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hoc test and Duncan’s multiple range test at P < 0.05 
for comparisons amongst different groups. The study 
reveals that long photoperiod and high tempera-
ture stimulate the expression of kiss1 significantly 
(P < 0.05), while short photoperiod and low tempera-
ture suppress its expression in fish gonads (P < 0.05). 
Photoperiod and temperature were almost equally 
effective in regulating the kiss1 expression, but when 
long photoperiod and temperature are given in com-
bination, their stimulatory role in kiss1 expression is 
amplified significantly (P < 0.05). The long photoper-
iod and high temperature also increase the steroid lev-
els in gonads (P < 0.05) and stimulate gametogenesis.

Keywords  Kiss1 · Gametogenesis · Steroids · 
Catfish · Gonads (ovary and testis)

Introduction

The ability of any species to survive and reproduce 
successfully in specific niches has been conferred 
through natural selection (Walton et  al. 2011). Sea-
sonal variation in several environmental factors 
affects food availability, weather, and temperature. 
Thus, different species have adopted a variety of 
changing temporal and spatial cues to cope with the 
demands of their survival and reproduction (Demas 
et al. 2003; Walton et al. 2011).

Several external environmental factors signal 
the most appropriate/suitable timing to initiate the 

Abstract  Photo-thermal regulation of reproduction 
in seasonally breeding vertebrates, including teleost 
fishes, is established. The photo-thermal cues are 
relayed to the higher brain centers, where from com-
mand, neurosecretions are released to the hypothala-
mus to activate the hypothalamo-pituitary–gonadal 
axis to secrete GnRH-FSH/LH-sex steroids in gen-
eral. GnRH being a pivotal regulator of reproduction, 
plenty of studies have been carried out to investigate 
the regulators of GnRH secretion. Kiss is the recently 
established upstream regulator of GnRH. However, 
studies on the regulation of kiss are highly ambiguous 
in vertebrates, including fishes. Therefore, attempts 
were made to examine the role of photoperiod and 
temperature in the regulation of kiss1 expression in 
the gonad during the late-quiescence phase of the 
reproductive cycle of the catfish, Clarias batrachus, 
employing the techniques like histology, immuno-
histochemistry, and enzyme-linked immunosorbent 
assay (ELISA) along with analysis of data through 
analysis of variance (ANOVA) followed by a post 
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reproductive processes in seasonal breeders by acti-
vating or deactivating the pattern of secretions of 
the hypothalamus-pituitary–gonadal (HPG) axis. 
Amongst various external factors like photoperiod, 
temperature, pH, availability of food, rainfall, humid-
ity, the photoperiod, and temperature are implicated 
as the most crucial environmental zeitgeber to signal 
the timing of reproduction in fishes and also to regu-
late the diurnal/hormonal endocrine rhythm (Baker 
and Baker 1936; Lam 1983; Duston and Saunders 
1990; Rodríguez et  al. 2001; Bromage et  al. 2001; 
Biswas et al. 2002; Borg 2009; O’Brien et al. 2012). 
In general, fishes primarily and necessarily depend 
on photoperiod and temperature for the initiation of 
gonadal development (Lam 1983). In some fishes, 
gonadal development and maturation are depend-
ent on day length, while others rely on the tempera-
ture, and in some fishes, day length and temperature 
are both crucial for the proper maturation of gonads 
(Sundararaj and Sehgal 1970; Sundararaj and Vasal 
1976; Baggerman 1980; Poston 1978). In tropi-
cal and subtropical conditions, the temperature is 
more important than photoperiod to induce gonadal 
growth and maturation in fishes like catfish, carps, 
and various other cyprinids (Sundararaj and Sehgal 
1970; Sundararaj and Vasal 1976; Munro 1990; Borg 
2009). Alterations in photoperiod and temperature 
are relayed to the higher brain, where some neurose-
cretions reach the HPG axis to trigger and culminate 
breeding processes (Joy and Senthilkumaran 1995; 
Acharjee et al. 2017).

Considering the significant role of photoperiod and 
temperature in the regulation of reproductive activi-
ties, some earlier scientists have studied the effects 
of photoperiod and temperature on kiss expression 
in the brain/hypothalamus in vertebrates, including 
fishes. In short day length photoperiodic conditions, 
kiss1 expressing neurons/kiss content was decreased 
in the rostral part of the hypothalamus in mice, Mus 
musculus, and Syrian hamsters, Mesocricetus aura-
tus; and increased in the brain of ewe, Ovis aries, and 
striped hamsters, Cricetulus barabensis (Chalivoix 
et al. 2010; Ansel et al. 2011; Li et al. 2015; Bohlen 
et al. 2018). However, a high level of kiss1 is reported 
in Syrian hamsters maintained under long days than 
the short day (Revel et al. 2006). Furthermore, in long 
day length photoperiodic conditions, higher levels of 
kiss1/GPR54 mRNA have been shown in the brains 
of goldfish, Carassius auratus, and Atlantic salmon, 

Salmo salar (Shin et  al. 2014; Chi et  al. 2017). 
Further, it has been reported that low temperature 
(15  °C) treatment resulted in a significant increase 
in brain kiss1 mRNA level in comparison to control 
temperature (27  °C) treatment in male zebrafish, 
Danio rerio (Shahjahan et al. 2013). However, there 
is also a report that low and high temperatures both 
have significantly reduced the kiss2 and kiss2r mRNA 
in grass pufferfish, Takifugu niphobles (Shahjahan 
et al. 2013). Further exposure of Heteropneustes fos-
silis to long photoperiod (16L) and high temperature 
(28  °C) caused a remarkable increase in the expres-
sion of kiss2 in the catfish brain (Chaube et al. 2020). 
Moreover, it has also been shown that photoperiodic 
regulation of kiss expression may vary with tissues, 
species, and sexes in striped hamsters, Cricetulus bar-
abensis (Li et al. 2015). However, to date, no report 
of photo-thermal regimes on the gonadal expression 
of kiss1 is available, despite that gonadal kiss tran-
scripts are reported in some fishes. Thus, in the pre-
sent study, the role of photoperiod and temperature 
in kiss1 expression in Clarias batrachus gonad was 
investigated.

The Clarias batrachus is a highly consumer-pre-
ferred catfish because of its high nutritional value and 
hence highly cultured catfish in India. This fish is a 
seasonal breeder, and various aspects of its biology 
and reproductive processes are studied and published 
(Sinha et al. 1992, Acharia et al. 2000, Singh and Lal 
2008; Priyadarshini and Lal 2018; Singh nee Priya-
darshini and Lal 2018; Singh et al. 2021). The repro-
ductive activities of C. batrachus are initiated with the 
escalation in photoperiod and temperature from Feb-
ruary/March onwards, leading to a parallel increase in 
sex steroids and other orexigenic hormones, causing 
an increase in food intake (Sinha et  al. 1992, Acha-
ria et al. 2000, Singh and Lal, 2008, Priyadarshini and 
Lal 2018; Singh nee Priyadarshini and Lal 2018). The 
gonadal recrudescence is accelerated steadily with a 
further increase in photoperiod and temperature in 
subsequent months and attains full gonadal devel-
opment in the month of June/July. Thereafter, with 
the approach of monsoon leading to a decline in the 
water temperature, the gametes (eggs and spermatids) 
undergo final maturation during the month of July/
August and start breeding synchronously in closed 
proximate, i.e., release of mature gametes out of the 
body in the external aquatic environment to achieve 
fertilization and subsequent embryonic development. 
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Then after, the catfish undergo gonadal reorganization 
and quiescence from September onwards with the 
decline in photoperiod and temperature and remain 
quiescent till the photoperiod and temperature restart 
increasing from January end to February onwards.

Materials and methods

Reagents

Kiss1 antibody and its respective peptides (Code-
PAS3809 and Code-AS1560) were validated before 
its routine use (see Singh et  al. 2021). The second-
ary antibody biotin-labelled goat anti-rabbit-IgG was 
purchased from GeNei (cat No. 1110280011730) 
Bangalore, India. The ABC Kit (elite kit PK-6100) 
was obtained from Vector Laboratories, Inc., Burl-
ingame, CA, USA. Triton X-100 and 3, 3′-diamin-
obenzidine tetrahydrochloride hydrate (DAB) were 
procured from Sigma-Aldrich, India. ELISA kits for 
17β-estradiol (cat no. DKO003) and testosterone (cat 
no. DKO002) were purchased from DiaMetra, Italy, 
while other routinely used chemicals were acquired 
from Merck, SRL, and HiMedia (AR Grade) through 
authorized vendors.

Collection and exposure of catfish to different 
photo‑thermal regimes

The adult catfish were collected during the first week 
of the early-quiescence phase (January) of its annual 
reproductive cycle from the suburbs of Varanasi, 
India, and were acclimated in 200 L cemented tanks 
for 14 days under ambient photoperiod and tempera-
ture. Throughout the experiment, catfish were fed 
with chopped goat liver ad  libitum. After 2  weeks 
of acclimation, catfish were then sorted out in a 
close weight range (80–85  g) and divided into sev-
eral groups with 25 fish in each and were subjected 
for 30  days under different photo-thermal regimes 
during the early-quiescence phase (January) to late-
quiescence phases (February), i.e., ambient photo-
period and ambient temperature (APAT—11L:13D, 
19 ± 1  °C), ambient photoperiod and high tempera-
ture (APHT—11L:13D, 30° ± 1  °C), short photo-
period and ambient temperature (SPAT—9L:15D, 
19 ± 1  °C), short photoperiod and high temperature 
(SPHT—9L:15D, 30° ± 1  °C), long photoperiod 

and ambient temperature (LPAT—14.5L:9.5D, 
19 ± 1  °C), and long photoperiod and high tempera-
ture (LPHT—14.5L:9.5D, 30° ± 1 °C) in thermostati-
cally controlled aqua-environmental chambers (Aqua-
Envo, SVI, India). At the end of the experiment, fish 
were cold anesthetized group-wise in ice-chilled 
water for 5–8  min, weighed after wiping out with a 
soaked towel, and blood was collected group-wise in 
separate tubes. Briefly, blood was collected in glass 
tubes through the caudal puncture and centrifuged 
at 1370 × g in a refrigerated centrifuge to collect the 
serum. The gonads (ovary and testis) were dissected 
out aseptically and weighed to the nearest gram to 
calculate the gonadosomatic index (GSI). One lobe of 
the ovaries and testes was fixed in Bouin’s fluid for 
18 h for histological and immunohistochemical stud-
ies, while the other lobe was extirpated, snap frozen, 
and stored at − 80 °C for the estimation 17β-estradiol 
and testosterone.

Histology and immunohistochemical localization of 
kiss1 in ovary and testis

The 6  µm thin ovarian and testicular sections were 
cut group-wise by Leica semi-motorized rotary 
microtome (RM 2245) and were processed for rou-
tine hemotoxylin and eosin (H&E) staining for his-
tological as well as immunolocalization according 
to Singh et al. (2021). In brief, the testicular sections 
were spread on coated slides (1% gelatin). The sec-
tions after deparaffinization and hydration using 
descending ethanol series were stained with Ehrlich’s 
hematoxylin solution for 45  min. Thereafter, slides 
were subjected to bluing under tap water for 45 min 
following differentiation in 1% acid water for 5  s. 
The slides were then kept under running water for 
1  h. Thereafter, the sections were then stained with 
1% eosin solution for 5  min. Subsequently, sections 
were dehydrated and cleared in xylene. Finally, the 
stained sections were mounted with a few drops of 
DPX. After appropriate drying, slides were examined 
using a Leica microscope (LEICA DM 2000, Leica 
Microsystems, Germany).

The testicular sections, after hydration, were 
washed with phosphate buffer saline (PBS, 0.05  M, 
pH 7.5). The sections were then dropped in a cou-
pling jar containing blocking solution (5% normal 
goat serum, 10% TX-100, and 1% H2O2) for 1  h, 
thereafter incubated with polyclonal antibody against 
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kiss1 (1:1200) overnight at 4 °C in a moist chamber. 
The control experiment includes (1) omission of the 
primary antibody from the reaction, and (2) kiss1 
antibodies were adsorbed by preincubated peptides at 
25 µg/mL, respectively. These control slides resulted 
in a loss of immunoreactivity.

The following day, the sections were washed and 
subsequently incubated with biotinylated second-
ary antibody (1:200) for 2 h at room temperature in 
a moist chamber. Sections were then processed with 
the Vectastain ABC kit according to the manufac-
turer’s instructions for 1  h. Then, slides were incu-
bated with 3, 3′-diaminobenzidine tetrahydrochloride 
hydrate (0.025% DAB and 0.066% hydrogen peroxide 
in PBS) as a chromogen to visualize kiss1 binding 
sites. The reaction was stopped by washing the slides 
in distilled water several times. The slides were then 
mounted and viewed under a microscope. The den-
sitometric analyses for kiss1 in the gonadal tissues 
were performed as described elsewhere (Singh et al. 
2021; Priyadarshini and Lal 2018; Singh nee Priya-
darshini and Lal 2018; Singh and Lal 2016, 2017; 
Kumar and Thakur 2012; Kumar and Thakur 2014) 
by Alpha EaseFC software (Alpha Innotech Corp., 
USA) which is expressed in terms of integrated den-
sity value (IDV) unit area−1.

Estimation of 17β‑estradiol and testosterone

Serum and gonadal 17β-estradiol (E2) and testos-
terone (T) levels were measured by enzyme‐linked 
immunosorbent assay using a commercial kit (Dia-
Metra, Segrate, Milan, Italy) as per the manufactur-
er’s described procedure. The sensitivity of this kit, 
as per the manufacturer, is 0.008 ng/mL and 0.10 ng/
mL, which is within the detectable limits of estradiol 
and testosterone levels in this catfish species. The 
intra- and inter-assays variations are 5.4% and 6.8% 
for17β-estradiol and 6.4% and 7.2% for testoster-
one, respectively. Briefly, the ELISA plate was sup-
plemented with 25 µL of various standards, gonadal 
homogenate (10%) prepared in phosphate buffer 
(PB, 0.01  M, pH 7.3), and female and male serum. 
Thereafter, 200 μL of estradiol conjugate and 100 µL 
of testosterone conjugate were added to each ELISA 
plate well and mixed properly by mild shaking. The 
plate was then incubated at 37 °C for 1 h in the dark. 
Thereafter, the contents of each well were carefully 

drained by flicking, followed by washing with 300 
µL wash buffer supplied with the kit. Subsequently, 
100 µL of 3, 3’, 5, 5’-tetramethylbenzidine (TMB) 
substrate was added to each well and incubated for 
30  min (estradiol) and 15  min (testosterone) in the 
dark. The reaction was stopped by adding a stop solu-
tion. The enzyme complex was measured quickly at 
an optical density of 450 nm against blank using the 
ELISA Plate Reader (Multiskan, Thermo Labsystem).

Statistical analyses

The data in relation to 17β-estradiol, testosterone, 
and kiss1 IDV are expressed as mean ± SEM (n = 5). 
The concentration of 17β-estradiol or testosterone is 
expressed as ng/g ovary or testis and ng/mL serum. 
Data were analyzed through analysis of variance 
(ANOVA) followed by a post hoc test and Dun-
can’s multiple range test at P < 0.05 for comparisons 
amongst different groups. All the statistical analyses 
were performed using SPSS16 software (SPSS Inc., 
Chicago, IL, USA).

Results

Effects of different photo‑thermal regimes on 
gonadosomatic index in female and male catfish

During the quiescence phase, exposure of the catfish 
to APHT and LPAT caused a modest increase in the 
GSI compared to APAT and SPHT exposed catfish 
(Figs.  1B  and 3B). However, the exposure of fish 
to the LPHT increased the GSI to a greater extent 
(Figs. 1B and 3B).

Effects of different photo‑thermal conditions on 
ovarian morphology

The quiescence ovary consists primarily of perinucleo-
lar oocytes and a few oocyte-I. The ovaries of the catfish 
exposed to LPAT display a relatively higher number of 
oocyte-I with developing follicular cells as compared 
to the ovary under APAT, APHT, SPAT, and SPHT 
(Fig.  1). The ovary of the fish held under APHT also 
exhibited a moderate increase in an oocytes-II, while 
fish held under SPHT displayed relatively more growing 
oocytes-I than the fish maintained under APAT, APHT, 
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and SPAT (Fig. 1). Exposure of catfish to LPHT resulted 
in the development of a large number of growing follicles 
with oocyte-II in comparison to the ovarian conditions 
under other photo-thermal regimes (Fig. 1).

Effects of different photo‑thermal regimes on 
17β‑estradiol (E2) in serum and ovary

The ovarian E2 level in the catfish under APHT 
increased marginally compared to APAT and SPHT 
regimes (Fig.  1A), while ovarian E2 was decreased 
in SPAT-exposed fish. The LPAT exposure also 
increased E2 levels in the ovary and serum (Fig. 1A). 
However, the treatment of fish with LPHT increased 

the circulating as well as ovarian E2 to a greater 
extent than the catfish held under other photo-thermal 
conditions (Fig. 1A).

Effects of different photo‑thermal regimes on kiss1 
expression in ovary

Marginal expression of kiss1 was observed in the 
APAT and SPAT during the quiescence phase. How-
ever, the exposure of catfish to LPAT induced an 
increase in kiss1 expression and was similar to APHT 
and SPHT (Fig.  2). The maximum expression of 
kiss1 was noted in the follicular cells of the oocytes 
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Fig. 1   Images of hematoxylin/eosin stained transverse sec-
tions of Clarias batrachus ovary after their exposure to dif-
ferent photo-thermal regimes [ambient photoperiod and 
ambient temperature (APAT—11L:13D, 19 ± 1  °C), ambi-
ent photoperiod and high temperature (APHT—11L:13D, 
30° ± 1  °C), short photoperiod and ambient temperature 
(SPAT—9L:15D, 19 ± 1  °C), short photoperiod and high 
temperature (SPHT—9L:15D, 30° ± 1 °C), long photoperiod 
and ambient temperature (LPAT—14.5L:9.5D, 19 ± 1  °C), 
long photoperiod and high temperature (LPHT—
14.5L:9.5D, 30° ± 1 °C)], 17β-estradiol in ovary and serum 

(A) and changes in gonadosomatic index (B) during the 
early-quiescence phase. Note: perinucleolar oocytes (PN), 
oocytes-I (OC-I), oocytes-II (OC-II), germinal vesicle 
(GV), cortical alveoli (yellow arrow), granulosa cell (orange 
arrow). Each bar represents mean ± SEM (n = 5). Means 
bearing the same superscripts do not differ from each other 
while means bearing different superscripts are different 
from each other statistically at P < 0.05 (Duncan’s multiple 
range test). Superscripts A, B, C, D, and E and a, b, and c 
are used for 17β-estradiol in ovary and serum, while super-
scripts A, B, C, D, and E are used for GSI in panel B 
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in the ovary of the catfish exposed to LPHT (Fig. 2). 
Immunoreactivity was absent in pre-adsorbed control 
(Fig. 2g and g’).

Effects of different photo‑thermal conditions on 
testicular histology

The quiescent testis displays poorly developed 
interstitium and smaller seminiferous tubules. 
Under the SPAT condition, the testicular histology 
was almost similar to the quiescent testis (Fig. 3). 
The catfish exposed to APHT revealed divid-
ing germ cells in the germinal epithelium as well 
as the lumen of the seminiferous tubules. While 
under SPHT condition, the seminiferous tubules 

in the testis showed dividing spermatogonial stem 
cells in the germinal lining and a few advanced 
germ cells within the cysts in the lumen of semi-
niferous tubules. The interstitial cells (probably 
Leydig cells) were also distinctly visible in such 
testis (Fig.  3). Similarly, the testis of the cat-
fish exposed to LPAT exhibited division in sper-
matogonial cells in the germinal epithelium. The 
cysts had dividing germ cells at different stages 
(Fig. 3). The testis of the LPHT-exposed fish dis-
played maximally enlarged seminiferous tubules 
with a large number of advanced germ cells, some 
of which were also evacuating the seminiferous 
tubules (Fig. 3).
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Fig. 2   Images of kiss1 immunohistochemistry in the ovary 
of Clarias batrachus after their exposure to different photo-
thermal regimes [ambient photoperiod and ambient tem-
perature (APAT—11L:13D, 19 ± 1  °C), ambient photoperiod 
and high temperature (APHT—11L:13D, 30° ± 1  °C), short 
photoperiod and ambient temperature (SPAT—9L:15D, 
19 ± 1  °C), short photoperiod and high temperature (SPHT—
9L:15D, 30° ± 1  °C), long photoperiod and ambient tempera-
ture (LPAT—14.5L:9.5D, 19 ± 1  °C), long photoperiod and 

high temperature (LPHT—14.5L:9.5D, 30° ± 1  °C)], during 
the early-quiescence phase. Note: oocytes-I (OC-I), oocytes-
II (OC-II), granulosa cell (yellow arrow). Each bar represents 
mean ± SEM (n = 5). Means bearing same superscript do not 
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Effects of different photo‑thermal regimes on 
testosterone in serum and testis

The level of testicular testosterone was low in the 
quiescent testis, which declined when exposed to 
the SPAT regime. The testosterone levels in the tes-
tis and serum were increased considerably under 
APHT and LPAT regimes (Fig. 3A). The testoster-
one levels in the testis and serum were increased 
maximally under LPHT conditions when compared 
to other photo-thermal regimes (Fig. 3A).

Effects of different photo‑thermal exposures on kiss1 
expression in testis

During the quiescence phase, the kiss1 expression 
was low in the catfish testis (Fig. 4), which was fur-
ther reduced when exposed to SPAT and SPHT con-
ditions (Fig. 4). A marginal increase in its expression 
was observed under the APHT regime as compared 
to the APAT condition. In LPAT- and LPHT-exposed 
catfish, the expression of kiss1 in the testis was 
increased considerably (Fig. 4). Kiss1 expression was 
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Fig. 3   Images of hematoxylin/eosin stained transverse sec-
tions of Clarias batrachus testis after their exposure to differ-
ent photo-thermal regimes [ambient photoperiod and ambient 
temperature (APAT—11L:13D, 19 ± 1  °C), ambient photo-
period and high temperature (APHT—11L:13D, 30° ± 1  °C), 
short photoperiod and ambient temperature (SPAT—9L:15D, 
19 ± 1  °C), short photoperiod and high temperature (SPHT—
9L:15D, 30° ± 1  °C), long photoperiod and ambient tempera-
ture (LPAT—14.5L:9.5D, 19 ± 1  °C), long photoperiod and 
high temperature (LPHT—14.5L:9.5D, 30° ± 1  °C)], testos-
terone in testis and serum (A) and changes in gonadosomatic 

index (B) during the early-quiescence phase. Note: interstitium 
(black arrow), seminiferous tubule (ST), spermatogonial stem 
cells (orange arrow), interstitial cells (yellow arrow), advance 
germ cells (red arrow), sertoli cells (green arrow). Each bar 
represents mean ± SEM (n = 5). Means bearing the same super-
script do not differ from each other, while means bearing dif-
ferent superscripts are different from each other statistically at 
P < 0.05 (Duncan’s multiple range test). Superscripts A, B, C, 
and D and a, b, c, and d are used for testosterone in testis and 
serum, while superscripts A, B, C, and D are used for GSI in 
panel B 
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highest in the testis of the catfish kept under LPHT 
condition as compared to other regimes (Fig.  4). 
Interestingly, under the LPHT regime, a distinct kiss1 
expression was observed in the advanced germ cells 
also (Fig. 4).

Discussion

The results of the present study suggest that the 
photo-thermal regimes influence the expression of 
kiss1 in the fish gonads. So far, no such study is avail-
able in vertebrates for the comparison and discussion 
of the present findings, except the only one report by 
Li et al. (2015), wherein they have studied the effect 

of only photoperiod on the gonadal expression of 
kiss1. They have shown the sex-specific effects of 
photoperiod on kiss1 expression in ovaries and testis 
of the striped hamster. These authors have observed 
that long and short photoperiod treatments have 
caused a significant reduction in kiss1 expression in 
the ovaries of female striped hamsters, while expo-
sure of striped male hamsters to long photoperiod 
stimulated the kiss1 mRNA level in testis, but short 
photoperiod exposure resulted in a drastic reduction 
in kiss1 expression.

However, some researchers have studied the effects 
of photoperiod and temperature on brain/hypo-
thalamic expression of kiss1 in some vertebrates, 
including fishes, but the results are highly varied and 
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Fig. 4   Images of kiss1 immunohistochemistry in the testis 
of Clarias batrachus after their exposure to different photo-
thermal regimes [ambient photoperiod and ambient tempera-
ture (APAT—11L:13D, 19 ± 1  °C), ambient photoperiod and 
high temperature (APHT—11L:13D, 30° ± 1 °C), short photo-
period and ambient temperature (SPAT—9L:15D, 19 ± 1  °C), 
short photoperiod and high temperature (SPHT—9L:15D, 
30° ± 1  °C), long photoperiod and ambient temperature 
(LPAT—14.5L:9.5D, 19 ± 1  °C), long photoperiod and high 

temperature (LPHT—14.5L:9.5D, 30° ± 1  °C)]. Note: inter-
stitium (black arrow), seminiferous tubule (ST), interstitial 
cells (yellow arrow), advance germ cells (red arrow). Each bar 
represents mean ± SEM (n = 5). Means bearing the same super-
script do not differ from each other, while means bearing dif-
ferent superscripts are different from each other statistically at 
P < 0.05 (Duncan’s multiple range test). Superscripts A, B, C, 
D, and F represent kiss1 expression in testis
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inclusive. The effects of photoperiod and temperature 
appear to be species, sex-, and tissue-specific. Bohlen 
et al. (2018) have recorded a lesser number of kiss1 
expressing neurons in the rostral part of mice hypo-
thalamus kept under short day length. But the short 
day exposure to ewe and striped hamsters increased 
the kiss1 levels in the diencephalon and hypothala-
mus, respectively, in comparison to other photoperi-
odic exposures (Chalivoix et al. 2010; Li et al. 2015). 
However, a high level of kiss1 is reported in Syrian 
hamsters maintained under long day than the short 
day (Revel et al. 2006). Ansel et al. (2011) have also 
shown less brain kiss1 in short day exposed-Syrian 
hamsters. Similarly, long day exposure of goldfish, 
Carassius auratus, and Atlantic salmon, Salmo salar, 
resulted in a higher level of kiss1/GPR54 mRNA 
expression in the brain (Shin et  al. 2014; Chi et  al. 
2017). Further, Shahjahan et al. (2013) have reported 
that low temperature (15  °C) treatment of male 
zebrafish resulted in a significant increase in brain 
kiss1 mRNA level in comparison to the zebrafish 
held at control temperature (27  °C), while the same 
authors have shown that treatment of grass puffer 
fish with low and high temperature has reduced the 
brain kiss2 and kiss2 mRNA significantly (Shahja-
han et  al. 2017). Chaube et  al. (2020) have recently 
reported that exposure of the catfish, Heteropneustes 
fossilis, to long photoperiod (16L) and high tempera-
ture (28 °C) induced a considerable increase in kiss2 
expression in the brain.

In the absence of studies on the regulation of kiss1 
in gonads, as well as based on the reports on the 
effects of photoperiod and temperature on brain kiss1 
expression in other vertebrates, it is suggested that 
gonadal kiss1 expression in the catfish, C. batrachus, 
is regulated by the rearing photo-thermal conditions; 
long photoperiod and high temperature increase, 
while short photoperiod and low temperature 
decrease the kiss1 expression in the ovary and testis 
in fish, although the mode, mechanism, and signal-
ing system involved in the regulation of gonadal kiss 
expression remain to be elucidated.

Further, the regulation of oogenesis, spermato-
genesis, and steroidogenesis by photo-thermal con-
ditions in the seasonally breeding fishes is well 
established (Lam 1983). The continuous light/long 
photoperiod exposure increases sex hormones which 
induce sexual maturation in Atlantic salmon (Salmo 
salar) (Taranger et al. 1999), Atlantic salmon, Salmo 

salar (Duston and Saunders 1990), and Atlantic cod, 
Gadus morhua (Hansen et al. 2001). Peñaranda et al. 
(2016) have reported the direct role of temperature in 
the regulation of steroid production and activities of 
steroidogenic enzymes in fish gonads. It is also well 
known that steroids regulate gametogenesis in fishes 
(Sisneros et  al. 2004; Singh and Lal 2019; Agarwal 
et al. 2020; Singh et al. 2021). The high levels of cir-
culating and gonadal steroids were observed when the 
catfish were exposed to long photoperiod and/or high 
temperatures alone as well as in combination coincid-
ing with the development of advanced germs cells 
(oocytes/III in ovarian follicles and spermatocytes/
spermatids in testis). The maximum steroids and 
gonadal development were recorded during long pho-
toperiod along with the high temperature. These find-
ings are in concurrence with earlier reports by Singh 
and Lal (2019) in the same species following expo-
sure to different photo-thermal conditions, as well as 
the reports on other fishes.

The present findings have aquacultural importance. 
The reproductive efficiency of this catfish species 
can be enhanced by manipulating the photo-thermal 
conditions of the aquatic rearing ambience under con-
trolled conditions, leading to high production of C. 
batrachus, which is consumer-preferred and highly 
cultured catfish in India.

Thus, it may be summarized that long photoperiod 
and high temperature both are almost equally effec-
tive in increasing the gonadal kiss1 expression in this 
catfish, but when long photoperiod and high tempera-
ture are coupled, their stimulatory effects on kiss1 
expression are further amplified. In addition, the long 
photoperiod and high temperature also stimulate sex 
steroid production leading to gonadal development 
and maturation. However, the mode, mechanism, and 
signaling system involved in photo-thermal regulation 
of kiss1 expression in the catfish gonads are yet to be 
resolved.
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