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Abstract Fish assemblages in tropical lowland rivers
are characterized by a high richness of species that feed
on a diverse array of food resources. Although closely
related species often have similar feeding ecology, spe-
cies within the family Cichlidae display a broad spec-
trum of trophic niches, and resource partitioning has
been inferred from studies conducted in Neotropical
rivers. We investigated interspecific variation in food
resource use and its relationship to morphological vari-
ation among cichlid fishes within the Pantanos de Centla
Biosphere Reserve, a coastal area encompassing the
delta of the Grijalva-Usumacinta River in Tabasco,
Mexico. Most species consumed benthic crustaceans,
aquatic insect larvae, and detritus, but some were more
herbivorous, and one species was a specialized pisci-
vore. Dietary niche overlap among species was higher
than expected for one assemblage, and similar to ran-
dom expectations for another, suggesting a lesser role
for resource partitioning than has been shown for some

cichlid assemblages, perhaps due to availability of abun-
dant resources, even in low-water conditions. Canonical
correspondence analysis revealed that greatest morpho-
logical differences am7ong species involved functional
traits directly associated with resource use. Relation-
ships between feeding ecology and morphology were
similar to those described for other riverine cichlids.
Strong ecomorphological relationships facilitate infer-
ences about the ecology of cichlid species, including
species that currently lack data from field studies.
Knowledge of ecological relationships will be important
for conservation in the Pantanos de Centla, an ecosys-
tem of global significance for biodiversity and ecosys-
tem services.

Keywords Cichlidae .Morphological traits . Niche
overlap . Neotropical

Introduction

In species-rich freshwater fish assemblages, co-
occurring species occupy a diverse suite of trophic
niches, and some have been found to partition resources,
presumably to reduce interspecific competition (Ross
1986; Winemiller and Pianka 1990; Herder and
Freyhof 2006). Species within the same family are often
ecologically similar due to phylogenetic niche conser-
vatism (e.g., McNyset 2009), but closely related species
may occupy diverse trophic niches in regions where
ecological adaptive radiations have occurred (Schluter
2000). In the incredibly diverse cichlid communities of
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Lake Malawi in Africa, Genner et al. (1999a, 1999b)
found that cichlids coexisting along rocky shores
showed significant differences in food resource use,
but many species had considerable dietary overlap.
They suggested that ecological segregation may not be
necessary to support coexistence in these diverse cichlid
assemblages. In more dynamic fluvial habitats, environ-
mental variation often causes shifts in resource avail-
ability (Grossman et al. 1998), and trophic segregation
may occur during periods when fish densities are high
while habitat and food availability are low (Winemiller
1990, 1991b; Winemiller and Kelso-Winemiller 2003).

Cichlids in the Neotropics consume a broad array of
resources, from aquatic macrophytes to other fishes,
with some being trophic specialists while retaining an
ability to exploit a variety of food items (Lowe-
McConnell 1991; Winemiller et al. 1995; Montaña and
Winemiller 2013). Differences in dietary preferences are
likely to be reflected in morphological traits related to
foraging and consuming food. Prior studies of riverine
cichlids have revealed strong relationships between
morphological traits and diet (e.g., Winemiller et al.
1995; López-Fernández et al. 2012; Montaña and
Winemiller 2013). For example, Winemiller et al.
(1995) found that across continents, riverine cichlids
showed convergent relationships between traits such as
gut length, gape size, and head length and the proportion
of fishes, invertebrates, vegetation, and detritus
consumed.

Cichlids comprise a major component of the fresh-
water fish fauna of Mesoamerica, and the evolution and
zoogeography of the group (subfamily Cichlinae) has
been studied extensively (e.g., Martin and Bermingham
1998; Hulsey et al. 2004; López-Fernández et al. 2013).
Centers of Mesoamerican cichlid diversity, such as the
Río Grijalva-Usumacinta region of southern México,
contain many coexisting cichlid species that display
considerable morphological diversity that likely reflects
niche diversification (Myers 1966; Bussing 1985; Pease
et al. 2012). Studies in other Mesoamerican regions
(e.g., Winemiller et al. 1995; Cochran-Biederman and
Winemiller 2010) suggest that coexisting cichlid species
partition trophic niches. Relatively little ecological in-
formation is available for cichlids of the Lower Grijalva-
Usumacinta (Miller 2005) despite the high diversity and
importance of many species for small-scale fisheries
(Mendoza-Carranza et al. 2013).

In this study we examined diets, niche breadth, and
niche overlap of coexisting cichlid species in the

Grijalva-Usumacinta River delta within the Pantanos
de Centla Biosphere Reserve in Tabasco, México. We
also sought to identify relationships between morpho-
logical features and the feeding ecology of cichlids in
these assemblages. We carried out the study during the
dry season, a period when dietary niche partitioning has
been shown for other fluvial cichlid assemblages (e.g.,
Winemiller 1991b; Jepsen et al. 1997). During low-
water periods, availability of food resources declines
and densities of most fish species increases, which in-
creases the potential for competition. We also hypothe-
sized that morphological variation among cichlids
would involve traits directly related to trophic resource
use in a manner similar to ecomorphological relation-
ships documented for other fluvial cichlids (e.g.,
Winemiller et al. 1995; Cochran-Biederman and
Winemiller 2010; Montaña and Winemiller 2013). In-
formation on the trophic ecology of cichlid fishes in the
Lower Grijalva-Usumacinta should enhance manage-
ment of fisheries resources and conservation of this
region’s unique biodiversity.

Materials and methods

Study sites and data collection

The Grijalva and Usumacinta join together in Tabasco,
Mexico to form the largest river of Mesoamerica and a
major center of fish diversity (Myers 1966; Bussing
1985; Miller 2005). Approximately 115 fish species
from 31 families have been documented in the
Grijalva-Usumacinta region, and an estimated 36% of
these species are endemic (Miller 2005). Cichlids are the
most species-rich family in this region, with many spe-
cies occurring together in local assemblages (Rodiles-
Hernández et al. 1999; Miller 2005; Soria-Barreto and
Rodiles-Hernández 2008).

Sampling locations were within the Pantanos de
Centla Biosphere Reserve (Fig. 1), a vast protected area
within the Lower Grijalva-Usumacinta Basin which was
designated by the RAMSAR convention of 1995 as a
wetland of international significance. San Pedrito La-
goon (18°20′36^N 92°33′50^W) is a permanent fresh-
water lagoon with expansive beds of aquatic macro-
phytes (chiefly Vallisneria americana) and shorelines
dominated by reeds (Phragmites australis). Polo Stream
(18°29 ′21^N 92°38 ′23^W) is a slow-moving,
mangrove-dominated freshwater tributary of the Río
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Grijalva below its confluence with the Río Usumacinta.
Along the shorelines of the stream, structural cover is
provided by riparian plants (mangrove trees and terres-
trial grasses), and the sandy substrate is covered with
coarse particulate organic matter. A detailed description
of these study sites is given in Mendoza-Carranza et al.
(2010) and Sepúlveda-Lozada et al. (2015). Intensive
surveys were carried out in February and March 2007
during the dry season (Espinal et al. 2007; Yáñez-
Arancibia et al. 2009). In Pantanos de Centla, the dry
season is characterized by low water levels (< 2 m in
Polo Stream and <1 m in San Pedrito Lagoon), low
turbidity (0.90–1.5 m Secchi depth), and low salinity
(4–5 UPS) (Arévalo Frías and Carranza 2012;
Sepúlveda-Lozada et al. 2015). Precipitation in Tabasco
during February and March 2007 was 127.0 and
55.8 mm, respectively, corresponding to the lowest values
of the year (Servicio Meteorológico Nacional 2017).

Specimens were collected using seine nets, gill nets,
hook and line, and a boat-mounted trawl net. Though all
main mesohabitat types were sampled at the sites, the
specimens used for this study were captured among the
Vallisneria beds in San Pedrito (depths of 0.5–1 m), and
along the vegetated shorelines of Polo Stream (depths of
0.1–1.2 m), areas where cichlids were abundant and
diverse. Specimens were identified following Miller

(2005) and deposited in the fish collection at El Colegio
de la Frontera Sur in Villahermosa, Tabasco.

Given that the objective of this study was to evaluate
interspecific patterns of morphological and dietary diver-
sity within local species assemblages, juvenile size clas-
ses, which tend to show relatively low interspecific di-
vergence in morphology and diet (i.e., small size classes
of all species consume mostly microcrustacea and other
small aquatic invertebrates), were excluded from analy-
ses. Species that were rarely captured during surveys of
the mesohabitats (N < 5) also were excluded from analy-
sis. Volumetric proportions of stomach contents were
estimated following the methods of Winemiller (1990).
Fishes consumed were identified to species when possi-
ble, and invertebrates were identified to order. Prey items
were later grouped into broader categories for statistical
analyses. These categories were: fishes, mollusks, deca-
pod crustaceans, aquatic insect larvae, benthicmeiofauna,
aquatic macrophytes, algae, and detritus.

Morphological measurements were made on five
specimens of each species included in the assemblage
dataset. Morphological traits were measured to the
nearest 0.1 mm using vernier calipers. Following
methods described by Winemiller (1991a), the follow-
ing 24 morphological features were measured (Table 1):
maximum standard length, gut length, head length, head

Fig. 1 Map of the study area within Pantanos de Centla Biosphere Reserve, Tabasco, Mexico
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depth, oral gape, eye position, eye diameter, snout length,
jaw protrusion length, body depth, body width, caudal
peduncle depth, caudal peduncle width, body depth be-
low midline, dorsal fin length, dorsal fin height, anal fin
length, anal fin height, caudal fin depth, caudal fin length,
pectoral fin length, pelvic fin length, gill raker number,
and gill raker length. Prior to statistical analysis, morpho-
logical measurements were standardized for size by
converting to proportions of standard length, body width,
or head length as described by Winemiller (1991a).

Statistical analyses

For species at each sampling site, dietary niche breadth
was estimated using Levins’s (1968) standardized

index. Pianka’s (1973) symmetrical index of niche over-
lap was calculated as a measure of dietary similarity
between species. Both indices were calculated using
volumetric proportions of the nine aggregated prey cat-
egories above. For both measures, values may range
from 0 to 1, with higher values indicating greater diet
diversity and more complete overlap. To test whether
dietary niche overlap was higher or lower than random
expectations, a randomization test (1000 iterations) was
also performed using the niche overlap module of
EcoSim Professional (Entsminger 2014). We used the
Bconserved-zeroes^ algorithm ofWinemiller and Pianka
(1990) in the randomization, retaining the niche
breadths of species and the zero structure of the food
resource use matrix (i.e., resources not used by a species

Table 1 The 24 morphological traits used for Lower Grijalva-Usumacinta cichlid assemblages with trait abbreviations and measurement
methodology. Trait definitions follow Winemiller (1991a) and López-Fernández et al. (2012)

Morphological trait Code Trait description

Maximum standard
length

max_SL Maximum standard length from specimens collected in this study

Gut length gut_L Length of gut from beginning of esophagus to the anus (divided by standard length)

Head length head_L Distance from the tip of the jaw to the posterior edge of the operculum (divided by standard length)

Head depth head_D Vertical distance from dorsum to ventrum passing through the pupil (divided by body depth)

Oral gape gape Vertical distance measured inside of fully open mouth at tallest point (divided by body depth)

Eye position eye_P Vertical distance from the center of the pupil to the ventrum (divided by head depth)

Eye diameter eye_D Horizontal distance from eye margin to eye margin (divided by head length)

Snout length snt_L Distance from the pupil to the tip of the upper jaw with mouth shut (divided by head length)

Jaw protrusion length jaw_Pr Distance from the pupil to the tip of the upper jaw with mouth fully open and extended (divided by
snout length)

Body depth bod_D Maximum vertical distance from dorsum to ventrum (divided by standard length)

Body width bod_W Maximum horizontal distance (divided by standard length)

Caudle peduncle depth ped_D Minimum vertical distance from dorsum to ventrum of caudal peduncle (divided by body depth)

Caudle peduncle width ped_W Horizontal width of the caudal peduncle at midlength (divided by body width)

Body depth below
midline

bdbm Vertical distance from midline to ventrum (divided by body depth)

Dorsal fin length dor_L Distance from anterior proximal margin to posterior proximal margin of dorsal fin (divided by standard
length)

Dorsal fin height dor_H Maximum distance from the proximal to distal margin of the dorsal fin (divided by standard length)

Anal fin length ana_L Distance from anterior proximal margin to posterior proximal margin of anal fin (divided by standard
length)

Anal fin height ana_H Maximum distance from proximal to distal margin of the anal fin (divided by standard length)

Caudal fin depth cau_D Maximum vertical distance across the fully spread caudal fin (divided by standard length)

Caudal fin length cau_L Maximum distance from proximal to distal margin of the caudal fin (divided by standard length)

Pectoral fin length pec_L Maximum distance from proximal to distal margin of pectoral fin (divided by standard length)

Pelvic fin length pel_L Maximum distance from proximal to distal margin of pelvic fin (divided by standard length)

Gill raker number rk_num Number of gill rakers in first ceratobranchial

Gill raker length rk_L Length of the longest gill raker (divided by standard length)
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remained unused in the randomization). Mean observed
and randomized niche overlaps by nearest neighbor rank
were also plotted.

To ordinate species within assemblage morpholog-
ical space, principal components analysis (PCA) was
performed based on the correlation matrix of log-
transformed morphological data (species average trait
values). Relationships between diet (using data from
both survey sites) and morphology were examined
using canonical correspondence analysis (CCA). This
allowed for measurement of the amount of variation
in dietary resource use that could be explained by axes
of morphological variables. The statistical signifi-
cance of the diet-morphology relationship from
CCA was assessed with a permutation test (1000
simulations). Both ordination analyses were per-
formed using the Vegan package in R version 2.11.1
(R Foundation for Statistical Computing 2010).

To examine phylogenetic signal in the diet composi-
tion of cichlid species, we used the test for phylogenetic
serial independence (TFSI, Abouheif 1999; Pavoine
et al. 2008) with mean proportions of the eight prey
categories above as traits. The phylogeny of Mesoamer-
ican cichlids from Rican et al. (2016) was used, and the
analysis was performed using Phylogenetic Indepen-
dence v.2.0 (http://biology.mcgill.ca/faculty/abouheif/).
For each dietary category, a C statistic was calculated for
phylogenetic autocorrelation, and topology of the
original data was randomized 1000 times to generate a
null distribution for assessing statistical significance.

Results

Twelve species of native cichlids were captured during
surveys of Pantanos de Centla Biosphere Reserve. The
eight most abundant species (Petenia splendida, Vieja
melanura, Vieja bifasciata, Mayaheros urophthalmus,
Trichromis salvini, Cribroheros robertsoni, Thorichthys
pasionis, and Thorichthys helleri) were used for dietary
and morphological analyses (total of 323 individuals).
Four additional species were collected in small num-
bers: Cincelicthys pearsei, Maskaheros argenteus,
Thorichthys meeki, and Thorichthys socolofi.
Thorichthys helleri was by far the most abundant spe-
cies at both sites (n = 99). All species were present at
both sites; more C. robertsoniwere collected at the Polo
Stream site, and adult size classes of P. splendida were
only captured from San Pedrito Lagoon.

Examination of stomach contents revealed that most
species consumed benthic meiofauna, aquatic insect
larvae, and detritus (Table 2). The two Vieja species
were largely herbivorous/detritivorous, consuming large
proportions of coarse vegetative detritus and aquatic
macrophytes. Petenia splendida was a piscivore with a
diet restricted to fishes (mostly juvenile cichlids). The
two Thorichthys species and C. robertsoni consumed
small benthic invertebrates (benthic meiofauna, insect
larvae, and gastropods) along with coarse detritus.
Thorichthys helleri consumed a higher proportion of
snails than the other invertebrate feeders. Trichromis
salvini and M. urophthalmus had more generalist, om-
nivorous diets composed of shrimp and smaller inverte-
brates as well as detritus and plant matter. In Polo
Stream, all cichlid species consumed substantial pro-
portions of detritus. In general, cichlid species con-
sumed more aquatic plants and mollusks (bivalves
and gastropods) in San Pedrito Lagoon. The diet of
M. uropthalmus differed considerably between the
two sites, with a more carnivorous diet (including
high volumes of fish and decapods as well as plants)
in San Pedrito Lagoon, and a diet of mostly detritus
and plants in Polo Stream. The TFSI tests revealed
phylogenetic constraints on the consumption of
aquatic insects (p < 0.01) and algae (p = 0.04).

Dietary niche breadths were widest for the
Thorichthys species, C. robertsoni, and T. salvini, and
these species consumed relatively even proportions of
various invertebrate categories and detritus as well as
small volumes of several other categories (Table 2).
Both Vieja species (herbivore-detritivores) and
P. splendida (piscivore) had much narrower dietary
niches. For the Polo Stream cichlid assemblage, mean
dietary niche overlap was 0.61, a value significantly
greater (p = 0.001) than expected based on 1000 ran-
domized simulations. Dietary overlaps in Polo Stream
were higher than expected for all nearest neighbor ranks
(Fig. 2). Mean dietary niche overlap in the San Pedrito
Lagoon assemblage (0.34) was neither higher (p = 0.43)
nor lower (p = 0.57) than expected based on randomized
simulations. Across sites, the highest interspecific niche
overlap was between the two Vieja species and among
the two Thorichthys species, C. robertsoni, and T.
salvini (Table 3).Petenia splendida had very low dietary
overlap with all of the other cichlid species except for
M. uropthalmus.

The first two axes from the PCA performed on mor-
phological traits explained 59.9% and 16.0%,
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respectively, of variation among species (Fig. 3). The
morphological gradient along the first axis was associ-
ated with differences in jaw protrusion, gape size, gill
raker number, body depth, caudal peduncle width, anal
fin length, pelvic fin length, dorsal fin height, and eye
diameter. The second axis was most influenced by dif-
ferences among species in head length, gut length, body
size, eye position, and gill raker length. Petenia
splendida had a high positive score on PC1 due to high
jaw protrusion, large gape, relatively short fins, small
eyes relative to body size, and few widely spaced
gill rakers. Species with lowest scores on PC1 were
characterized by having relatively long fins, deeper
bodies, and more gill rakers. These included the
Vieja and Thorichthys species. Thorichthys species,
C. robertsoni, and P. splendida had high scores on
PC 2, which was associated with a relatively longer
head, high eye position, and short gut length. The
two Vieja species, which had long guts and relative-
ly large body sizes, had low PC2 scores.

Canonical correspondence analysis revealed a sig-
nificant relationship between diet and morphological
traits (p < 0.01, 1000 permutations). The first two
axes represented 51.1% and 29.7% of diet variation

explained by morphology respectively (Fig. 4). The
dominant axis (axis 1) separated the piscivorous
P. splendida from all other species. Herbivore/
detritivore species were separated from species with
more invertebrates in their diets along the second
axis. Gape width and extent of jaw protrusion
were positively correlated with axis 1 and strongly
associated with the proportion of fish in the diet.
Gut length was associated with the consumption of
algae, aquatic macrophytes, and detritus and was
negatively correlated with axis 2. Head length,
snout length, and eye position were positively
correlated with axis 2 and with the frequency of
mollusks, benthic meiofauna, and aquatic insect
larvae in stomach contents. Based on the relative posi-
tion of species in the CCA ordination, there were four
main ecomorphological groups: piscivores with large
gapes and highly protrusible jaws (P. splendida), benthic
invertebrate feeders with relatively long heads and
snouts and higher eye position (Thorichthys spp.,
C. robertsoni), herbivore/detritivores with long guts
and shorter head lengths (Vieja spp.), and generalist
feeders with intermediate-sized mouths, heads, and guts
(M. urophthalmus and T. salvini).

Table 2 Average proportional volume of prey items in gut contents of cichlid species at survey sites

Site Species n Fish Mollusks Decapods Insect
larvae

Meio-
fauna

Plants Algae Detritus Other B

Polo Stream Thorichthys helleri 47 0.021 0.097 0.014 0.383 0.081 0.010 0.010 0.302 0.083 0.35

Thorichthys pasionis 9 0.024 0 0 0.071 0.429 0 0 0.333 0.143 0.26

Cribroheros
robertsoni

54 0.036 0.041 0 0.115 0.376 0 0 0.246 0.187 0.37

Trichromis salvini 14 0.108 0 0.144 0.403 0 0.007 0 0.216 0.122 0.36

Mayaheros
urophthalmus

21 0.063 0 0 0.030 0.004 0.324 0 0.576 0.002 0.16

Vieja bifasciata 18 0.001 0.003 0.002 0.001 0.001 0.033 0.001 0.958 0 0.01

Vieja melanura 19 0.002 0 0 0.004 0.001 0.022 0.061 0.910 0 0.03

San Pedrito
Lagoon

Thorichthys helleri 52 0 0.423 0 0.166 0.141 0 0 0.121 0.149 0.35

Thorichthys pasionis 8 0.013 0.177 0 0.291 0.139 0.089 0 0.266 0.026 0.46

Cribroheros
robertsoni

5 0 0.207 0 0.529 0.029 0.193 0 0.021 0.021 0.22

Trichromis salvini 22 0 0.021 0.071 0.192 0.054 0.104 0.100 0.454 0.004 0.33

Mayaheros
urophthalmus

33 0.324 0.011 0.302 0.009 0 0.309 0 0.045 0 0.30

Vieja bifasciata 9 0.008 0 0 0.003 0 0.702 0.041 0.246 0 0.10

Vieja melanura 16 0 0 0 0.017 0.002 0.632 0.243 0.106 0 0.14

Petenia splendida 22 1.000 0 0 0 0 0 0 0 0 0.00

Bolded numbers highlight dominant prey items that composed a proportion greater than 0.15 of gut content volume. B is Levin’s niche
breadth for each species
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Discussion

Twelve co-occurring native cichlid species were docu-
mented in sites within Pantanos de Centla Bioshpere
Reserve, ranking these assemblages among the most
species-rich in Mesoamerica (Myers 1966; Bussing
1985). High dietary niche overlap was observed among
several cichlid species, particularly in Polo Stream,
where vegetative detritus was a substantial component
of the diet for all species. Relationships between feeding
ecology and morphology identified by canonical corre-
spondence were similar to those described for other

Neotropical cichlids (e.g., Winemiller et al. 1995;
Cochran-Biederman and Winemiller 2010; Montaña
and Winemiller 2013). These strong, consistent
ecomorphological relationships may be useful for
predicting diet based on morphology for other cichlid
assemblages that currently lack data.

Most cichlid species consumed a variety of prey
items, including insect larvae, other benthic inverte-
brates, detritus, and plant material. Despite the high
overlap, four basic feeding groups could be identified.
Petenia splendida, a specialized piscivore, had a very
narrow trophic niche distinct from all other species.

Fig. 2 Mean observed trophic
niche overlap for Polo Stream
(black boxes) and San Pedrito
Lagoon (grey boxes) along with
mean overlaps from the ECOSIM
randomization (open circles) by
nearest neighbor rank for eight
common cichlid species in the
Pantanos de Centla Biosphere
Reserve

Table 3 Dietary niche overlap among co-occurring cichlid species calculated using Pianka’s (1973) symmetrical index with volumetric
proportions of prey items in gut contents

Polo Stream T. hel T. pas C. rob T. sal M. uro V. bif V. mel
Thorichthys helleri –

Thorichthys pasionis 0.590 –

Cribroheros robertsoni 0.651 0.985 –

Trichromis salvini 0.801 0.350 0.411 –

Mayaheros urophthalmus 0.568 0.542 0.480 0.423 –

Vieja bifasciata 0.600 0.609 0.527 0.402 0.883 –

Vieja melanura 0.603 0.608 0.527 0.403 0.877 0.998 –

San Pedrito Lagoon T. hel T. pas C. rob T. sal M. uro V. bif V. mel P. sple

Thorichthys helleri –

Thorichthys pasionis 0.769 –

Cribroheros robertsoni 0.615 0.782 –

Trichromis salvini 0.402 0.816 0.437 –

Mayaheros urophthalmus 0.043 0.192 0.208 0.269 –

Vieja bifasciata 0.083 0.373 0.317 0.488 0.571 –

Vieja melanura 0.047 0.282 0.323 0.396 0.539 0.939 –

Petenia splendida 0 0.027 0 0 0.597 0.010 0 –
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Thorichthys helleri, T. pasionis, and C. robertsoni fed
primarily on benthic invertebrates. Vieja bifasciata and
V. melanura consumed larger proportions of detritus and
aquatic macrophytes. Finally, T. salvini and
M. urophthalmus had generalist diets, consuming many
kinds of invertebrates as well as detritus, algae and plant
material. This is consistent with findings for
P. splendida and C. robertsoni in cichlid assemblages
in Quintana Roo, México, (Valtierra-Vega and
Schmitter-Soto 2000) and in the Bladen River, Belize
(Cochran-Biederman and Winemiller 2010). Trichromis
salvini appears to be more omnivorous in the lowland
habitats in southern Mexico (this study; Hinojosa-Garro
et al. 2013) compared to upland streams in Belize
(Cochran-Biederman and Winemiller 2010). Similar to
our findings for Thorichthys helleri and T. pasionis,
other species in the genus Thorichthys have been found
to feed predominantly on benthic invertebrates
(Valtierra-Vega and Schmitter-Soto 2000; Cochran-
Biederman and Winemiller 2010). Thorichthys species
have been described as substrate winnowers or sifters
that ingest sand or other loose sediments; ingested ma-
terial is then manipulated within the orobranchial cham-
ber in order to separate invertebrate prey from debris,

the latter being expelled from the mouth or opercular
opening (López-Fernández et al. 2014).

Similar spectra of trophic niches were described
for a less diverse Mesoamerican cichlid assemblage
(six species) in Belize (Cochran-Biederman and
Winemiller 2010). In addition to piscivores, benthic
invertebrate feeders, herbivore-detritivores, and gen-
eralists, Winemiller et al. (1995) found that a Costa
Rican cichlid assemblage with high species richness
(14 species) contained two additional, unique trophic
specialists: algae scraper and frugivore. Some cichlid
assemblages in South America contain more co-
occurring species, but herbivorous and detritivorous
cichlids are rarer in these systems (Winemiller et al.
1995). Myers (1966) suggested that Mesoamerican
cichlid species have filled an exceptionally diverse
set of ecological niches owing to the low diversity of
ostariophysan fishes compared to other tropical re-
gions. Compared to cichlids in South America, Me-
soamerican cichlids, as a group, consume more de-
tritus, algae and vegetation, perhaps due to less com-
petition for those resources from characiform and
siluriform fishes, both historically as well as present-
ly (Winemiller et al. 1995).

Fig. 3 PCA ordination of
morphological traits defining the
position of Lower Grijalva-
Usumacinta cichlid species in two
dimensions of trait space. Traits
used to characterize the two axes
had correlation coefficients ≥0.2.
Abbreviations for morphological
traits are given in Table 1
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Dietary niche overlap was higher than would be
predicted based on random expectations in the Polo
Stream cichlid assemblage, and did not differ from
random expectations in the San Pedrito Lagoon assem-
blage. In both sites, dietary overlap was particularly high
among benthic invertebrate feeders (Thorichthys species
and C. robertsoni) and the herbivore-detritivore trophic
group (Vieja species). High niche overlap among con-
generic species (Thorichthys and Vieja species) suggests
that phylogenetic niche conservatism maintains similar
feeding ecology within clades, and our analyses re-
vealed that consumption of some prey items had a
strong phylogenetic signal. Niche overlaps higher than
or similar to randomized simulations in these assem-
blages did not support expectations for trophic niche
partitioning among co-occurring cichlids. This was
somewhat surprising because sampling took place at
the height of the dry season, the period during which
low water levels are expected to constrain resources,
resulting in more pronounced resource partitioning
among fishes in tropical lotic systems (Lowe-

McConnell 1987; Winemiller 1991b; Jepsen et al.
1997). A previous study in San Pedrito Lagoon showed
that based on stable isotope signatures, fishes and other
aquatic consumers used a narrower set of food resources
during the dry season compared to the wet season when
flooding provided access to a broader array of resources
(Sepúlveda-Lozada et al. 2017). Our results suggest that
although the diversity of available food resources may
be lower in the dry season in this system, low-quality
resources (detritus in Polo Stream and submerged veg-
etation in San Pedrito Lagoon) might remain plentiful
enough during low-water conditions to preclude distinct
niche partitioning within cichlid assemblages overall.
Because many Mesoamerican cichlids are capable of
foraging on detritus and aquatic vegetation, they likely
overlap in the use of these resources when others are less
available. To better understand the influence of resource
availability in this system, the effects of seasonal envi-
ronmental variation in the Grijalva-Usumacinta delta
(Arévalo-Frías and Mendoza-Carranza 2015) on food
resources and fish foraging need to be investigated.

Fig. 4 Ordination of prey items and morphological traits of common Lower Grijalva-Usumacinta cichlid species on the first two axes of the
CCA. Abbreviations for morphological traits are given in Table 1
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It is also possible that food resource partitioning
occurs at a scale of resolution finer than the one ana-
lyzed in this study. Subdividing prey items, such as
insect larvae, into finer taxonomic categories might
reveal stronger evidence of niche segregation. For ex-
ample, Reinthal (1990) found that many co-occurring
mbuna cichlids in LakeMalawi mostly consumed algae,
and resource partitioning was detected only when algae
were subdivided into different taxa. In our study, all
cichlids were collected from similar macrohabitat types
in both sites (Vallisneria beds in San Pedrito Lagoon and
slow-moving, vegetated shorelines of Polo Stream), but
potential differences in microhabitat use among species
were not investigated.

Morphological differences among cichlid species in
these assemblages were strongly associated with feed-
ing (e.g., jaw protrusion, gape size, gill raker length and
number, gut length) as well as locomotion and habitat
use (body depth, fin lengths, caudal peduncle width).
Our results further confirm strong associations between
functional morphology and diet in cichlid assemblages
(Liem 1973; Winemiller et al. 1995; Barlow 2000). In
agreement with studies of cichlids in other regions, spe-
cies with larger mouth gape and greater jaw protrusibility,
such as P. splendida and M. urophthalmus, consumed
more fish (Cochran-Biederman and Winemiller 2010;
Montaña and Winemiller 2013). Functional morphology
studies of jaw protrusion in P. splendida and other Neo-
tropical cichlids suggest that increased protrusion is
linked to improved performance in capturing relatively
small and evasive prey, such as decapod crustaceans and
small pelagic fish (Wainwright et al. 2001; Waltzek and
Wainwright 2003; Hulsey and García de Leon 2005).
Cichlids that were more herbivorous and detritivorous,
including Vieja species, had longer guts and relatively
short heads and snouts. Winemiller et al. (1995) also
found an association between these traits and high pro-
portions of detritus in diets of riverine cichlids across
continents. Greater intestine length allows for longer
processing times for relatively refractory material of low-
er nutritional quality, such as vegetative detritus (Gatz
1979; Bowen 1983). Our analyses also revealed that
longer snout and head lengths were associated with
diets consisting of benthic invertebrates. Winemiller
et al. (1995) found an association between cichlid head
length and consumption of mayfly nymphs, and snout
length has been shown to correlate with benthic inverte-
brate feeding by South American cichlids (López-
Fernández et al. 2012; Montaña and Winemiller 2013).

Longer snouts may enable cichlids to sift more efficiently
for benthic invertebrates in soft substrate (López-
Fernández et al. 2014). Ecomorphological similarity be-
tween the Thorichthys species and C. robertsoni
(sediment-sifting benthic invertebrate feeders with long
heads and snouts) is considered a result of evolutionary
convergence (Winemiller et al. 1995; Roe et al. 1997).

Because phylogenetic constraints may have a con-
founding effect in comparative studies, relationships
between form and feeding performance are expected to
be strongest when comparing species within the same
family (Douglas and Matthews 1992). Elucidation of
relationships is enhanced when assemblages contain
species capable of using a broad array of resources
(Hugueny and Pouilly 1999). In this study, we examined
morphological traits using traditional morphometric
methods rather than geometric morphometric methods
(e.g., Costa and Cataudella 2007; Lombarte et al. 2012).
Franssen et al. (2015) found that while both approaches
identified relationships betweenmorphology and habitat
use for cyprinids, traditional morphometric traits were
more strongly related to diet. Some of the strongest
relationships between diet and morphology in this study
involved traits such as intestine length, gape size, jaw
protrusion, and gill raker length that are not captured
using geometric morphometric methods. Traditional
morphometrics often reveal relationships between mor-
phology and feeding ecology in a directly interpretable
manner. For example, traits such as gape size and jaw
protrusion are important biomechanical components of
feeding performance in cichlids (e.g. Hulsey and García
de Leon 2005; Arbour and Lopez-Fernandez 2014). In
general, the links between cichlid morphology and feed-
ing ecology in these assemblages confirm relationships
found in other regions (e.g.; Winemiller et al. 1995;
López-Fernández et al. 2012; Montaña and Winemiller
2013). Discovery of consistent ecomorphological rela-
tionships provides a basis for inferring aspects of the
ecology of poorly-studied taxa lacking data on resource
use (Hugueny and Pouilly 1999; Winemiller et al.
2015).

Cichlids are major components of fisheries of the
Grijalva-Usumacinta delta (Mendoza-Carranza et al.
2013), a region currently vulnerable to environmental
impacts from the petroleum industry, agricultural prac-
tices, and non-native invasive species. Non-native cich-
lids, including Oreochromis species and Parachromis
managuensis, are established in the lower Grijalva-
Usumacinta (Amador-del Ángel and Wakida-Kusunoki
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2014), and they may compete with native cichlids.
Invasive loricariid catfish, Pterygoplichthys sp., now
abundant in the region, have affected ecosystem pro-
cesses (Capps and Flecker 2013) and already have been
implicated in fisheries declines (Wakida-Kusunoki et al.
2007). Documenting the ecology of these diverse native
cichlid assemblages provides important information for
management and conservation in the Lower Grijalva-
Usumacinta. Better understanding of how resources that
support cichlid stocks and species coexistence, for ex-
ample, is critical for constructing models to estimate the
impacts of environmental change in the region and to
guide effective ecosystem-based management of fisher-
ies resources.
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