)

EPR 433 (360–531) 1,245 (793–1,743) 306 (257–364) 79 (57–106)

Hatching 793 (n.c.) >2,400 >640 >250

Recruitment 385 (340–435) 1,012 (692–1,450) 295 (243–352) 41 (19–94)

Survival 24 h 824 (641–1,713) 2,436 (n.c.) >640 201 (n.c.)

Survival 48 h 594 (517–674) 2,366 (2,073–6,973) >640 138 (n.c.)

The 95% confidence intervals (95CI) are given in brackets

n.c. not calculated
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egg production is an important aspect of the adult biology

of copepods, which integrates a number of metabolic

processes and therefore has high ecological relevance

(Berdugo et al. 1977). Thus, egg production of copepods

has been previously shown to be a very sensitive biological

response to several toxicants. For instance, Kusk and Pet-

ersen (1997) calculated an EC10 value of TBT on the egg

production rate of A. tonsa of <10 ng l–1, based on data

from Bushong et al. (1990). Furthermore, previous studies

reported effects of pesticides on the egg production rate of

copepods at lower concentrations than those affecting

survival (Hutchinson et al. 1999; Willis and Ling 2003;

Brown et al. 2003).

The present study shows some variability in the egg

production rate for different batches of A. tonsa females.

Such natural variability of A. tonsa egg production rate has

been previously reported in literature. For instance, Haz-

zard and Kleppel (2003) reported variations in the egg
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Fig. 2 Egg hatching percentage

of A. tonsa after exposure to

Fluo (A), Phe (B), Py (C) and

Py + UV (D) for 24 h. Error
bars represent the standard

deviation for each treatment

(n = 4). *Significant differences

at p < 0.05; **significant

differences at p < 0.01
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Fig. 3 Potential recruitment

rate of A. tonsa females exposed

to Fluo (A), Phe (B), Py (C) and

Py + UV (D) for 48 h. Error
bars represent the standard

deviation for each treatment

(n = 4). *Significant differences

at p < 0.05; ***significant

differences at p < 0.001
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production rate of A. tonsa populations with similar

nutritional characteristics between 25 and 56 eggs female–

1 day–1. Thor (2003) and Calliari et al. (2006) found vari-

ations in the egg production rate of A. tonsa between 20

and 35 eggs female–1 day–1. Those values are in agreement

with the data obtained here (25–45 eggs female–1 day–1 in

controls).

Studies on the effects of PAHs on sublethal response

parameters like egg production rates of copepods are

scarce. Berdugo et al. (1977) found effects on the fecundity

of E. affinis exposed to 1 mg l–1 of naphthalene for 24 h.

Also, in the above mentioned study, Ott et al. (1978) reg-

istered effects of naphthalene on the total numbers of

nauplii produced and on the mean brood size of E. affinis at

380 times lower concentrations than those causing mor-

tality, although the exposure period for the lethal response

(24 h) was much lower than the exposure period for the

sublethal responses (29 days). Barata et al. (2002) reported

a reduction in the egg production of T. battagliai exposed

to Fluo at concentrations below those affecting survival

(EC50 = 66.9 lg l–1 ~331 nM; LC50 = 101.1 lg l–1

~500 nM), which are similar to the levels registered here

for Fluo in A. tonsa (EC50 = 433 nM; LC50 = 594 nM).

Accordingly, our results showed lower EC50 on the egg

production rate of A. tonsa than those causing mortality, at

similar exposure times (48 h). On the other hand, Cowles

and Remillard (1983) did not find a significant decrease in

the egg production rate of Centropages hamatus exposed

for 48–60 h to 80 ppb of crude oil water soluble fraction.

In general, comparing the effective concentrations of the

different PAHs tested in the present study, the lethal

response was 2–8 times less sensitive than the egg pro-

duction rate and the recruitment rate. This suggests that

such short-term exposure in any estuarine situation might

have long-term effects on A. tonsa population dynamics.

Several laboratory studies have demonstrated that UV

light may significantly enhance PAHs toxicity to fresh-

water organisms (Arfsten et al. 1996; Steevens et al. 1999).

However, few studies have been conducted on the inter-

action between PAHs and UV light with marine inverte-

brates (Spehar et al. 1999; Lyons et al. 2002; Steevens

et al. 1999; Peachey 2005). Pelletier et al. (1997) reported

12 to >50,000 times higher toxicity of anthracene, Fluo and

Py to larvae and juveniles of the bivalve Mulinia lateralis

and the mysid Mysidopsis bahia under UV light than

conventional toxicity. Spehar et al. (1999) reported that

UV light increased the toxicity of Fluo toxicity to 21

freshwater and marine species. Lyons et al. (2002) reported

significant increases in Py and benzo[a]pyrene toxicity to

oyster (Crassostrea gigas) embryos in the presence of UV

light. Peachey (2005) found significant higher toxicity of

Fluo and Py to larvae of three crustaceans (Libnia dubia,

Menippe adina and Panopeus herbstii) under UV light. In

the present work, the toxicity of Py on the egg production

rate and survival of A. tonsa was increased between 4 and

>12 times under UV light exposure, whilst no increase in

toxicity on hatching success of A. tonsa eggs was detected.

Also, Py exposure in darkness yielded an EC10 value of

134 nM for the potential recruitment rate of A. tonsa,

whereas EC10 was 16 times lower (8.2 nM) under UV

light, although a significant reduction in the recruitment

rate was observed under UV light exposure. The studies
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Fig. 4 Survival of A. tonsa
females exposed to Fluo (A),

Phe (B), Py (C) and Py + UV

(D) for 24 h (circles) and 48 h

(triangles). Error bars represent

the standard deviation for each

treatment (n = 4). *Significant

differences at p < 0.05;

**significant differences at

p < 0.01; ***significant

differences at p < 0.001
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mentioned above showed much higher increase in PAHs

toxicity in the presence of UV light, but it has to be borne

in mind that the UV light regimes used here are much

lower than levels used in those studies (UVA: 350–

3,000 lW cm–2; UVB: 6–600 lW cm–2). Nevertheless,

the low—and naturally relevant—light intensity used in

our study still induced increased toxicity effects, and

photo-induced toxicity of PAHs in the marine environment

should be taken into account in standard water and sedi-

ment toxicity tests. Standard tests have until now been

conducted in darkness or under fluorescent light which

typically contains no UV thereby resulting in severe

underestimation of toxicity.

The effect concentrations reported here are well above

PAH concentrations usually found in coastal waters. Such

high concentrations might only be expected to occur in the

vicinity of oil-slicks or in areas affected by an oil-spill (e.g.

Berdugo et al. 1977; Laffon et al. 2006; González et al.

2006). For instance, González et al. (2006) registered 0.09–

4.84 lg l–1 chrysene equivalents in seawater samples from

the Galician coast (NW Spain) 1 month after the Prestige

oil spill and Laffon et al. (2006) measured 1.4 lg l–1 dis-

solved PAHs 1 year after the spill. However, although toxic

effects of Py reported here (EC10 = 134 nM = 27 lg l–1)

occurred at higher concentrations than those found for open

oceanic waters, similar concentrations to those reported for

photo-induced toxicity of Py under UV light

(EC10 = 8.2 nM, 1.7 lg l–1), have been detected in pol-

luted coastal and estuarine waters (Law et al. 1997;

Maskaoui et al. 2002; Zhou and Maskaoui 2003). Thus, the

level of risk associated with the occurrence of Fluo, Phe

and Py may be estimated by comparing the reported

environmental concentrations of those compounds with the

toxicity threshold to A. tonsa obtained here (Newman

2001). Environmental concentrations presented in Table 3

represent maximum values (Cmax) measured in industria-

lised estuaries. The environmental risk may be calculated

as risk quotients, RQ = Cmax/PNEC, where PNEC (Pre-

dicted No Effect Concentration) was estimated as the EC10

applying an assessment factor (AF) of 10 (PNEC = EC10/

AF) (OECD 1992). RQ values greater than 1 indicate that

adverse effects for the exposed organisms are already

taking place. RQ of 0.3–0.7, 0.04–0.2, 0.6–1.2 and 1.3–

15.6 were obtained for Fluo, Phe, Py and Py + UV,

respectively (Table 3). Therefore, environmental levels of

Py in industrialised estuaries are already causing deleteri-

ous effects on A. tonsa populations whereas RQ for Fluo

are approaching 1 indicating that the risk for adverse ef-

fects is high.

In conclusion, based on our EC10 and EC50 values, Py

was 1–2 times more toxic than Fluo and 3–8 times more

toxic than Phe, whereas UV light increased the toxicity of

Py for egg production rate, recruitment rate and survival of

females by 3–16 fold. It is therefore proposed that the

additional risk of phototoxicity of PAHs should be con-

sidered in the toxicity evaluation of PAHs. Results from

this study also support that egg production rate and

recruitment rate are more sensitive to toxicants than mea-

surement of mortality rate. Moreover, these sublethal

endpoints showed less variability within treatments than

mortality rate, making them more suitable as measurement

variables. Concentrations of Fluo, Phe and Py found in

coastal waters are lower than the toxic concentrations re-

ported here. However, environmental worst-case concen-

trations in polluted estuaries may have a direct impact on

copepod population dynamics.
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