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Abstract The gonadal description of the freshwater
atherinopsid pike silverside Chirostoma estor suggests
that the gonads differentiate as ovaries or testes by
8 weeks after hatching when raised at 21 °C. Thermal
treatments at 14 °C, 21 °C and 29 °C applied from
fertilisation, clearly affected phenotypic sex ratios, sug-
gesting that the thermolabile window of sex determina-
tion occurred early in development. In this study, expo-
sure to the highest temperature led to male-biased sex
ratios in this species. However, the effects of the lower
and medium temperatures on the sex ratios were less
clear, suggesting the presence of a mixture of genotypic
and temperature-dependent sex determination (TSD)
mechanisms in C. estor, similar to other atherinopsids.
This work further enhances our knowledge regarding
the diversity and plasticity of TSD mechanisms in
atherinopsid and teleost fish.
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Introduction

The sex determination process in vertebrates, including
fish, is driven by genotypic and environmental factors
during the early stages of development, and the degree
to which these factors influence each species may vary
even in closely related species (Strüssmann and Patiño
1999; Bull 2008). Thus, sex-determining mechanisms
can be broadly classified as genotypic (GSD) or envi-
ronmental (ESD) as the extremes of a continuum
(Strüssmann and Patiño 1999). Among the ESD forms,
temperature-dependent sex determination (TSD) is the
most commonly investigated process (Valenzuela et al.
2003), and it has been reported in over 13 families of
fish (Ospina-Álvarez and Piferrer 2008). The coexis-
tence of both GSD and TSD have been recently
characterised in the pejerrey Odontesthes bonariensis
(Yamamoto et al. 2014).

Sex determination is controlled by the activities of
numerous molecular and biochemical pathways (e.g., tran-
scription factors, steroidogenic enzymes, receptors, second
messenger systems), leading to the syntheses of specific
proteins that are responsible for the differentiation of either
the ovary or the testis (Devlin and Nagahama 2002).

At the molecular level, several transcription factors
have been recognised as key sex-determining genes,
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such as SRY in eutherian and metatherian mammals
(Sinclair et al. 1990; Foster et al. 1992), DMY/dmrt1bY
in the teleost Oryzias latipes (Temminck and Schlegel
1846) (Matsuda et al. 2002; Nanda et al. 2002); DM-W
in the amphibian Xenopus laevis (Daudin 1802)
(Yoshimoto et al. 2008) and DMRT1 in the domestic
chicken Gallus gallus (L., 1758) (Smith et al. 2009).
Additionally, four genes that are not transcription factors
have been described to play key roles in fish sex deter-
mination; A) the Y-linked anti-Müllerian hormone
(amhy) in the Patagonian pejerrey Odontesthes hatcheri
(Eigenmann 1909) (Hattori et al. 2012); B) the anti-
Müllerian hormone receptor type II (Amhr2) in the tiger
pufferfish Takifugu rubripes (Temminck and Schlegel
1850) (Kamiya et al. 2012); C) sexually dimorphic on
the Y chromosome (sdY), which is an immune-related
gene, in the rainbow trout Oncorhynchus mykiss
(Walbaum 1792) (Yano et al. 2012); and D) the gonadal
soma-derived growth factor on the Y chromosome
(GsdfY) in the medaka Oryzias luzonensis (Herre and
Ablan 1934) (Myosho et al. 2012).

More recently, epigenetic mechanisms on sex deter-
mination have been demonstrated in fish (Navarro-
Martín et al. 2011) and in turtles (Matsumoto et al.
2013), in which high degrees of methylation have been
observed in the promoter of the cyp19a gene following
exposure to high temperatures, leading to male-biased
sex ratios in the offspring. These cases illustrate the
diversities of the sex determination mechanisms that
are present in teleost fish. However, the precise
molecular interplay and metabolic pathways under-
lying the genotypic and environmental factors af-
fecting the sex differentiation processes in fish and
in other non-mammalian, poikilothermic species re-
main unclear (Ospina-Álvarez and Piferrer 2008;
Guerrero-Estevez and Moreno-Mendoza 2010; Hattori
et al. 2012).

Species with TSD have been proposed to be reliable
indicators of the biological effects of global warming
because temperature-induced sex ratio shifts constitute
direct fitness responses to thermal fluctuations, and sub-
sequently, to population dynamics (Janzen 1994). Thus,
atherinopsid fish have recently become interesting mod-
el organisms because they present several patterns of
TSDmechanisms and marked reproductive responses to
temperature shifts (Strüssmann et al. 2010). For exam-
ple, masculinisation is observed at high temperatures in
the following atherinopsids: Menidia menidia L. 1766
(94 % males at 28 °C), M. peninsulae Goode and Bean

1879 (74 % at 32 °C) (Conover and Kynard 1981;
Conover and Heins 1987; Yamahira and Conover
2003) and Odontesthes bonariensis, in which the most
pronounced effects have been observed (up to 100 %
males at 29 °C) (Strüssmann et al. 1996a, 1997).

The endemic Mexican freshwater pike silverside
Chirostoma estor is an endangered atherinopsid species
with critically reduced wild populations primarily due to
pollution, overfishing and a lack of conservation pro-
grams (Martinez-Palacios et al. 2006). Since 1999, stud-
ies have been conducted to optimise aquaculture proto-
cols to ensure the survival of this species, which has
been shown to have high docosahexaenoic acid content
(Fonseca-Madrigal et al. 2012; Fonseca-Madrigal et al.
2014). This work aimed to describe early gonadal de-
velopment and differentiation and the effects of water
temperature on these processes.

Methods

Rearing conditions

All experiments were performed at the aquaculture labo-
ratory facilities at the Instituto de Investigaciones
Agropecuarias y Forestales of Universidad Michoacana
de San Nicolás de Hidalgo in Morelia, Mexico. The
experimental system consisted of nine 60-l aquarium
tanks (three per replicate) attached to mechanical, biolog-
ical and UV filtration with water flow rate of 0.048 l s−1.
Automatic temperature control was provided by an aquar-
ium heater and chiller (LN-5800, BOYU, Raoping
Guangdong, China) used throughout the system, which
maintained temperatures at ±0.5 °C at all times.

A completely closed water recirculation system was
used, which included 5 g l−1 of salt (Martinez-Palacios
et al. 2004) and 12 h light/12 h dark photoperiods
provided by fluorescent commercial bulbs (750 lm,
6500 K). Oxygen was maintained at approximately
6 g l−1, pH 7–8, and NH3, NH4, NO2 were maintained
at safe levels.

Water quality was monitored in the system through-
out all the experiments as follows: salinity was assessed
with a refractometer (S/Mill-E 0–100 g l−1, ATAGO,
Bellevue, WA 98005 USA); temperature was monitored
with a mercury thermometer (−20 °C to 110 °C); pH,
NH3, NH4 and NO2 levels were evaluated with a color-
imetric test kit (FF-3, HACH, Loveland, CO 80539
USA); and dissolved oxygen levels were monitored
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with an oxymeter (51B, YSI, Yellow Springs, OH 45387
USA).

Experiment 1. Early gonadal differentiation

To describe and to define the characteristics of early
gonadal differentiation, approximately 1000 eggs
were obtained from three different pairs and manually
fertilised. Then, pooled eggs were divided in repli-
cates (n = 3), incubated and reared at 21 °C until
12 weeks after hatching (wah). The fish density was
adjusted to 4 larvae per litre. Larvae were fed live
Brachionus plicatilis Müller 1786 and Artemia spp.
(Leach 1819) nauplii ad libitum throughout the ex-
periment according to Martinez-Palacios et al. (2006).
In total, 20 larvae from each replicate was sampled at
one, four, eight and 12 wah, sedated with ice water
and culled as previously described for other
atherinopsid species (Hattori et al. 2009). The total
length and mass of each individual larva were mea-
sured, and the trunk was dissected and fixed for fur-
ther histological analysis.

Experiment 2. Effects of temperature treatment applied
from fertilisation to four wah on sex ratios

In this experiment, 2500 eggs from three different
broodstock pairs were manually stripped, fertilised at
23 °C and kept separate to assess the parental effects on
the offspring sex ratios. The fertilised eggs from each
pair were divided into three thermic treatment groups;
14 °C, 21 °C and 29 °C (n = 3). After four wah of
thermal exposure, the fish from the 14 °C and 29 °C
treatments were gradually acclimated (1 °C h−1) to the
control temperature (21 °C) and maintained for further
growth to 12 wah. The fish density at the start of the trial
was 3 larvae per litre, and the feeding was performed as
described in Exp. 1. At the end of experiment the mean
final mass was recorded from 40 larvae in the 14 °C
treatment, 60 larvae from the 21 °C and 60 larvae of
29 °C treatments, these samples were randomly obtain-
ed following the procedure described in Exp. 1. The
hatching and survival rate were calculated with the
entire population at the beginning and the end of the
trial.

In this experiment, the trunk was also dissected indi-
vidually for a histological assessment to determine the
phenotypic sex ratio and thermal sex ratio differences
between broods.

Experiment 3. Effects of temperature treatment applied
from hatching to four wah on sex ratios

For this experiment, approximately 5000 eggs pooled
from ten different broodstock pairs were manually
stripped, fertilised and incubated at 23 °C. Once
hatched, the fish were divided into three thermal treat-
ments, including 19 °C, 23 °C and 27 °C, with their
respective replicates (n = 3). The thermal treatments
ended at four wah, and then, all the treatments were
acclimated to 23 °C (control temperature). This temper-
ature was maintained until 12 wah for continued growth.
The fish densities and acclimatisation processes were
performed as described in Exp. 2. The fish were fed
B. plicatilis and Artemia sp. nauplii ad libitum during
the first 4 weeks and were fed a commercial microdiet
(Otohime S-1, Nihombashi Muromachi, Chuo-Ku,
Tokyo, 103–0022 Japan) at a daily rate of 3 % of
biomass for the last 8 weeks. The fish were sampled at
the end of experiment as previously described in Exp. 2.

Histological analysis of gonad differentiation

All the samples were fixed in Bouin’s solution
(HT10132, SIGMA, www.sigmaaldrich.com) for 24 h
and stored in 70 % ethanol. Then, the samples were
dehydrated in an ascending ethanol series and
embedded in paraffin enriched with highly pure
polymers (K93091409-Histosec, MERCK KGaA,
Darmstadt, Germany). Six-micron cross sections were
prepared using a microtome (Jung-Histocut 820, Leica,
Leider Lane, Buffalo Grove, IL 60089 USA), which
were mounted onto glass slides for haematoxylin-eosin
staining (Hattori et al. 2009). The preparations were
observed under a light microscope, and phenotypic sex
was determined according to the criteria used for other
atherinopsids as described by Strüssmann et al. (1996b,
1997).

Statistical analyses

All the data were analysed using the Sigma Plot v.11.00
software (Systat Software, Inc., 1735 Technology Drive,
Suite 430 San Jose, CA 95110 USA). The statistical
significances of the hatching rates, survival rates, and
phenotypic sex ratios between the temperatures and
between the broods were determined by the X2 (99 %
C.I.) test. The mean final mass data sets were tested for
normality (the Kolmogorov-Smirnov test) and equal
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variance among groups (Bartlett’s test). Then, the nor-
mally distributed data sets were analysed using one-way
ANOVA (95 % C.I.) with post hoc Tukey’s test for
multiple comparisons. Non-parametric data sets were
analysed using the Kruskal-Wallis test, followed by post
hoc Dunn’s test to establish significance between the
treatment groups. The significance level was set to
p ≤ 0.05 for all analyses, except for the X2 analysis,
for which p ≤ 0.01.

Results

Gonadal description

In Exp. 1, all the one-wah larvae presented early, undif-
ferentiated, rounded gonads containing somatic and pri-
mordial germ cells (PGCs) (Fig. 1(a)). At four wah, two
clearly identifiable morphologies of different sizes were
found; small undifferentiated gonads containing somatic
cells and PGCs similar to those found at one wah
(Fig. 2(a)) and larger gonads with developing ovaries,
characterised by observable active PGC proliferation,
meiotic cells and somatic cell cluster outgrowths in the
distal region, which appear very early in the ovary
(Fig. 1(b)) forming the ovarian cavity in latter stages
(Fig. 1(c)).

Thereafter, the gonads possessing either testicular or
ovarian structures could be clearly identified at eight
wah. The developing testes contained small blood cap-
illaries close to the proximal-lateral regions, few
spermatocysts, somatic cells, and apparent primary
sperm ducts (Fig. 2(b)), whereas the developing ovaries
presented a clear ovarian cavity, oogonia, large blood
capillaries, and smaller capillaries in the proximal-
lateral regions (Fig. 1(c)).

At 12 wah, the developing testes contained primary
spermatocytes, several spermatocysts and testis lobules,
and the blood capillaries were located on the opposite
sides of the spermatocysts, close to the primary sperm
ducts and to the external testicular wall (Fig. 2(c)). In
contrast, the developing ovaries included diplotene and
perinucleolar primary oocytes, and the blood capillaries
appeared close to the ovarian outer wall in the proximal-
lateral regions (Fig. 1(d)).

In Exps. 2 and 3, each female displayed either phase I
ovaries, which are characterised by oogonia and pachy-
tene and diplotene oocytes (Fig. 3(b)), or phase II ova-
ries, which are characterised by oogonia and pachytene,
diplotene and perinucleolar oocytes (Fig. 3(a)), the tem-
perature determined the ovaries size among treatments,
finding the smallest ovaries at 14 °C, and largest ovaries
at 21 and 29 °C. The 100% of ovaries of fish raised at 21
and 29 °C were found at phase II (Fig. 3(a)), however at
14 °C only the 84 % of ovaries presented phase II and
the 16 % of ovaries were found at phase I (Fig. 3(b)). In
Exp. 2, males raised at 21 °C and 29 °C had well
developed testes with spermatogonia, spermatocysts,
primary spermatocytes, spermatic ducts and somatic
cells (Fig. 3(c)); however, the gonads of male fish raised
at 14 °C in the same experiment had less developed
testicular lobules (Fig. 3(d)). Histological similarities
were observed in the male fish that were raised at
19 °C, 23 °C and 27 °C in Exp. 3.

Hatching rates, survival rates and mean final masses

In Exp. 2, the hatching and survival rates at 14 °C, 21 °C
and 29 °C significantly differed among all treatments
within each brood. For the three broods the lowest and
highest hatching and survival rates were found at the
lowest temperature (14 °C) and at 21 °C, respectively,

Fig. 1 Early ovary development of C. estor larvae at 21 °C
(experiment 1). a Undifferentiated gonad at one wah; b Ovarian
differentiation at four wah, indicated by cluster of somatic cells
(arrow) and meiotic prophase cells (asterisk); c Ovarian

differentiation at eight wah, presence of ovarian cavity formed
(asterisk); d Ovary at 12 wah, presence of perinucleolar oocytes
(arrow), oogonia (asterisk); bars represent 10 (a, b), 20 (c) and 50
(d) microns
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except for the first brood, which showed the better
hatching rate was at 29 °C. Regarding the final mass a
clear pattern appears, in which the weight gain increased
proportionally to temperature (Table 1).

In Exp. 3, the survival rates and mean final mass did
not differ significantly between the 27 °C and 23 °C
treatments. However, significant differences in the sur-
vival rates and mean final mass were found between
these treatments and that of 19 °C (Table 1).

Effects of temperatures on sex ratios

In Exp. 2, the sex ratios (male proportions) of the brood
of each pair were analysed. The first brood displayed

significant differences only at 29 °C compared to 14 °C
and 21 °C (Table 1). In the second brood, no significant
differences were observed between any of the treat-
ments. Finally, significant differences were found
among all treatments for the third brood. At 14 °C the
percentage of males was 48 %, at 21 °C was 75 % and
for 29 °C was 92 %, showing a clear masculinization
response as temperature increases (Table 1). The mean
proportions of males analysed combining the results of
the three parental lines were 57.33 % (14 °C), 65 %
(21 °C) and 82 % (29 °C), and significant differences
were observed among treatments. In Exp. 3, the propor-
tions of male fish did not significantly differ among any
of the treatments.

Fig. 2 Early testis
development of C. estor larvae
at 21 °C (experiment 1). a
Undifferentiated gonad at four
wah; b Testicular differentiation
at 8 wah, presence of main sperm
duct (asterisk) and spermatocyst
(arrow); c Testis at 12 wah,
presence of testis lobule (dashed
arrow); bars represent 10 (a) and
20 (b, c) microns

Fig. 3 Histological appearance
of phase II (a) and phase I (b)
ovaries and testes (c, d) at 12 wah
day old juveniles reared at 29 °C
(experiment 2; a, c) and 14 °C
(experiment 2; b, d), bars
represent 50 (a) and 20
(b, c, d) microns
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Discussion

Atherinopsid fish have become interesting models for
studying the mechanisms underlying temperature-
dependent sex determination in vertebrates due to the
high thermal sensitivity of gonadal development ob-
served in these organisms at both high and low temper-
atures. The identification of the Y-linked amhy gene in
O. hatcheri and more recently the confirmation of the
coexistence of genotypic and environmental mecha-
nisms of sex determination inO. bonariensis has further
increased the interest of this group of fish for investigat-
ing TSD in a GSD context (Hattori et al. 2012;
Yamamoto et al. 2014). In this study, we first described
the histological differentiation of the gonads in C. estor
raised at 21 °C for 12 wah. Then, we determined the
effects of low, intermediate and high temperatures ap-
plied before and after hatching on phenotypic sex ratios.

Histological analyses during gonad differentiation re-
vealed a clear gonochoristic differentiation pattern in
C. estor, in which ovarian differentiation occurred be-
tween one and four wah, whereas testicular differentiation
occurred later, between four and eight wah. These find-
ings are similar with other atherinopsid (O. hatchery) in
which the first features of ovarian differentiation appear at
three to four wah, and testicular differentiation begins at
five to six wah (Hattori et al. 2012). In fact, in most
gonochoristic teleosts, ovarian differentiation occurs first
(Strüssmann and Nakamura 2002). Developing ovaries
presented a central ovarian cavity, with oogonias and
primary oocytes between the cavity and the ovarian wall

or visceral peritoneum. This pattern differs from that
described previously for other atherinopsids, such as
O. bonariensis, O hatcheri and O. argentinensis
(Strüssmann et al. 1996a, b, c, 1997), in which the ovarian
cavity is located along the ventral region of the gonad,
with follicle of germ cells distributed on the opposite site,
i.e., along dorsal region. Regarding the testes of C. estor,
it showed external digitiform projections or microlobules
along each pair of lobules and blood vessels on the
opposite side of mesorchia. This feature has not been
observed in other atherinopsids, in which the blood ves-
sels are close to the mesorchia and the lobules are smooth
(Strüssmann et al. 1996a, b, c, 1997).

In thermal treatment experiments, we observed bal-
anced phenotypic sex ratios for temperature exposure
after hatching. However, when fish were exposed to
similar thermal treatments shortly after fertilisation until
four wah, sex ratio shifts toward males were observed at
high temperature, which was suggestive of TSD-related
effects. In this study, the proportions of phenotypic
males obtained from broods 1 and 3 (90 % and 92 %,
respectively) at 29 °C were significantly higher com-
pared to those at the intermediate temperatures (65 %
and 75 %, respectively) (Table 1). Similar findings have
also been observed in other atherinopsid species
(Conover and Heins 1987; Strüssmann et al. 1996a,
1997; Yamahira and Conover 2003). On the other hand,
low temperature (14 °C; Exp. 2) did not have feminising
effects, as opposed to the patterns of O. bonariensis,
O. hatcheri and M. peninsulae, for which feminisation
rates of 100 %, 89 % and 90 %, respectively, have been

Table 1 Hatching and survival,
rates, mean final mass, and sex
ratios of C. estor incubated and
reared at different temperatures
before and after hatching
(experiment 2) or after
(experiment 3) hatching

n number of fish by temperature
in each brood, °C Degree centi-
grades, mg milligrams; (a, b, c)
different letters indicate signifi-
cance differences between treat-
ments for each brood in the same
measurement column. Sex ratio is
expresed as % of male
proportions

Experiment Brood Temperature
(°C)

Hatching
rate (%)

Survival
rate (%)

Mean final
mass (mg)

Sex ratio

(%) (n)

2 1 14 30.4a 7.8a 216.67 ± 57.7a 67a 12

1 21 52.4b 91.6b 555.0 ± 82.5b 65a 20

1 29 60.8c 37.1c 680.0 ± 226.1c 90b 20

2 2 14 16.0a 14.5a 257.14 ± 78.6a 57a 7

2 21 40.0b 83.3b 640.0 ± 131.3b 55a 20

2 29 13.0a 38.4c 750.0 ± 191.1c 64a 14

2 3 14 42.0a 25.0a 252.38 ± 51.1a 48a 21

3 21 69.0b 81.1b 545.0 ± 139.4b 75b 20

3 29 41.0a 46.3c 723.0 ± 133.5c 92c 26

3 4 19 29.3a 218.43 ± 10.3a 40a 40

4 23 78.5 47.2b 266.02 ± 12.2b 52a 60

4 27 48.1b 275.96 ± 13.1b 50a 60
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reported (Strüssmann et al. 1996a, 1997; Yamahira and
Conover 2003). Feminization at low temperatures
seems not to be a general response among teleosts,
likewise masculinization at high thermal regimes
(Hattori et al. 2007; Ospina-Álvarez and Piferrer
2008). Nevertheless, we have to consider the possibility
of feminization at even lower temperatures than that
used in this study. Another possibility is that another
unknown stressor (s) able to increase cortisol levels
(e.g., salinity, background color, light intensity)
(Hattori et al. 2009) could be acting on sex determina-
tion resulting in balanced sex ratios instead of female-
biased ones at low temperature.

Although the analyses of body weight as well as the
rates of hatching and survival indicate that the lowest
and the highest temperatures are close to the extreme
thermal range tolerated byC. estor and that intermediate
ones are within the optimal range for this species, ac-
cording to the reported previously for this species
(Martinez-Palacios et al. 2002), temperatures even low-
er or higher could be explored for a shorter period in
future studies in order to achieve higher sex reversal
rates. Shortening this period are important in breeding
programs once long-term treatments at high tempera-
tures may have chronic effects on juvenile-adult perfor-
mance impairing gametogenesis and causing sterility, as
reported in O. bonariensis (Ito et al. 2008).

As regards to the timing of sex determination, we
propose that the thermolabile window of sex determina-
tion commences somewhere after fertilisation, i.e., dur-
ing embryogenesis. This pattern resembles that reported
in O. hatcheri (Strüssmann et al. 1996a), in Oryzias
latipes (Hattori et al. 2007) and inOreochromis niloticus
(Rougeot et al. 2008) and differs from that reported in
O. bonariensis, in which the thermolabile window has
been estimated to occur after hatching. This assumption,
coupled to the fact that high temperature in C. estor did
not induce 100 % masculinisation or that low tempera-
tures were ineffective may suggest that this species
presents strong GSD as in O. hatcheri (Strüssmann
et al. 1997; Hattori et al. 2012), controlled by a geno-
typic sex determinant. The identification of such deter-
minant as well as the transcription profiling of sex-
related genes could clarify the sex determining mecha-
nisms and the gonad differentiation process in this spe-
cies, which in turn, could be used as important genetic
tools in reproductive studies of this species.

Our results on C. estor sex determination using dif-
ferent broods support the idea that the degree or strength

of GSD and TSD are highly dependent on species or
even on broods (Ospina-Álvarez and Piferrer 2008). In
this study, such variations were evident when larvae
from different pairs were analysed. These sex ratio
differences may be due to differences in thermal sensi-
tivity between each pair and thus between each brood,
affecting the responses of phenotypic sex ratios to the
same temperature.

In conclusion, this study indicates that high temper-
ature during early development can affect sex ratios in
C. estor, reinforcing the idea of TSD as a widespread
sex-determining mechanism among atherinopsid fish.
The presence of TSD in C. estor suggest that sex ratios
of wild populations as well as its dynamics, may also be
affected in a global warming or climate change scenario
as previously suggested for silversides by Strüssmann
et al. (2010), mainly becauseC. estor is known to spawn
in shallow areas that may be more prone to high tem-
peratures. Additionally, TSD could be further explored
as a biotechnological tool for sex control technology in
aquaculture programs or restocking management of this
landlocked species.
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